blob: c9e7188564266ad1acb13a19c438ee7dbaf1914f [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h> // qsort()
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#if CONFIG_CLPF
#include "av1/common/clpf.h"
#endif
#include "av1/common/common.h"
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/detokenize.h"
#include "av1/decoder/dsubexp.h"
#define MAX_AV1_HEADER_SIZE 80
static int is_compound_reference_allowed(const AV1_COMMON *cm) {
int i;
if (frame_is_intra_only(cm)) return 0;
for (i = 1; i < REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
return 0;
}
static void setup_compound_reference_mode(AV1_COMMON *cm) {
#if CONFIG_EXT_REFS
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF_FRAME;
#else
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
#endif // CONFIG_EXT_REFS
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) {
const int data = aom_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
#if CONFIG_MISC_FIXES
static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2);
}
#else
static TX_MODE read_tx_mode(aom_reader *r) {
TX_MODE tx_mode = aom_read_literal(r, 2);
if (tx_mode == ALLOW_32X32) tx_mode += aom_read_bit(r);
return tx_mode;
}
#endif
static void read_tx_mode_probs(struct tx_probs *tx_probs, aom_reader *r) {
int i, j;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 3; ++j)
av1_diff_update_prob(r, &tx_probs->p8x8[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 2; ++j)
av1_diff_update_prob(r, &tx_probs->p16x16[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZES - 1; ++j)
av1_diff_update_prob(r, &tx_probs->p32x32[i][j]);
}
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
#if CONFIG_DAALA_EC
av1_tree_to_cdf(av1_switchable_interp_tree, fc->switchable_interp_prob[j],
fc->switchable_interp_cdf[j]);
#endif
}
}
static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i;
#if CONFIG_REF_MV
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->newmv_prob[i]);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->zeromv_prob[i]);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->refmv_prob[i]);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->drl_prob[i]);
#else
int j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < INTER_MODES - 1; ++j)
av1_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
#endif
}
#if CONFIG_MISC_FIXES
static REFERENCE_MODE read_frame_reference_mode(
const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (is_compound_reference_allowed(cm)) {
return aom_rb_read_bit(rb)
? REFERENCE_MODE_SELECT
: (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE);
} else {
return SINGLE_REFERENCE;
}
}
#else
static REFERENCE_MODE read_frame_reference_mode(const AV1_COMMON *cm,
aom_reader *r) {
if (is_compound_reference_allowed(cm)) {
return aom_read_bit(r)
? (aom_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
: SINGLE_REFERENCE;
} else {
return SINGLE_REFERENCE;
}
}
#endif
static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) {
FRAME_CONTEXT *const fc = cm->fc;
int i, j;
if (cm->reference_mode == REFERENCE_MODE_SELECT)
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->comp_inter_prob[i]);
if (cm->reference_mode != COMPOUND_REFERENCE)
for (i = 0; i < REF_CONTEXTS; ++i)
for (j = 0; j < (SINGLE_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->single_ref_prob[i][j]);
if (cm->reference_mode != SINGLE_REFERENCE)
#if CONFIG_EXT_REFS
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < (FWD_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_fwdref_prob[i][j]);
for (j = 0; j < (BWD_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j]);
}
#else
for (i = 0; i < REF_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->comp_ref_prob[i]);
#endif // CONFIG_EXT_REFS
}
static void update_mv_probs(aom_prob *p, int n, aom_reader *r) {
int i;
for (i = 0; i < n; ++i)
#if CONFIG_MISC_FIXES
av1_diff_update_prob(r, &p[i]);
#else
if (aom_read(r, MV_UPDATE_PROB)) p[i] = (aom_read_literal(r, 7) << 1) | 1;
#endif
}
static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) {
int i, j;
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->sign, 1, r);
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j)
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
update_mv_probs(comp_ctx->fp, 3, r);
}
if (allow_hp) {
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->class0_hp, 1, r);
update_mv_probs(&comp_ctx->hp, 1, r);
}
}
}
static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int eob, int block) {
struct macroblockd_plane *const pd = &xd->plane[plane];
TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block);
const int seg_id = xd->mi[0]->mbmi.segment_id;
if (eob > 0) {
tran_low_t *const dqcoeff = pd->dqcoeff;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_4X4:
av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, xd->bd,
tx_type, xd->lossless[seg_id]);
break;
case TX_8X8:
av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, xd->bd,
tx_type);
break;
case TX_16X16:
av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, xd->bd,
tx_type);
break;
case TX_32X32:
av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, xd->bd,
tx_type);
break;
default: assert(0 && "Invalid transform size"); return;
}
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
switch (tx_size) {
case TX_4X4:
av1_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, tx_type,
xd->lossless[seg_id]);
break;
case TX_8X8:
av1_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, tx_type);
break;
case TX_16X16:
av1_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, tx_type);
break;
case TX_32X32:
av1_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, tx_type);
break;
default: assert(0 && "Invalid transform size"); return;
}
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (eob == 1) {
dqcoeff[0] = 0;
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
}
}
static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int seg_id = xd->mi[0]->mbmi.segment_id;
if (eob > 0) {
tran_low_t *const dqcoeff = pd->dqcoeff;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_4X4:
av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, xd->bd,
tx_type, xd->lossless[seg_id]);
break;
case TX_8X8:
av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, xd->bd,
tx_type);
break;
case TX_16X16:
av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, xd->bd,
tx_type);
break;
case TX_32X32:
av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, xd->bd,
tx_type);
break;
default: assert(0 && "Invalid transform size"); return;
}
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
