blob: f5047943e5d7f128c97ab93a009f6fafd14aa585 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/av1_rtcd.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
namespace {
using ::libaom_test::ACMRandom;
const int MAX_WIDTH = 32;
const int MAX_HEIGHT = 32;
typedef void (*YUVTemporalFilterFunc)(
const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw, int use_32x32,
uint32_t *y_accumulator, uint16_t *y_count, uint32_t *u_accumulator,
uint16_t *u_count, uint32_t *v_accumulator, uint16_t *v_count);
struct TemporalFilterWithBd {
TemporalFilterWithBd(YUVTemporalFilterFunc func, int bitdepth)
: temporal_filter(func), bd(bitdepth) {}
YUVTemporalFilterFunc temporal_filter;
int bd;
};
std::ostream &operator<<(std::ostream &os, const TemporalFilterWithBd &tf) {
return os << "Bitdepth: " << tf.bd;
}
int GetFilterWeight(unsigned int row, unsigned int col,
unsigned int block_height, unsigned int block_width,
const int *const blk_fw, int use_32x32) {
if (use_32x32) {
return blk_fw[0];
}
return blk_fw[2 * (row >= block_height / 2) + (col >= block_width / 2)];
}
template <typename PixelType>
int GetModIndex(int sum_dist, int index, int rounding, int strength,
int filter_weight) {
int mod = sum_dist * 3 / index;
mod += rounding;
mod >>= strength;
mod = AOMMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
// Lowbitdepth version
template <>
int GetModIndex<uint8_t>(int sum_dist, int index, int rounding, int strength,
int filter_weight) {
unsigned int index_mult[14] = { 0, 0, 0, 0, 49152,
39322, 32768, 28087, 24576, 21846,
19661, 17874, 0, 15124 };
assert(index >= 0 && index <= 13);
assert(index_mult[index] != 0);
int mod = (clamp(sum_dist, 0, UINT16_MAX) * index_mult[index]) >> 16;
mod += rounding;
mod >>= strength;
mod = AOMMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
// Highbitdepth version
template <>
int GetModIndex<uint16_t>(int sum_dist, int index, int rounding, int strength,
int filter_weight) {
int64_t index_mult[14] = { 0U, 0U, 0U, 0U,
3221225472U, 2576980378U, 2147483648U, 1840700270U,
1610612736U, 1431655766U, 1288490189U, 1171354718U,
0U, 991146300U };
assert(index >= 0 && index <= 13);
assert(index_mult[index] != 0);
int mod = static_cast<int>((sum_dist * index_mult[index]) >> 32);
mod += rounding;
mod >>= strength;
mod = AOMMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
template <typename PixelType>
void SetArray(PixelType *pixel_array, int width, int height, int stride,
int val) {
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
pixel_array[col] = val;
}
pixel_array += stride;
}
}
template <typename PixelType>
void SetArray(PixelType *pixel_array, int width, int height, int stride,
ACMRandom *rnd, int low_val, int high_val) {
EXPECT_LE(low_val, high_val);
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
const int val =
static_cast<int>((*rnd).PseudoUniform(high_val - low_val));
pixel_array[col] = low_val + val;
}
pixel_array += stride;
}
}
template <typename ValueType>
bool CheckArrayEqual(const ValueType *arr_1, const ValueType *arr_2, int width,
int height, int stride_1, int stride_2) {
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
if (arr_1[col] != arr_2[col]) {
return false;
}
}
arr_1 += stride_1;
arr_2 += stride_2;
}
return true;
}
template <typename ValueType>
void PrintArrayDiff(const ValueType *arr_1, const ValueType *arr_2, int width,
int height, int stride_1, int stride_2) {
const ValueType *arr_1_start = arr_1, *arr_2_start = arr_2;
printf("Array 1:\n");
