blob: eb0ba4ab5ae507ea19927ad2019f7c28ff65df4c [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "aom/aom_encoder.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_ports/system_state.h"
#if CONFIG_CLPF
#include "av1/common/clpf.h"
#endif
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/subexp.h"
#include "av1/encoder/tokenize.h"
static struct av1_token intra_mode_encodings[INTRA_MODES];
static struct av1_token switchable_interp_encodings[SWITCHABLE_FILTERS];
static struct av1_token partition_encodings[PARTITION_TYPES];
#if !CONFIG_REF_MV
static struct av1_token inter_mode_encodings[INTER_MODES];
#endif
#if CONFIG_MOTION_VAR
static struct av1_token motion_mode_encodings[MOTION_MODES];
#endif // CONFIG_MOTION_VAR
static struct av1_token ext_tx_encodings[TX_TYPES];
void av1_encode_token_init() {
av1_tokens_from_tree(intra_mode_encodings, av1_intra_mode_tree);
av1_tokens_from_tree(switchable_interp_encodings, av1_switchable_interp_tree);
av1_tokens_from_tree(partition_encodings, av1_partition_tree);
#if !CONFIG_REF_MV
av1_tokens_from_tree(inter_mode_encodings, av1_inter_mode_tree);
#endif
#if CONFIG_MOTION_VAR
av1_tokens_from_tree(motion_mode_encodings, av1_motion_mode_tree);
#endif // CONFIG_MOTION_VAR
av1_tokens_from_tree(ext_tx_encodings, av1_ext_tx_tree);
#if CONFIG_DAALA_EC
/* This hack is necessary when CONFIG_EXT_INTERP is enabled because the five
SWITCHABLE_FILTERS are not consecutive, e.g., 0, 1, 2, 3, 4, when doing
an in-order traversal of the av1_switchable_interp_tree structure. */
av1_indices_from_tree(av1_switchable_interp_ind, av1_switchable_interp_inv,
SWITCHABLE_FILTERS, av1_switchable_interp_tree);
#endif
}
static void write_intra_mode(aom_writer *w, PREDICTION_MODE mode,
const aom_prob *probs) {
av1_write_token(w, av1_intra_mode_tree, probs, &intra_mode_encodings[mode]);
}
static void write_inter_mode(AV1_COMMON *cm, aom_writer *w,
PREDICTION_MODE mode, const int16_t mode_ctx) {
#if CONFIG_REF_MV
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
const aom_prob newmv_prob = cm->fc->newmv_prob[newmv_ctx];
aom_write(w, mode != NEWMV, newmv_prob);
if (mode != NEWMV) {
const int16_t zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
const aom_prob zeromv_prob = cm->fc->zeromv_prob[zeromv_ctx];
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) {
assert(mode == ZEROMV);
return;
}
aom_write(w, mode != ZEROMV, zeromv_prob);
if (mode != ZEROMV) {
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
aom_prob refmv_prob;
if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6;
if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7;
if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8;
refmv_prob = cm->fc->refmv_prob[refmv_ctx];
aom_write(w, mode != NEARESTMV, refmv_prob);
}
}
#else
const aom_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
assert(is_inter_mode(mode));
av1_write_token(w, av1_inter_mode_tree, inter_probs,
&inter_mode_encodings[INTER_OFFSET(mode)]);
#endif
}
#if CONFIG_REF_MV
static void write_drl_idx(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
assert(mbmi->ref_mv_idx < 3);
if (mbmi->mode == NEWMV) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
aom_prob drl_prob = cm->fc->drl_prob[drl_ctx];
aom_write(w, mbmi->ref_mv_idx != idx, drl_prob);
if (mbmi->ref_mv_idx == idx) return;
}
}
return;
}
if (mbmi->mode == NEARMV) {
int idx;
// TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
aom_prob drl_prob = cm->fc->drl_prob[drl_ctx];
aom_write(w, mbmi->ref_mv_idx != (idx - 1), drl_prob);
if (mbmi->ref_mv_idx == (idx - 1)) return;
}
}
return;
}
}
#endif
#if CONFIG_MOTION_VAR
static void write_motion_mode(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi,
aom_writer *w) {
if (is_motion_variation_allowed(mbmi))
av1_write_token(w, av1_motion_mode_tree,
cm->fc->motion_mode_prob[mbmi->sb_type],
&motion_mode_encodings[mbmi->motion_mode]);
}
#endif // CONFIG_MOTION_VAR
static void encode_unsigned_max(struct aom_write_bit_buffer *wb, int data,
int max) {
aom_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void prob_diff_update(const aom_tree_index *tree,
aom_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/], int n,
aom_writer *w) {
int i;
unsigned int branch_ct[32][2];
// Assuming max number of probabilities <= 32