switch (tx_size) {
case TX_4X4:
av1_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, tx_type,
xd->lossless[seg_id]);
break;
case TX_8X8:
av1_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, tx_type);
break;
case TX_16X16:
av1_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, tx_type);
break;
case TX_32X32:
av1_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, tx_type);
break;
default: assert(0 && "Invalid transform size"); return;
}
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (eob == 1) {
dqcoeff[0] = 0;
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
}
}
static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd,
aom_reader *r,
MB_MODE_INFO *const mbmi,
int plane, int row, int col,
TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode;
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
uint8_t *dst;
int block_idx = (row << 1) + col;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
if (mbmi->sb_type < BLOCK_8X8)
if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
av1_predict_intra_block(xd, pd->n4_wl, pd->n4_hl, tx_size, mode, dst,
pd->dst.stride, dst, pd->dst.stride, col, row, plane);
if (!mbmi->skip) {
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx);
const scan_order *sc = get_scan(tx_size, tx_type);
const int eob = av1_decode_block_tokens(xd, plane, sc, col, row, tx_size, r,
mbmi->segment_id);
inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
pd->dst.stride, eob);
}
}
static int reconstruct_inter_block(MACROBLOCKD *const xd, aom_reader *r,
MB_MODE_INFO *const mbmi, int plane, int row,
int col, TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
int block_idx = (row << 1) + col;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx);
const scan_order *sc = get_scan(tx_size, tx_type);
const int eob = av1_decode_block_tokens(xd, plane, sc, col, row, tx_size, r,
mbmi->segment_id);
inverse_transform_block_inter(
xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
pd->dst.stride, eob, block_idx);
return eob;
}
static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi, int n4_wl,
int n4_hl) {
// get minimum log2 num4x4s dimension
const int x = AOMMIN(n4_wl, n4_hl);
return AOMMIN(mbmi->tx_size, x);
}
static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
}
}
static MB_MODE_INFO *set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_mis, int y_mis, int bwl,
int bhl) {
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
const TileInfo *const tile = &xd->tile;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
// TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
// passing bsize from decode_partition().
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_plane_n4(xd, bw, bh, bwl, bhl);
set_skip_context(xd, mi_row, mi_col);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
return &xd->mi[0]->mbmi;
}
static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r,
BLOCK_SIZE bsize, int bwl, int bhl) {
AV1_COMMON *const cm = &pbi->common;
const int less8x8 = bsize < BLOCK_8X8;
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
y_mis, bwl, bhl);
if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid block size.");
}
av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
if (mbmi->skip) {
dec_reset_skip_context(xd);
}
if (!is_inter_block(mbmi)) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int step = (1 << tx_size);
int row, col;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0
? 0
: xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step)
predict_and_reconstruct_intra_block(xd, r, mbmi, plane, row, col,
tx_size);
}
} else {
// Prediction
av1_build_inter_predictors_sb(xd, mi_row, mi_col, AOMMAX(bsize, BLOCK_8X8));
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode == OBMC_CAUSAL)
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
#endif // CONFIG_MOTION_VAR
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int step = (1 << tx_size);
int row, col;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step)
eobtotal +=
reconstruct_inter_block(xd, r, mbmi, plane, row, col, tx_size);
}
if (!less8x8 && eobtotal == 0)
#if CONFIG_MISC_FIXES
mbmi->has_no_coeffs = 1; // skip loopfilter
#else
mbmi->skip = 1; // skip loopfilter
#endif
}
}
xd->corrupted |= aom_reader_has_error(r);
}
static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col, int bsl) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
// assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
int bw) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bw);
}
static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, aom_reader *r,
int has_rows, int has_cols, int bsl) {
const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl);
const aom_prob *const probs = cm->fc->partition_prob[ctx];
FRAME_COUNTS *counts = xd->counts;
PARTITION_TYPE p;
if (has_rows && has_cols)
p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs);
else if (!has_rows && has_cols)
p = aom_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
else if (has_rows && !has_cols)
p = aom_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
else
p = PARTITION_SPLIT;
if (counts) ++counts->partition[ctx][p];
return p;
}
// TODO(slavarnway): eliminate bsize and subsize in future commits
static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r,
BLOCK_SIZE bsize, int n4x4_l2) {
AV1_COMMON *const cm = &pbi->common;
const int n8x8_l2 = n4x4_l2 - 1;
const int num_8x8_wh = 1 << n8x8_l2;
const int hbs = num_8x8_wh >> 1;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
partition =
read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols, n8x8_l2);
subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
if (!hbs) {
// calculate bmode block dimensions (log 2)
xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
decode_block(pbi, xd, mi_row, mi_col, r, subsize, 1, 1);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n4x4_l2);
break;
case PARTITION_HORZ:
decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n8x8_l2);
if (has_rows)
decode_block(pbi, xd, mi_row + hbs, mi_col, r, subsize, n4x4_l2,
n8x8_l2);
break;
case PARTITION_VERT:
decode_block(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2, n4x4_l2);
if (has_cols)
decode_block(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2,
n4x4_l2);
break;
case PARTITION_SPLIT:
decode_partition(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2);
decode_partition(pbi, xd, mi_row + hbs, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize,
n8x8_l2);
break;
default: assert(0 && "Invalid partition type");
}