for (int row = 0; row < height; ++row) {
for (int col = 0; col < width; ++col) {
if (arr_1[col] != arr_2[col]) {
printf("*%3d", arr_1[col]);
} else {
printf("%4d", arr_1[col]);
}
}
printf("\n");
arr_1 += stride_1;
arr_2 += stride_2;
}
arr_1 = arr_1_start;
arr_2 = arr_2_start;
printf("Array 2:\n");
for (int row = 0; row < height; ++row) {
for (int col = 0; col < width; ++col) {
if (arr_1[col] != arr_2[col]) {
printf("*%3d", arr_2[col]);
} else {
printf("%4d", arr_2[col]);
}
}
printf("\n");
arr_1 += stride_1;
arr_2 += stride_2;
}
arr_1 = arr_1_start;
arr_2 = arr_2_start;
printf("Difference:\n");
for (int row = 0; row < height; ++row) {
for (int col = 0; col < width; ++col) {
printf("%4d", arr_1[col] - arr_2[col]);
}
printf("\n");
arr_1 += stride_1;
arr_2 += stride_2;
}
}
template <typename PixelType>
void ApplyReferenceFilter(const PixelType *y_src, const PixelType *y_pre,
const PixelType *u_src, const PixelType *v_src,
const PixelType *u_pre, const PixelType *v_pre,
unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength,
const int *const blk_fw, int use_32x32,
uint32_t *y_accum, uint16_t *y_count,
uint32_t *u_accum, uint16_t *u_count,
uint32_t *v_accum, uint16_t *v_count) {
const int uv_block_width = block_width >> ss_x,
uv_block_height = block_height >> ss_y;
const int y_src_stride = block_width, y_pre_stride = block_width;
const int uv_src_stride = uv_block_width, uv_pre_stride = uv_block_width;
const int y_diff_stride = block_width, uv_diff_stride = uv_block_width;
const int y_count_stride = block_width, u_count_stride = uv_block_width,
v_count_stride = uv_block_width;
const int y_accum_stride = block_width, u_accum_stride = uv_block_width,
v_accum_stride = uv_block_width;
int y_dif[MAX_WIDTH * MAX_HEIGHT] = { 0 };
int u_dif[MAX_WIDTH * MAX_HEIGHT] = { 0 };
int v_dif[MAX_WIDTH * MAX_HEIGHT] = { 0 };
const int rounding = (1 << strength) >> 1;
// Get the square diffs
for (int row = 0; row < (int)block_height; row++) {
for (int col = 0; col < (int)block_width; col++) {
const int diff =
y_src[row * y_src_stride + col] - y_pre[row * y_pre_stride + col];
y_dif[row * y_diff_stride + col] = diff * diff;
}
}
for (int row = 0; row < (int)uv_block_height; row++) {
for (int col = 0; col < (int)uv_block_width; col++) {
const int u_diff =
u_src[row * uv_src_stride + col] - u_pre[row * uv_pre_stride + col];
const int v_diff =
v_src[row * uv_src_stride + col] - v_pre[row * uv_pre_stride + col];
u_dif[row * uv_diff_stride + col] = u_diff * u_diff;
v_dif[row * uv_diff_stride + col] = v_diff * v_diff;
}
}
// Apply the filter to luma
for (int row = 0; row < (int)block_height; row++) {
for (int col = 0; col < (int)block_width; col++) {
const int uv_row = row >> ss_y;
const int uv_col = col >> ss_x;
const int filter_weight = GetFilterWeight(row, col, block_height,
block_width, blk_fw, use_32x32);
// First we get the modifier for the current y pixel
const int y_pixel = y_pre[row * y_pre_stride + col];
int y_num_used = 0;
int y_mod = 0;
// Sum the neighboring 3x3 y pixels
for (int row_step = -1; row_step <= 1; row_step++) {
for (int col_step = -1; col_step <= 1; col_step++) {
const int sub_row = row + row_step;
const int sub_col = col + col_step;
if (sub_row >= 0 && sub_row < (int)block_height && sub_col >= 0 &&
sub_col < (int)block_width) {
y_mod += y_dif[sub_row * y_diff_stride + sub_col];
y_num_used++;
}
}
}
// Sum the corresponding uv pixels to the current y modifier
// Note we are rounding down instead of rounding to the nearest pixel.