assert(n <= 32);
av1_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i)
av1_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
}
static int prob_diff_update_savings(const aom_tree_index *tree,
aom_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/],
int n) {
int i;
unsigned int branch_ct[32][2];
int savings = 0;
// Assuming max number of probabilities <= 32
assert(n <= 32);
av1_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i) {
savings += av1_cond_prob_diff_update_savings(&probs[i], branch_ct[i]);
}
return savings;
}
static void write_selected_tx_size(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
const aom_prob *const tx_probs =
get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
aom_write(w, tx_size != TX_4X4, tx_probs[0]);
if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
aom_write(w, tx_size != TX_8X8, tx_probs[1]);
if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
aom_write(w, tx_size != TX_16X16, tx_probs[2]);
}
}
#if CONFIG_REF_MV
static void update_inter_mode_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int i;
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->newmv_prob[i], counts->newmv_mode[i]);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->zeromv_prob[i],
counts->zeromv_mode[i]);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->refmv_prob[i], counts->refmv_mode[i]);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->drl_prob[i], counts->drl_mode[i]);
}
#endif
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MODE_INFO *mi, aom_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->mbmi.skip;
aom_write(w, skip, av1_get_skip_prob(cm, xd));
return skip;
}
}
static void update_skip_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int k;
for (k = 0; k < SKIP_CONTEXTS; ++k)
av1_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
}
static void update_switchable_interp_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
prob_diff_update(av1_switchable_interp_tree,
cm->fc->switchable_interp_prob[j],
counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
#if CONFIG_DAALA_EC
av1_tree_to_cdf(av1_switchable_interp_tree,
cm->fc->switchable_interp_prob[j],
cm->fc->switchable_interp_cdf[j]);
#endif
}
}
static void update_ext_tx_probs(AV1_COMMON *cm, aom_writer *w) {
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
savings += prob_diff_update_savings(
av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
cm->counts.intra_ext_tx[i][j], TX_TYPES);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
prob_diff_update(av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
cm->counts.intra_ext_tx[i][j], TX_TYPES, w);
}
}
savings = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
savings +=
prob_diff_update_savings(av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
cm->counts.inter_ext_tx[i], TX_TYPES);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
prob_diff_update(av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
cm->counts.inter_ext_tx[i], TX_TYPES, w);
}
}
}
static void pack_mb_tokens(aom_writer *w, TOKENEXTRA **tp,
const TOKENEXTRA *const stop,
aom_bit_depth_t bit_depth, const TX_SIZE tx) {
TOKENEXTRA *p = *tp;
#if !CONFIG_MISC_FIXES
(void)tx;
#endif
while (p < stop && p->token != EOSB_TOKEN) {
const int t = p->token;
#if !CONFIG_RANS
const struct av1_token *const a = &av1_coef_encodings[t];
int i = 0;
int v = a->value;
int n = a->len;
#endif // !CONFIG_RANS
#if CONFIG_AOM_HIGHBITDEPTH
const av1_extra_bit *b;
if (bit_depth == AOM_BITS_12)
b = &av1_extra_bits_high12[t];
else if (bit_depth == AOM_BITS_10)
b = &av1_extra_bits_high10[t];
else
b = &av1_extra_bits[t];
#else
const av1_extra_bit *const b = &av1_extra_bits[t];
(void)bit_depth;
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_RANS
if (!p->skip_eob_node) aom_write(w, t != EOB_TOKEN, p->context_tree[0]);
if (t != EOB_TOKEN) {
aom_write(w, t != ZERO_TOKEN, p->context_tree[1]);
if (t != ZERO_TOKEN) {
aom_write_tree_cdf(w, t - ONE_TOKEN, *p->token_cdf,
CATEGORY6_TOKEN - ONE_TOKEN + 1);
}
}
#else
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
}
// TODO(jbb): expanding this can lead to big gains. It allows
// much better branch prediction and would enable us to avoid numerous
// lookups and compares.