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh);
#if DERING_REFINEMENT
if (bsize == BLOCK_64X64) {
if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain =
aom_read_literal(r, DERING_REFINEMENT_BITS);
} else {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain =
0;
}
}
#endif
}
static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
size_t read_size,
struct aom_internal_error_info *error_info,
aom_reader *r, aom_decrypt_cb decrypt_cb,
void *decrypt_state) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void read_coef_probs_common(av1_coeff_probs_model *coef_probs,
aom_reader *r) {
int i, j, k, l, m;
if (aom_read_bit(r))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
av1_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
}
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
#if CONFIG_RANS
av1_coef_pareto_cdfs(fc);
#endif // CONFIG_RANS
}
static void setup_segmentation(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
#if !CONFIG_MISC_FIXES
struct segmentation_probs *const segp = &cm->segp;
#endif
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = aom_rb_read_bit(rb);
if (!seg->enabled) return;
// Segmentation map update
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->update_map = 1;
} else {
seg->update_map = aom_rb_read_bit(rb);
}
if (seg->update_map) {
#if !CONFIG_MISC_FIXES
for (i = 0; i < SEG_TREE_PROBS; i++)
segp->tree_probs[i] =
aom_rb_read_bit(rb) ? aom_rb_read_literal(rb, 8) : MAX_PROB;
#endif
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->temporal_update = 0;
} else {
seg->temporal_update = aom_rb_read_bit(rb);
}
#if !CONFIG_MISC_FIXES
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++)
segp->pred_probs[i] =
aom_rb_read_bit(rb) ? aom_rb_read_literal(rb, 8) : MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++) segp->pred_probs[i] = MAX_PROB;
}
#endif
}
// Segmentation data update
seg->update_data = aom_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = aom_rb_read_bit(rb);
av1_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = aom_rb_read_bit(rb);
if (feature_enabled) {
av1_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, av1_seg_feature_data_max(j));
if (av1_is_segfeature_signed(j))
data = aom_rb_read_bit(rb) ? -data : data;
}
av1_set_segdata(seg, i, j, data);
}
}
}
}
static void setup_loopfilter(struct loopfilter *lf,
struct aom_read_bit_buffer *rb) {
lf->filter_level = aom_rb_read_literal(rb, 6);
lf->sharpness_level = aom_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < MAX_REF_FRAMES; i++)
if (aom_rb_read_bit(rb))
lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (aom_rb_read_bit(rb))
lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
}
}
}
#if CONFIG_CLPF
static void setup_clpf(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
cm->clpf_blocks = 0;
cm->clpf_strength = aom_rb_read_literal(rb, 2);
if (cm->clpf_strength) {
cm->clpf_size = aom_rb_read_literal(rb, 2);
if (cm->clpf_size) {
int i;
cm->clpf_numblocks = aom_rb_read_literal(rb, av1_clpf_maxbits(cm));
CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(cm->clpf_numblocks));
for (i = 0; i < cm->clpf_numblocks; i++) {
cm->clpf_blocks[i] = aom_rb_read_literal(rb, 1);
}
}
}
}
static int clpf_bit(int k, int l, const YV12_BUFFER_CONFIG *rec,
const YV12_BUFFER_CONFIG *org, const AV1_COMMON *cm,
int block_size, int w, int h, unsigned int strength,
unsigned int fb_size_log2, uint8_t *bit) {
return *bit;
}
#endif
#if CONFIG_DERING
static void setup_dering(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
cm->dering_level = aom_rb_read_literal(rb, DERING_LEVEL_BITS);
}
#endif // CONFIG_DERING
static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb)
? aom_rb_read_inv_signed_literal(rb, CONFIG_MISC_FIXES ? 6 : 4)
: 0;
}
static void setup_quantization(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
cm->y_dc_delta_q = read_delta_q(rb);
cm->uv_dc_delta_q = read_delta_q(rb);
cm->uv_ac_delta_q = read_delta_q(rb);
cm->dequant_bit_depth = cm->bit_depth;
#if CONFIG_AOM_QM
cm->using_qmatrix = aom_rb_read_bit(rb);
if (cm->using_qmatrix) {
cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
cm->min_qmlevel = 0;
cm->max_qmlevel = 0;
}
#endif
}
static void setup_segmentation_dequant(AV1_COMMON *const cm) {
// Build y/uv dequant values based on segmentation.
int i = 0;
#if CONFIG_AOM_QM
int lossless;
int j = 0;
int qmlevel;
int using_qm = cm->using_qmatrix;
int minqm = cm->min_qmlevel;
int maxqm = cm->max_qmlevel;
#endif
if (cm->seg.enabled) {
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex);
cm->y_dequant[i][0] =
av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[i][0] =
av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[i][1] =
av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
lossless = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (j = 0; j < TX_SIZES; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif
}
} else {
const int qindex = cm->base_qindex;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[0][0] =
av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[0][1] =
av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
// No quant weighting when lossless or signalled not using QM
qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (j = 0; j < TX_SIZES; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif
}
}
static InterpFilter read_interp_filter(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? SWITCHABLE
: aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
}
static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
cm->render_width = cm->width;
cm->render_height = cm->height;
if (aom_rb_read_bit(rb))
av1_read_frame_size(rb, &cm->render_width, &cm->render_height);
}
static void resize_mv_buffer(AV1_COMMON *cm) {
aom_free(cm->cur_frame->mvs);
cm->cur_frame->mi_rows = cm->mi_rows;
cm->cur_frame->mi_cols = cm->mi_cols;
cm->cur_frame->mvs = (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*cm->cur_frame->mvs));
}
static void resize_context_buffers(AV1_COMMON *cm, int width, int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in av1_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
if (av1_alloc_context_buffers(cm, width, height))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
} else {
av1_set_mb_mi(cm, width, height);
}
av1_init_context_buffers(cm);
cm->width = width;
cm->height = height;
}
if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
cm->mi_cols > cm->cur_frame->mi_cols) {
resize_mv_buffer(cm);
}
}
static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
int width, height;