y_mod += u_dif[uv_row * uv_diff_stride + uv_col];
y_mod += v_dif[uv_row * uv_diff_stride + uv_col];
y_num_used += 2;
// Set the modifier
y_mod = GetModIndex<PixelType>(y_mod, y_num_used, rounding, strength,
filter_weight);
// Accumulate the result
y_count[row * y_count_stride + col] += y_mod;
y_accum[row * y_accum_stride + col] += y_mod * y_pixel;
}
}
// Apply the filter to chroma
for (int uv_row = 0; uv_row < (int)uv_block_height; uv_row++) {
for (int uv_col = 0; uv_col < (int)uv_block_width; uv_col++) {
const int y_row = uv_row << ss_y;
const int y_col = uv_col << ss_x;
const int filter_weight = GetFilterWeight(
uv_row, uv_col, uv_block_height, uv_block_width, blk_fw, use_32x32);
const int u_pixel = u_pre[uv_row * uv_pre_stride + uv_col];
const int v_pixel = v_pre[uv_row * uv_pre_stride + uv_col];
int uv_num_used = 0;
int u_mod = 0, v_mod = 0;
// Sum the neighboring 3x3 chromal pixels to the chroma modifier
for (int row_step = -1; row_step <= 1; row_step++) {
for (int col_step = -1; col_step <= 1; col_step++) {
const int sub_row = uv_row + row_step;
const int sub_col = uv_col + col_step;
if (sub_row >= 0 && sub_row < uv_block_height && sub_col >= 0 &&
sub_col < uv_block_width) {
u_mod += u_dif[sub_row * uv_diff_stride + sub_col];
v_mod += v_dif[sub_row * uv_diff_stride + sub_col];
uv_num_used++;
}
}
}
// Sum all the luma pixels associated with the current luma pixel
for (int row_step = 0; row_step < 1 + ss_y; row_step++) {
for (int col_step = 0; col_step < 1 + ss_x; col_step++) {
const int sub_row = y_row + row_step;
const int sub_col = y_col + col_step;
const int y_diff = y_dif[sub_row * y_diff_stride + sub_col];
u_mod += y_diff;
v_mod += y_diff;
uv_num_used++;
}
}
// Set the modifier
u_mod = GetModIndex<PixelType>(u_mod, uv_num_used, rounding, strength,
filter_weight);
v_mod = GetModIndex<PixelType>(v_mod, uv_num_used, rounding, strength,
filter_weight);
// Accumulate the result
u_count[uv_row * u_count_stride + uv_col] += u_mod;
u_accum[uv_row * u_accum_stride + uv_col] += u_mod * u_pixel;
v_count[uv_row * v_count_stride + uv_col] += v_mod;
v_accum[uv_row * v_accum_stride + uv_col] += v_mod * v_pixel;
}
}
}
class YUVTemporalFilterTest
: public ::testing::TestWithParam<TemporalFilterWithBd> {
public:
virtual void SetUp() {
filter_func_ = GetParam().temporal_filter;
bd_ = GetParam().bd;
use_highbd_ = (bd_ != 8);
rnd_.Reset(ACMRandom::DeterministicSeed());
saturate_test_ = 0;
num_repeats_ = 10;
ASSERT_TRUE(bd_ == 8 || bd_ == 10 || bd_ == 12);
}
protected:
template <typename PixelType>
void CompareTestWithParam(int width, int height, int ss_x, int ss_y,
int filter_strength, int use_32x32,
const int *filter_weight);
template <typename PixelType>
void RunTestFilterWithParam(int width, int height, int ss_x, int ss_y,
int filter_strength, int use_32x32,
const int *filter_weight);
template <typename PixelType>
void ApplyTestFilter(const PixelType *y_src, int y_src_stride,
const PixelType *y_pre, int y_pre_stride,
const PixelType *u_src, const PixelType *v_src,
int uv_src_stride, const PixelType *u_pre,
const PixelType *v_pre, int uv_pre_stride,
unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw,
int use_32x32, uint32_t *y_accum, uint16_t *y_count,
uint32_t *u_accumu, uint16_t *u_count, uint32_t *v_accum,
uint16_t *v_count);
YUVTemporalFilterFunc filter_func_;
ACMRandom rnd_;
int saturate_test_;
int num_repeats_;
int use_highbd_;
int bd_;
};
template <>
void YUVTemporalFilterTest::ApplyTestFilter<uint8_t>(