// If we have a token that's in the constrained set, the coefficient tree
// is split into two treed writes. The first treed write takes care of the
// unconstrained nodes. The second treed write takes care of the
// constrained nodes.
if (t >= TWO_TOKEN && t < EOB_TOKEN) {
int len = UNCONSTRAINED_NODES - p->skip_eob_node;
int bits = v >> (n - len);
aom_write_tree_bits(w, av1_coef_tree, p->context_tree, bits, len, i);
v &= (1 << (n - len)) - 1;
aom_write_tree(w, av1_coef_con_tree,
av1_pareto8_full[p->context_tree[PIVOT_NODE] - 1], v,
n - len, 0);
} else {
aom_write_tree_bits(w, av1_coef_tree, p->context_tree, v, n, i);
}
#endif // CONFIG_RANS
if (b->base_val) {
const int e = p->extra, l = b->len;
#if CONFIG_MISC_FIXES
int skip_bits = (b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0;
#else
int skip_bits = 0;
#endif
if (l) {
const unsigned char *pb = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
if (skip_bits) {
skip_bits--;
assert(!bb);
} else {
aom_write(w, bb, pb[i >> 1]);
}
i = b->tree[i + bb];
} while (n);
}
aom_write_bit(w, e & 1);
}
++p;
}
*tp = p;
}
static void write_segment_id(aom_writer *w, const struct segmentation *seg,
const struct segmentation_probs *segp,
int segment_id) {
if (seg->enabled && seg->update_map)
aom_write_tree(w, av1_segment_tree, segp->tree_probs, segment_id, 3, 0);
}
// This function encodes the reference frame
static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
aom_write(w, is_compound, av1_get_reference_mode_prob(cm, xd));
} else {
assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
#if CONFIG_EXT_REFS
const int bit_fwd = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME);
const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
// Write forward references.
aom_write(w, bit_fwd, av1_get_pred_prob_comp_fwdref_p(cm, xd));
if (!bit_fwd) {
const int bit1_fwd = mbmi->ref_frame[0] == LAST_FRAME;
aom_write(w, bit1_fwd, av1_get_pred_prob_comp_fwdref_p1(cm, xd));
} else {
const int bit2_fwd = mbmi->ref_frame[0] == GOLDEN_FRAME;
aom_write(w, bit2_fwd, av1_get_pred_prob_comp_fwdref_p2(cm, xd));
}
// Write forward references.
aom_write(w, bit_bwd, av1_get_pred_prob_comp_bwdref_p(cm, xd));
#else
aom_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
av1_get_pred_prob_comp_ref_p(cm, xd));
#endif // CONFIG_EXT_REFS
} else {
#if CONFIG_EXT_REFS
const int bit0 = (mbmi->ref_frame[0] == ALTREF_FRAME ||
mbmi->ref_frame[0] == BWDREF_FRAME);
aom_write(w, bit0, av1_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
aom_write(w, bit1, av1_get_pred_prob_single_ref_p2(cm, xd));
} else {
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == GOLDEN_FRAME);
aom_write(w, bit2, av1_get_pred_prob_single_ref_p3(cm, xd));
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
aom_write(w, bit3, av1_get_pred_prob_single_ref_p4(cm, xd));
} else {
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
aom_write(w, bit4, av1_get_pred_prob_single_ref_p5(cm, xd));
}
}
#else
const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
aom_write(w, bit0, av1_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
aom_write(w, bit1, av1_get_pred_prob_single_ref_p2(cm, xd));
}
#endif // CONFIG_EXT_REFS
}
}
}
#if CONFIG_EXT_INTRA
static INLINE void write_uniform(aom_writer *w, int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
static void write_intra_angle_info(const MB_MODE_INFO *const mbmi,
aom_writer *w) {
if (mbmi->sb_type < BLOCK_8X8) return;
if (is_directional_mode(mbmi->mode)) {
const TX_SIZE max_tx_size = max_txsize_lookup[mbmi->sb_type];
const int max_angle_delta = av1_max_angle_delta_y[max_tx_size][mbmi->mode];
write_uniform(w, 2 * max_angle_delta + 1,
max_angle_delta + mbmi->intra_angle_delta[0]);
}
if (is_directional_mode(mbmi->uv_mode)) {
write_uniform(w, 2 * MAX_ANGLE_DELTA_UV + 1,
MAX_ANGLE_DELTA_UV + mbmi->intra_angle_delta[1]);
}
}
#endif // CONFIG_EXT_INTRA
static void write_switchable_interp_filter(AV1_COMP *const cpi,
const MACROBLOCKD *const xd,
aom_writer *w) {
const AV1_COMMON *const cm = &cpi->common;
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
if (cm->interp_filter == SWITCHABLE) {
#if CONFIG_EXT_INTERP
if (is_interp_needed(xd)) {