BufferPool *const pool = cm->buffer_pool;
av1_read_frame_size(rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
aom_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static void setup_frame_size_with_refs(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
int width, height;
int found = 0, i;
int has_valid_ref_frame = 0;
BufferPool *const pool = cm->buffer_pool;
for (i = 0; i < REFS_PER_FRAME; ++i) {
if (aom_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
#if CONFIG_MISC_FIXES
cm->render_width = buf->render_width;
cm->render_height = buf->render_height;
#endif
found = 1;
break;
}
}
if (!found) {
av1_read_frame_size(rb, &width, &height);
#if CONFIG_MISC_FIXES
setup_render_size(cm, rb);
#endif
}
if (width <= 0 || height <= 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
has_valid_ref_frame |=
valid_ref_frame_size(ref_frame->buf->y_crop_width,
ref_frame->buf->y_crop_height, width, height);
}
if (!has_valid_ref_frame)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
ref_frame->buf->subsampling_x,
ref_frame->buf->subsampling_y, cm->bit_depth,
cm->subsampling_x, cm->subsampling_y))
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
resize_context_buffers(cm, width, height);
#if !CONFIG_MISC_FIXES
setup_render_size(cm, rb);
#endif
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static void setup_tile_info(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
int min_log2_tile_cols, max_log2_tile_cols, max_ones;
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
max_ones = max_log2_tile_cols - min_log2_tile_cols;
cm->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++;
if (cm->log2_tile_cols > 6)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = aom_rb_read_bit(rb);
if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb);
#if CONFIG_MISC_FIXES
// tile size magnitude
if (cm->log2_tile_rows > 0 || cm->log2_tile_cols > 0) {
cm->tile_sz_mag = aom_rb_read_literal(rb, 2);
}
#else
cm->tile_sz_mag = 3;
#endif
}
typedef struct TileBuffer {
const uint8_t *data;
size_t size;
int col; // only used with multi-threaded decoding
} TileBuffer;
static int mem_get_varsize(const uint8_t *data, const int mag) {
switch (mag) {
case 0: return data[0];
case 1: return mem_get_le16(data);
case 2: return mem_get_le24(data);
case 3: return mem_get_le32(data);
}
assert("Invalid tile size marker value" && 0);
return -1;
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
const int tile_sz_mag, int is_last,
struct aom_internal_error_info *error_info,
const uint8_t **data, aom_decrypt_cb decrypt_cb,
void *decrypt_state, TileBuffer *buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, 4, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, tile_sz_mag + 1);
size = mem_get_varsize(be_data, tile_sz_mag) + CONFIG_MISC_FIXES;
} else {
size = mem_get_varsize(*data, tile_sz_mag) + CONFIG_MISC_FIXES;
}
*data += tile_sz_mag + 1;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static void get_tile_buffers(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, int tile_cols,
int tile_rows,
TileBuffer (*tile_buffers)[1 << 6]) {
int r, c;
for (r = 0; r < tile_rows; ++r) {
for (c = 0; c < tile_cols; ++c) {
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
TileBuffer *const buf = &tile_buffers[r][c];
buf->col = c;
get_tile_buffer(data_end, pbi->common.tile_sz_mag, is_last,
&pbi->common.error, &data, pbi->decrypt_cb,
pbi->decrypt_state, buf);
}
}
}
static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end) {
AV1_COMMON *const cm = &pbi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
TileBuffer tile_buffers[4][1 << 6];
int tile_row, tile_col;
int mi_row, mi_col;
TileData *tile_data = NULL;
if (cm->lf.filter_level && !cm->skip_loop_filter &&
pbi->lf_worker.data1 == NULL) {
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
aom_memalign(32, sizeof(LFWorkerData)));
pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker;
if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Loop filter thread creation failed");
}
}
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
// Be sure to sync as we might be resuming after a failed frame decode.
winterface->sync(&pbi->lf_worker);
av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
pbi->mb.plane);
}
assert(tile_rows <= 4);
assert(tile_cols <= (1 << 6));
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
memset(cm->above_context, 0,
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_cols);
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
if (pbi->tile_data == NULL || (tile_cols * tile_rows) != pbi->total_tiles) {
aom_free(pbi->tile_data);
CHECK_MEM_ERROR(
cm, pbi->tile_data,
aom_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data))));
pbi->total_tiles = tile_rows * tile_cols;
}
// Load all tile information into tile_data.
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
tile_data = pbi->tile_data + tile_cols * tile_row + tile_col;
tile_data->cm = cm;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
tile_data->xd.counts =
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
? &cm->counts
: NULL;
av1_zero(tile_data->dqcoeff);
av1_tile_init(&tile_data->xd.tile, tile_data->cm, tile_row, tile_col);
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&tile_data->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
av1_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
tile_data->xd.plane[0].color_index_map = tile_data->color_index_map[0];
tile_data->xd.plane[1].color_index_map = tile_data->color_index_map[1];
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
TileInfo tile;
av1_tile_set_row(&tile, cm, tile_row);
for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
mi_row += MI_BLOCK_SIZE) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
const int col =
pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
tile_data = pbi->tile_data + tile_cols * tile_row + col;
av1_tile_set_col(&tile, tile_data->cm, col);
av1_zero(tile_data->xd.left_context);
av1_zero(tile_data->xd.left_seg_context);
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(pbi, &tile_data->xd, mi_row, mi_col,
&tile_data->bit_reader, BLOCK_64X64, 4);
}
pbi->mb.corrupted |= tile_data->xd.corrupted;
if (pbi->mb.corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
}
// Loopfilter one row.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
const int lf_start = mi_row - MI_BLOCK_SIZE;
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
// delay the loopfilter by 1 macroblock row.
if (lf_start < 0) continue;
// decoding has completed: finish up the loop filter in this thread.