const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw, int use_32x32,
uint32_t *y_accum, uint16_t *y_count, uint32_t *u_accum, uint16_t *u_count,
uint32_t *v_accum, uint16_t *v_count) {
ASM_REGISTER_STATE_CHECK(
filter_func_(y_src, y_src_stride, y_pre, y_pre_stride, u_src, v_src,
uv_src_stride, u_pre, v_pre, uv_pre_stride, block_width,
block_height, ss_x, ss_y, strength, blk_fw, use_32x32,
y_accum, y_count, u_accum, u_count, v_accum, v_count));
}
template <>
void YUVTemporalFilterTest::ApplyTestFilter<uint16_t>(
const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw, int use_32x32,
uint32_t *y_accum, uint16_t *y_count, uint32_t *u_accum, uint16_t *u_count,
uint32_t *v_accum, uint16_t *v_count) {
ASM_REGISTER_STATE_CHECK(filter_func_(
CONVERT_TO_BYTEPTR(y_src), y_src_stride, CONVERT_TO_BYTEPTR(y_pre),
y_pre_stride, CONVERT_TO_BYTEPTR(u_src), CONVERT_TO_BYTEPTR(v_src),
uv_src_stride, CONVERT_TO_BYTEPTR(u_pre), CONVERT_TO_BYTEPTR(v_pre),
uv_pre_stride, block_width, block_height, ss_x, ss_y, strength, blk_fw,
use_32x32, y_accum, y_count, u_accum, u_count, v_accum, v_count));
}
template <typename PixelType>
void YUVTemporalFilterTest::CompareTestWithParam(int width, int height,
int ss_x, int ss_y,
int filter_strength,
int use_32x32,
const int *filter_weight) {
const int uv_width = width >> ss_x, uv_height = height >> ss_y;
const int y_stride = width, uv_stride = uv_width;
DECLARE_ALIGNED(16, PixelType, y_src[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, PixelType, y_pre[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, y_count_ref[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, y_accum_ref[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, y_count_tst[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, y_accum_tst[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, PixelType, u_src[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, PixelType, u_pre[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, u_count_ref[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, u_accum_ref[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, u_count_tst[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, u_accum_tst[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, PixelType, v_src[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, PixelType, v_pre[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, v_count_ref[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, v_accum_ref[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, v_count_tst[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, v_accum_tst[MAX_WIDTH * MAX_HEIGHT]) = { 0 };
for (int repeats = 0; repeats < num_repeats_; repeats++) {
if (saturate_test_) {
const int max_val = (1 << bd_) - 1;
SetArray(y_src, width, height, y_stride, max_val);
SetArray(y_pre, width, height, y_stride, 0);
SetArray(u_src, uv_width, uv_height, uv_stride, max_val);
SetArray(u_pre, uv_width, uv_height, uv_stride, 0);
SetArray(v_src, uv_width, uv_height, uv_stride, max_val);
SetArray(v_pre, uv_width, uv_height, uv_stride, 0);
} else {
const int max_val = 7 << (bd_ - 8);
SetArray(y_src, width, height, y_stride, &rnd_, 0, max_val);
SetArray(y_pre, width, height, y_stride, &rnd_, 0, max_val);
SetArray(u_src, uv_width, uv_height, uv_stride, &rnd_, 0, max_val);
SetArray(u_pre, uv_width, uv_height, uv_stride, &rnd_, 0, max_val);
SetArray(v_src, uv_width, uv_height, uv_stride, &rnd_, 0, max_val);
SetArray(v_pre, uv_width, uv_height, uv_stride, &rnd_, 0, max_val);
}
ApplyReferenceFilter<PixelType>(