if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_start;
lf_data->stop = mi_row;
if (pbi->max_threads > 1) {
winterface->launch(&pbi->lf_worker);
} else {
winterface->execute(&pbi->lf_worker);
}
}
// After loopfiltering, the last 7 row pixels in each superblock row may
// still be changed by the longest loopfilter of the next superblock
// row.
if (cm->frame_parallel_decode)
av1_frameworker_broadcast(pbi->cur_buf, mi_row << MI_BLOCK_SIZE_LOG2);
}
}
// Loopfilter remaining rows in the frame.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_data->stop;
lf_data->stop = cm->mi_rows;
winterface->execute(&pbi->lf_worker);
}
// Get last tile data.
tile_data = pbi->tile_data + tile_cols * tile_rows - 1;
if (cm->frame_parallel_decode)
av1_frameworker_broadcast(pbi->cur_buf, INT_MAX);
#if CONFIG_ANS
return data_end;
#else
return aom_reader_find_end(&tile_data->bit_reader);
#endif
}
static int tile_worker_hook(TileWorkerData *const tile_data,
const TileInfo *const tile) {
int mi_row, mi_col;
if (setjmp(tile_data->error_info.jmp)) {
tile_data->error_info.setjmp = 0;
tile_data->xd.corrupted = 1;
return 0;
}
tile_data->error_info.setjmp = 1;
tile_data->xd.error_info = &tile_data->error_info;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
av1_zero(tile_data->xd.left_context);
av1_zero(tile_data->xd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->pbi, &tile_data->xd, mi_row, mi_col,
&tile_data->bit_reader, BLOCK_64X64, 4);
}
}
return !tile_data->xd.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileBuffer *const buf1 = (const TileBuffer *)a;
const TileBuffer *const buf2 = (const TileBuffer *)b;
return (int)(buf2->size - buf1->size);
}
static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end) {
AV1_COMMON *const cm = &pbi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
const uint8_t *bit_reader_end = NULL;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols);
TileBuffer tile_buffers[1][1 << 6];
int n;
int final_worker = -1;
assert(tile_cols <= (1 << 6));
assert(tile_rows == 1);
(void)tile_rows;
// TODO(jzern): See if we can remove the restriction of passing in max
// threads to the decoder.
if (pbi->num_tile_workers == 0) {
const int num_threads = pbi->max_threads & ~1;
int i;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
// Ensure tile data offsets will be properly aligned. This may fail on
// platforms without DECLARE_ALIGNED().
assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
CHECK_MEM_ERROR(
cm, pbi->tile_worker_data,
aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data)));
CHECK_MEM_ERROR(cm, pbi->tile_worker_info,
aom_malloc(num_threads * sizeof(*pbi->tile_worker_info)));
for (i = 0; i < num_threads; ++i) {
AVxWorker *const worker = &pbi->tile_workers[i];
++pbi->num_tile_workers;
winterface->init(worker);
if (i < num_threads - 1 && !winterface->reset(worker)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile decoder thread creation failed");
}
}
}
// Reset tile decoding hook
for (n = 0; n < num_workers; ++n) {
AVxWorker *const worker = &pbi->tile_workers[n];
winterface->sync(worker);
worker->hook = (AVxWorkerHook)tile_worker_hook;
worker->data1 = &pbi->tile_worker_data[n];
worker->data2 = &pbi->tile_worker_info[n];
}
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
memset(cm->above_context, 0,
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_mi_cols);
// Load tile data into tile_buffers
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
// Sort the buffers based on size in descending order.
qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]),
compare_tile_buffers);
// Rearrange the tile buffers such that per-tile group the largest, and
// presumably the most difficult, tile will be decoded in the main thread.
// This should help minimize the number of instances where the main thread is
// waiting for a worker to complete.
{
int group_start = 0;
while (group_start < tile_cols) {
const TileBuffer largest = tile_buffers[0][group_start];
const int group_end = AOMMIN(group_start + num_workers, tile_cols) - 1;
memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1,
(group_end - group_start) * sizeof(tile_buffers[0][0]));
tile_buffers[0][group_end] = largest;
group_start = group_end + 1;
}
}
// Initialize thread frame counts.
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
int i;
for (i = 0; i < num_workers; ++i) {
TileWorkerData *const tile_data =
(TileWorkerData *)pbi->tile_workers[i].data1;
av1_zero(tile_data->counts);
}
}
n = 0;
while (n < tile_cols) {
int i;
for (i = 0; i < num_workers && n < tile_cols; ++i) {
AVxWorker *const worker = &pbi->tile_workers[i];
TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
TileInfo *const tile = (TileInfo *)worker->data2;
TileBuffer *const buf = &tile_buffers[0][n];
tile_data->pbi = pbi;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
tile_data->xd.counts =
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
? &tile_data->counts
: NULL;
av1_zero(tile_data->dqcoeff);
av1_tile_init(tile, cm, 0, buf->col);
av1_tile_init(&tile_data->xd.tile, cm, 0, buf->col);
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&tile_data->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
av1_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
tile_data->xd.plane[0].color_index_map = tile_data->color_index_map[0];
tile_data->xd.plane[1].color_index_map = tile_data->color_index_map[1];
worker->had_error = 0;
if (i == num_workers - 1 || n == tile_cols - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
if (buf->col == tile_cols - 1) {
final_worker = i;
}
++n;
}
for (; i > 0; --i) {
AVxWorker *const worker = &pbi->tile_workers[i - 1];
// TODO(jzern): The tile may have specific error data associated with
// its aom_internal_error_info which could be propagated to the main info
// in cm. Additionally once the threads have been synced and an error is
// detected, there's no point in continuing to decode tiles.
pbi->mb.corrupted |= !winterface->sync(worker);
}
if (final_worker > -1) {
TileWorkerData *const tile_data =
(TileWorkerData *)pbi->tile_workers[final_worker].data1;
bit_reader_end = aom_reader_find_end(&tile_data->bit_reader);
final_worker = -1;
}
// Accumulate thread frame counts.
if (n >= tile_cols &&
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
for (i = 0; i < num_workers; ++i) {
TileWorkerData *const tile_data =
(TileWorkerData *)pbi->tile_workers[i].data1;
av1_accumulate_frame_counts(cm, &tile_data->counts, 1);
}
}
}
return bit_reader_end;
}
static void error_handler(void *data) {
AV1_COMMON *const cm = (AV1_COMMON *)data;
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
}
static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
if (cm->profile >= PROFILE_2) {
cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = 1;
#endif
} else {
cm->bit_depth = AOM_BITS_8;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
cm->color_space = aom_rb_read_literal(rb, 3);
if (cm->color_space != AOM_CS_SRGB) {
// [16,235] (including xvycc) vs [0,255] range
cm->color_range = aom_rb_read_bit(rb);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
cm->subsampling_x = aom_rb_read_bit(rb);
cm->subsampling_y = aom_rb_read_bit(rb);
if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"4:2:0 color not supported in profile 1 or 3");
if (aom_rb_read_bit(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
// Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
// 4:2:2 or 4:4:0 chroma sampling is not allowed.
cm->subsampling_y = cm->subsampling_x = 0;
if (aom_rb_read_bit(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"4:4:4 color not supported in profile 0 or 2");
}
}
}
static size_t read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
int i, mask, ref_index = 0;
size_t sz;
cm->last_frame_type = cm->frame_type;
cm->last_intra_only = cm->intra_only;
#if CONFIG_EXT_REFS
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
#endif // CONFIG_EXT_REFS
if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->profile = av1_read_profile(rb);
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->profile >= MAX_PROFILES)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
#else
if (cm->profile >= PROFILE_2)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
#endif
cm->show_existing_frame = aom_rb_read_bit(rb);
if (cm->show_existing_frame) {
// Show an existing frame directly.
const int frame_to_show = cm->ref_frame_map[aom_rb_read_literal(rb, 3)];
lock_buffer_pool(pool);
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
unlock_buffer_pool(pool);
cm->lf.filter_level = 0;
cm->show_frame = 1;
#if CONFIG_EXT_REFS
// NOTE: The existing frame to show is adopted as a reference frame.
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &frame_bufs[idx].buf;
cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb);
}
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
#if CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height,
cm->width, cm->height, cm->use_highbitdepth);
#else // CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height,
cm->width, cm->height);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
#else
pbi->refresh_frame_flags = 0;
if (cm->frame_parallel_decode) {
for (i = 0; i < REF_FRAMES; ++i)
cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
}
#endif // CONFIG_EXT_REFS
return 0;
}
cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb);
cm->show_frame = aom_rb_read_bit(rb);
cm->error_resilient_mode = aom_rb_read_bit(rb);
if (cm->frame_type == KEY_FRAME) {
if (!av1_read_sync_code(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (i = 0; i < REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = INVALID_IDX;
cm->frame_refs[i].buf = NULL;
}
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
} else {
cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb);
if (cm->error_resilient_mode) {
cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL;
} else {
#if CONFIG_MISC_FIXES
if (cm->intra_only) {
cm->reset_frame_context = aom_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_ALL
: RESET_FRAME_CONTEXT_CURRENT;
} else {
cm->reset_frame_context = aom_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_CURRENT
: RESET_FRAME_CONTEXT_NONE;
if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT)
cm->reset_frame_context = aom_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_ALL
: RESET_FRAME_CONTEXT_CURRENT;
}
#else
static const RESET_FRAME_CONTEXT_MODE reset_frame_context_conv_tbl[4] = {
RESET_FRAME_CONTEXT_NONE, RESET_FRAME_CONTEXT_NONE,
RESET_FRAME_CONTEXT_CURRENT, RESET_FRAME_CONTEXT_ALL
};
cm->reset_frame_context =
reset_frame_context_conv_tbl[aom_rb_read_literal(rb, 2)];
#endif
}
if (cm->intra_only) {
if (!av1_read_sync_code(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
#if CONFIG_MISC_FIXES
read_bitdepth_colorspace_sampling(cm, rb);
#else
if (cm->profile > PROFILE_0) {
read_bitdepth_colorspace_sampling(cm, rb);
} else {
// NOTE: The intra-only frame header does not include the specification
// of either the color format or color sub-sampling in profile 0. AV1
// specifies that the default color format should be YUV 4:2:0 in this
// case (normative).
cm->color_space = AOM_CS_BT_601;
cm->color_range = 0;
cm->subsampling_y = cm->subsampling_x = 1;
cm->bit_depth = AOM_BITS_8;
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
#endif
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
} else if (pbi->need_resync != 1) { /* Skip if need resync */
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
#if CONFIG_EXT_REFS
if (!pbi->refresh_frame_flags) {
// NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
#endif // CONFIG_EXT_REFS
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &frame_bufs[idx].buf;
cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb);
}
setup_frame_size_with_refs(cm, rb);
cm->allow_high_precision_mv = aom_rb_read_bit(rb);
cm->interp_filter = read_interp_filter(rb);
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
#if CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height,
cm->use_highbitdepth);
#else
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height);
#endif
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
#endif
get_frame_new_buffer(cm)->color_space = cm->color_space;
get_frame_new_buffer(cm)->color_range = cm->color_range;
get_frame_new_buffer(cm)->render_width = cm->render_width;
get_frame_new_buffer(cm)->render_height = cm->render_height;
if (pbi->need_resync) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = aom_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_OFF;
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) {
cm->refresh_frame_context = aom_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
#if !CONFIG_MISC_FIXES
} else {
aom_rb_read_bit(rb); // parallel decoding mode flag
#endif
}
} else {
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_OFF;
}
// This flag will be overridden by the call to av1_setup_past_independence
// below, forcing the use of context 0 for those frame types.
cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
if (frame_is_intra_only(cm) || cm->error_resilient_mode)
av1_setup_past_independence(cm);
setup_loopfilter(&cm->lf, rb);
#if CONFIG_CLPF
setup_clpf(cm, rb);
#endif
#if CONFIG_DERING
setup_dering(cm, rb);
#endif
setup_quantization(cm, rb);
#if CONFIG_AOM_HIGHBITDEPTH
xd->bd = (int)cm->bit_depth;
#endif
setup_segmentation(cm, rb);
{
int i;
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = CONFIG_MISC_FIXES && cm->seg.enabled
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
}
}
setup_segmentation_dequant(cm);
#if CONFIG_MISC_FIXES
cm->tx_mode =
(!cm->seg.enabled && xd->lossless[0]) ? ONLY_4X4 : read_tx_mode(rb);
cm->reference_mode = read_frame_reference_mode(cm, rb);
#endif
setup_tile_info(cm, rb);
sz = aom_rb_read_literal(rb, 16);
if (sz == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid header size");
return sz;
}
static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j, k;
if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
for (k = 0; k < TX_TYPES - 1; ++k)
av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k]);
}
}
if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (k = 0; k < TX_TYPES - 1; ++k)
av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k]);
}
}
}
static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data,
size_t partition_size) {
AV1_COMMON *const cm = &pbi->common;
#if !CONFIG_MISC_FIXES
MACROBLOCKD *const xd = &pbi->mb;
#endif
FRAME_CONTEXT *const fc = cm->fc;
aom_reader r;
int k, i, j;
if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb,
pbi->decrypt_state))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
#if !CONFIG_MISC_FIXES
cm->tx_mode = xd->lossless[0] ? ONLY_4X4 : read_tx_mode(&r);
#endif
if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
read_coef_probs(fc, cm->tx_mode, &r);
for (k = 0; k < SKIP_CONTEXTS; ++k)
av1_diff_update_prob(&r, &fc->skip_probs[k]);
#if CONFIG_MISC_FIXES
if (cm->seg.enabled) {
if (cm->seg.temporal_update) {
for (k = 0; k < PREDICTION_PROBS; k++)
av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k]);
}
for (k = 0; k < MAX_SEGMENTS - 1; k++)
av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k]);
}
for (j = 0; j < INTRA_MODES; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i]);
for (j = 0; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
av1_diff_update_prob(&r, &fc->partition_prob[j][i]);
#endif
if (frame_is_intra_only(cm)) {
av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob);
#if CONFIG_MISC_FIXES
for (k = 0; k < INTRA_MODES; k++)
for (j = 0; j < INTRA_MODES; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i]);
#endif
} else {
#if !CONFIG_REF_MV
nmv_context *const nmvc = &fc->nmvc;
#endif
read_inter_mode_probs(fc, &r);
#if CONFIG_MOTION_VAR
for (j = 0; j < BLOCK_SIZES; ++j)
if (is_motion_variation_allowed_bsize(j)) {
for (i = 0; i < MOTION_MODES - 1; ++i)
av1_diff_update_prob(&r, &fc->motion_mode_prob[j][i]);
}
#endif // CONFIG_MOTION_VAR
if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
av1_diff_update_prob(&r, &fc->intra_inter_prob[i]);
#if !CONFIG_MISC_FIXES
cm->reference_mode = read_frame_reference_mode(cm, &r);
#endif
if (cm->reference_mode != SINGLE_REFERENCE)
setup_compound_reference_mode(cm);
read_frame_reference_mode_probs(cm, &r);
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
av1_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
#if !CONFIG_MISC_FIXES
for (j = 0; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
av1_diff_update_prob(&r, &fc->partition_prob[j][i]);
#endif
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i)
read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r);
#else
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
#endif
read_ext_tx_probs(fc, &r);
}
return aom_reader_has_error(&r);
}
#ifdef NDEBUG
#define debug_check_frame_counts(cm) (void)0
#else // !NDEBUG
// Counts should only be incremented when frame_parallel_decoding_mode and
// error_resilient_mode are disabled.