y_src, y_pre, u_src, v_src, u_pre, v_pre, width, height, ss_x, ss_y,
filter_strength, filter_weight, use_32x32, y_accum_ref, y_count_ref,
u_accum_ref, u_count_ref, v_accum_ref, v_count_ref);
ApplyTestFilter(y_src, y_stride, y_pre, y_stride, u_src, v_src, uv_stride,
u_pre, v_pre, uv_stride, width, height, ss_x, ss_y,
filter_strength, filter_weight, use_32x32, y_accum_tst,
y_count_tst, u_accum_tst, u_count_tst, v_accum_tst,
v_count_tst);
EXPECT_TRUE(CheckArrayEqual(y_accum_tst, y_accum_ref, width, height,
y_stride, y_stride));
EXPECT_TRUE(CheckArrayEqual(y_count_tst, y_count_ref, width, height,
y_stride, y_stride));
EXPECT_TRUE(CheckArrayEqual(u_accum_tst, u_accum_ref, uv_width, uv_height,
uv_stride, uv_stride));
EXPECT_TRUE(CheckArrayEqual(u_count_tst, u_count_ref, uv_width, uv_height,
uv_stride, uv_stride));
EXPECT_TRUE(CheckArrayEqual(v_accum_tst, v_accum_ref, uv_width, uv_height,
uv_stride, uv_stride));
EXPECT_TRUE(CheckArrayEqual(v_count_tst, v_count_ref, uv_width, uv_height,
uv_stride, uv_stride));
if (HasFailure()) {
if (use_32x32) {
printf("SS_X: %d, SS_Y: %d, Strength: %d, Weight: %d\n", ss_x, ss_y,
filter_strength, *filter_weight);
} else {
printf("SS_X: %d, SS_Y: %d, Strength: %d, Weights: %d,%d,%d,%d\n", ss_x,
ss_y, filter_strength, filter_weight[0], filter_weight[1],
filter_weight[2], filter_weight[3]);
}
PrintArrayDiff(y_accum_ref, y_accum_tst, width, height, y_stride,
y_stride);
PrintArrayDiff(y_count_ref, y_count_tst, width, height, y_stride,
y_stride);
PrintArrayDiff(u_accum_ref, v_accum_tst, uv_width, uv_height, uv_stride,
uv_stride);
PrintArrayDiff(u_count_ref, v_count_tst, uv_width, uv_height, uv_stride,
uv_stride);
PrintArrayDiff(u_accum_ref, v_accum_tst, uv_width, uv_height, uv_stride,
uv_stride);
PrintArrayDiff(u_count_ref, v_count_tst, uv_width, uv_height, uv_stride,
uv_stride);
return;
}
}
}
template <typename PixelType>
void YUVTemporalFilterTest::RunTestFilterWithParam(int width, int height,
int ss_x, int ss_y,
int filter_strength,
int use_32x32,
const int *filter_weight) {
PixelType y_src[MAX_WIDTH * MAX_HEIGHT] = { 0 };
PixelType y_pre[MAX_WIDTH * MAX_HEIGHT] = { 0 };
uint16_t y_count[MAX_WIDTH * MAX_HEIGHT] = { 0 };
uint32_t y_accum[MAX_WIDTH * MAX_HEIGHT] = { 0 };
PixelType u_src[MAX_WIDTH * MAX_HEIGHT] = { 0 };
PixelType u_pre[MAX_WIDTH * MAX_HEIGHT] = { 0 };
uint16_t u_count[MAX_WIDTH * MAX_HEIGHT] = { 0 };
uint32_t u_accum[MAX_WIDTH * MAX_HEIGHT] = { 0 };
PixelType v_src[MAX_WIDTH * MAX_HEIGHT] = { 0 };
PixelType v_pre[MAX_WIDTH * MAX_HEIGHT] = { 0 };
uint16_t v_count[MAX_WIDTH * MAX_HEIGHT] = { 0 };
uint32_t v_accum[MAX_WIDTH * MAX_HEIGHT] = { 0 };
SetArray(y_src, width, height, MAX_WIDTH, &rnd_, 0, 7 << (bd_ = 8));
SetArray(y_pre, width, height, MAX_WIDTH, &rnd_, 0, 7 << (bd_ = 8));
SetArray(u_src, width, height, MAX_WIDTH, &rnd_, 0, 7 << (bd_ = 8));
SetArray(u_pre, width, height, MAX_WIDTH, &rnd_, 0, 7 << (bd_ = 8));
SetArray(v_src, width, height, MAX_WIDTH, &rnd_, 0, 7 << (bd_ = 8));
SetArray(v_pre, width, height, MAX_WIDTH, &rnd_, 0, 7 << (bd_ = 8));
for (int repeats = 0; repeats < num_repeats_; repeats++) {
ApplyTestFilter(y_src, MAX_WIDTH, y_pre, MAX_WIDTH, u_src, v_src, MAX_WIDTH,
u_pre, v_pre, MAX_WIDTH, width, height, ss_x, ss_y,
filter_strength, filter_weight, use_32x32, y_accum, y_count,
u_accum, u_count, v_accum, v_count);
}
}
TEST_P(YUVTemporalFilterTest, Use32x32) {
const int width = 32, height = 32;
const int use_32x32 = 1;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
for (int filter_weight = 0; filter_weight <= 2; filter_weight++) {
if (use_highbd_) {
const int adjusted_strength = filter_strength + 2 * (bd_ - 8);
CompareTestWithParam<uint16_t>(width, height, ss_x, ss_y,
adjusted_strength, use_32x32,
&filter_weight);
} else {
CompareTestWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
&filter_weight);
}
ASSERT_FALSE(HasFailure());
}
}
}
}
}
TEST_P(YUVTemporalFilterTest, Use16x16) {
const int width = 32, height = 32;
const int use_32x32 = 0;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_idx = 0; filter_idx < 3 * 3 * 3 * 3; filter_idx++) {
// Set up the filter
int filter_weight[4];
int filter_idx_cp = filter_idx;
for (int idx = 0; idx < 4; idx++) {
filter_weight[idx] = filter_idx_cp % 3;
filter_idx_cp /= 3;
}
// Test each parameter
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
if (use_highbd_) {
const int adjusted_strength = filter_strength + 2 * (bd_ - 8);
CompareTestWithParam<uint16_t>(width, height, ss_x, ss_y,
adjusted_strength, use_32x32,
filter_weight);
} else {
CompareTestWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
filter_weight);
}
ASSERT_FALSE(HasFailure());
}
}
}
}
}
TEST_P(YUVTemporalFilterTest, SaturationTest) {
const int width = 32, height = 32;
const int use_32x32 = 1;
const int filter_weight = 1;
saturate_test_ = 1;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
if (use_highbd_) {
const int adjusted_strength = filter_strength + 2 * (bd_ - 8);
CompareTestWithParam<uint16_t>(width, height, ss_x, ss_y,
adjusted_strength, use_32x32,
&filter_weight);
} else {
CompareTestWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
&filter_weight);
}
ASSERT_FALSE(HasFailure());
}
}
}
}
TEST_P(YUVTemporalFilterTest, DISABLED_Speed) {
const int width = 32, height = 32;
num_repeats_ = 1000;
for (int use_32x32 = 0; use_32x32 <= 1; use_32x32++) {
const int num_filter_weights = use_32x32 ? 3 : 3 * 3 * 3 * 3;
for (int ss_x = 0; ss_x <= 1; ss_x++) {
for (int ss_y = 0; ss_y <= 1; ss_y++) {
for (int filter_idx = 0; filter_idx < num_filter_weights;
filter_idx++) {
// Set up the filter
int filter_weight[4];
int filter_idx_cp = filter_idx;
for (int idx = 0; idx < 4; idx++) {
filter_weight[idx] = filter_idx_cp % 3;
filter_idx_cp /= 3;
}
// Test each parameter
for (int filter_strength = 0; filter_strength <= 6;
filter_strength += 2) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
if (use_highbd_) {
RunTestFilterWithParam<uint16_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
filter_weight);
} else {
RunTestFilterWithParam<uint8_t>(width, height, ss_x, ss_y,
filter_strength, use_32x32,
filter_weight);
}
aom_usec_timer_mark(&timer);
const int elapsed_time =
static_cast<int>(aom_usec_timer_elapsed(&timer));
printf(
"Bitdepth: %d, Use 32X32: %d, SS_X: %d, SS_Y: %d, Weight Idx: "
"%d, Strength: %d, Time: %5d\n",
bd_, use_32x32, ss_x, ss_y, filter_idx, filter_strength,
elapsed_time);
}
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(
C, YUVTemporalFilterTest,
::testing::Values(
TemporalFilterWithBd(&av1_apply_temporal_filter_c, 8),
TemporalFilterWithBd(&av1_highbd_apply_temporal_filter_c, 10),
TemporalFilterWithBd(&av1_highbd_apply_temporal_filter_c, 12)));
#if HAVE_SSE4_1
INSTANTIATE_TEST_CASE_P(
SSE4_1, YUVTemporalFilterTest,
::testing::Values(
TemporalFilterWithBd(&av1_apply_temporal_filter_sse4_1, 8),
TemporalFilterWithBd(&av1_highbd_apply_temporal_filter_sse4_1, 10),
TemporalFilterWithBd(&av1_highbd_apply_temporal_filter_sse4_1, 12)));
#endif // HAVE_SSE4_1
} // namespace