static void debug_check_frame_counts(const AV1_COMMON *const cm) {
FRAME_COUNTS zero_counts;
av1_zero(zero_counts);
assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD ||
cm->error_resilient_mode);
assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
sizeof(cm->counts.y_mode)));
assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
sizeof(cm->counts.uv_mode)));
assert(!memcmp(cm->counts.partition, zero_counts.partition,
sizeof(cm->counts.partition)));
assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef)));
assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
sizeof(cm->counts.eob_branch)));
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
sizeof(cm->counts.switchable_interp)));
assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
sizeof(cm->counts.inter_mode)));
#if CONFIG_MOTION_VAR
assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode,
sizeof(cm->counts.motion_mode)));
#endif // CONFIG_MOTION_VAR
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
sizeof(cm->counts.intra_inter)));
assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
sizeof(cm->counts.comp_inter)));
assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
sizeof(cm->counts.single_ref)));
#if CONFIG_EXT_REFS
assert(!memcmp(cm->counts.comp_fwdref, zero_counts.comp_fwdref,
sizeof(cm->counts.comp_fwdref)));
assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref,
sizeof(cm->counts.comp_bwdref)));
#else
assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
sizeof(cm->counts.comp_ref)));
#endif // CONFIG_EXT_REFS
assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
#if CONFIG_REF_MV
assert(
!memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0])));
assert(
!memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0])));
#else
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
#endif
assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx,
sizeof(cm->counts.intra_ext_tx)));
assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx,
sizeof(cm->counts.inter_ext_tx)));
}
#endif // NDEBUG
static struct aom_read_bit_buffer *init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
if (pbi->decrypt_cb) {
const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data);
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
rb->bit_buffer = clear_data;
rb->bit_buffer_end = clear_data + n;
} else {
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
}
return rb;
}
//------------------------------------------------------------------------------
int av1_read_sync_code(struct aom_read_bit_buffer *const rb) {
return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 &&
aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 &&
aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2;
}
void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width,
int *height) {
*width = aom_rb_read_literal(rb, 16) + 1;
*height = aom_rb_read_literal(rb, 16) + 1;
}
BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
int profile = aom_rb_read_bit(rb);
profile |= aom_rb_read_bit(rb) << 1;
if (profile > 2) profile += aom_rb_read_bit(rb);
return (BITSTREAM_PROFILE)profile;
}
void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, const uint8_t **p_data_end) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
struct aom_read_bit_buffer rb;
int context_updated = 0;
uint8_t clear_data[MAX_AV1_HEADER_SIZE];
const size_t first_partition_size = read_uncompressed_header(
pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
const int tile_rows = 1 << cm->log2_tile_rows;
const int tile_cols = 1 << cm->log2_tile_cols;
YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
xd->cur_buf = new_fb;
if (!first_partition_size) {
// showing a frame directly
#if CONFIG_EXT_REFS
if (cm->show_existing_frame)
*p_data_end = data + aom_rb_bytes_read(&rb);
else
#endif // CONFIG_EXT_REFS
*p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
return;
}
data += aom_rb_bytes_read(&rb);
if (!read_is_valid(data, first_partition_size, data_end))
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
cm->use_prev_frame_mvs =
!cm->error_resilient_mode && cm->width == cm->last_width &&
cm->height == cm->last_height && !cm->last_intra_only &&
cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
#if CONFIG_EXT_REFS
// NOTE(zoeliu): As cm->prev_frame can take neither a frame of
// show_exisiting_frame=1, nor can it take a frame not used as
// a reference, it is probable that by the time it is being
// referred to, the frame buffer it originally points to may
// already get expired and have been reassigned to the current
// newly coded frame. Hence, we need to check whether this is
// the case, and if yes, we have 2 choices:
// (1) Simply disable the use of previous frame mvs; or
// (2) Have cm->prev_frame point to one reference frame buffer,
// e.g. LAST_FRAME.
if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) {
// Reassign the LAST_FRAME buffer to cm->prev_frame.
RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME];
cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx];
}
#endif // CONFIG_EXT_REFS
av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
if (!cm->fc->initialized)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
av1_zero(cm->counts);
xd->corrupted = 0;
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
if (new_fb->corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data header is corrupted.");
if (cm->lf.filter_level && !cm->skip_loop_filter) {
av1_loop_filter_frame_init(cm, cm->lf.filter_level);
}
// If encoded in frame parallel mode, frame context is ready after decoding
// the frame header.
if (cm->frame_parallel_decode &&
cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) {
AVxWorker *const worker = pbi->frame_worker_owner;
FrameWorkerData *const frame_worker_data = worker->data1;
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) {
context_updated = 1;
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
av1_frameworker_lock_stats(worker);
pbi->cur_buf->row = -1;
pbi->cur_buf->col = -1;
frame_worker_data->frame_context_ready = 1;
// Signal the main thread that context is ready.
av1_frameworker_signal_stats(worker);
av1_frameworker_unlock_stats(worker);
}
if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) {
// Multi-threaded tile decoder
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
if (!xd->corrupted) {
if (!cm->skip_loop_filter) {
// If multiple threads are used to decode tiles, then we use those
// threads to do parallel loopfiltering.
av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level,
0, 0, pbi->tile_workers, pbi->num_tile_workers,
&pbi->lf_row_sync);
}
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
} else {
*p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
}
#if CONFIG_CLPF
if (cm->clpf_strength && !cm->skip_loop_filter) {
YV12_BUFFER_CONFIG dst; // Buffer for the result
dst = pbi->cur_buf->buf;
CHECK_MEM_ERROR(cm, dst.y_buffer, aom_malloc(dst.y_stride * dst.y_height));
av1_clpf_frame(&dst, &pbi->cur_buf->buf, 0, cm, !!cm->clpf_size,
cm->clpf_strength + (cm->clpf_strength == 3),
4 + cm->clpf_size, cm->clpf_blocks, clpf_bit);
// Copy result
memcpy(pbi->cur_buf->buf.y_buffer, dst.y_buffer,
dst.y_height * dst.y_stride);
aom_free(dst.y_buffer);
}
if (cm->clpf_blocks) aom_free(cm->clpf_blocks);
#endif
#if CONFIG_DERING
if (cm->dering_level && !cm->skip_loop_filter) {
av1_dering_frame(&pbi->cur_buf->buf, cm, &pbi->mb, cm->dering_level);
}
#endif // CONFIG_DERING
if (!xd->corrupted) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
av1_adapt_coef_probs(cm);
#if CONFIG_MISC_FIXES
av1_adapt_intra_frame_probs(cm);
#endif
if (!frame_is_intra_only(cm)) {
#if !CONFIG_MISC_FIXES
av1_adapt_intra_frame_probs(cm);
#endif
av1_adapt_inter_frame_probs(cm);
av1_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
} else {
debug_check_frame_counts(cm);
}
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
// Non frame parallel update frame context here.
if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF &&
!context_updated)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}