#endif
const int ctx = av1_get_pred_context_switchable_interp(xd);
#if CONFIG_DAALA_EC
aom_write_tree_cdf(w, av1_switchable_interp_ind[mbmi->interp_filter],
cm->fc->switchable_interp_cdf[ctx],
SWITCHABLE_FILTERS);
#else
av1_write_token(w, av1_switchable_interp_tree,
cm->fc->switchable_interp_prob[ctx],
&switchable_interp_encodings[mbmi->interp_filter]);
#endif
++cpi->interp_filter_selected[0][mbmi->interp_filter];
#if CONFIG_EXT_INTERP
} else {
assert(mbmi->interp_filter == EIGHTTAP);
}
#endif
}
}
static void pack_inter_mode_mvs(AV1_COMP *cpi, const MODE_INFO *mi,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
#if !CONFIG_REF_MV
const nmv_context *nmvc = &cm->fc->nmvc;
#endif
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct segmentation *const seg = &cm->seg;
#if CONFIG_MISC_FIXES
const struct segmentation_probs *const segp = &cm->fc->seg;
#else
const struct segmentation_probs *const segp = &cm->segp;
#endif
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
aom_prob pred_prob = av1_get_pred_prob_seg_id(segp, xd);
aom_write(w, pred_flag, pred_prob);
if (!pred_flag) write_segment_id(w, seg, segp, segment_id);
} else {
write_segment_id(w, seg, segp, segment_id);
}
}
skip = write_skip(cm, xd, segment_id, mi, w);
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
aom_write(w, is_inter, av1_get_intra_inter_prob(cm, xd));
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
!(is_inter && skip) && !xd->lossless[segment_id]) {
write_selected_tx_size(cm, xd, w);
}
if (!is_inter) {
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
#if CONFIG_EXT_INTRA
write_intra_angle_info(mbmi, w);
#endif // CONFIG_EXT_INTRA
} else {
int16_t mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
write_ref_frames(cm, xd, w);
#if CONFIG_REF_MV
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
#endif
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8) {
write_inter_mode(cm, w, mode, mode_ctx);
#if CONFIG_REF_MV
if (mode == NEARMV || mode == NEWMV)
write_drl_idx(cm, mbmi, mbmi_ext, w);
#endif
}
}
#if !CONFIG_EXT_INTERP
write_switchable_interp_filter(cpi, xd, w);
#endif // CONFIG_EXT_INTERP
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
#if CONFIG_REF_MV
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, j);
#endif
write_inter_mode(cm, w, b_mode, mode_ctx);
if (b_mode == NEWMV) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], ref,
mbmi->ref_mv_idx);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
nmvc, allow_hp);
}
}
}
}
} else {
if (mode == NEWMV) {
int_mv ref_mv;
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], ref,
mbmi->ref_mv_idx);
const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0];
av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
allow_hp);
}
}
}
#if CONFIG_MOTION_VAR
write_motion_mode(cm, mbmi, w);
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTERP
write_switchable_interp_filter(cpi, xd, w);
#endif // CONFIG_EXT_INTERP
}
if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
if (is_inter) {
av1_write_token(w, av1_ext_tx_tree,
cm->fc->inter_ext_tx_prob[mbmi->tx_size],
&ext_tx_encodings[mbmi->tx_type]);
} else {
av1_write_token(
w, av1_ext_tx_tree,
cm->fc->intra_ext_tx_prob[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]],
&ext_tx_encodings[mbmi->tx_type]);
}
} else {
if (!mbmi->skip) assert(mbmi->tx_type == DCT_DCT);
}
}
static void write_mb_modes_kf(const AV1_COMMON *cm, const MACROBLOCKD *xd,
MODE_INFO **mi_8x8, aom_writer *w) {
const struct segmentation *const seg = &cm->seg;
#if CONFIG_MISC_FIXES
const struct segmentation_probs *const segp = &cm->fc->seg;
#else
const struct segmentation_probs *const segp = &cm->segp;
#endif
const MODE_INFO *const mi = mi_8x8[0];
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (seg->update_map) write_segment_id(w, seg, segp, mbmi->segment_id);
write_skip(cm, xd, mbmi->segment_id, mi, w);
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id])
write_selected_tx_size(cm, xd, w);
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mbmi->mode,
get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int block = idy * 2 + idx;
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(cm, mi, above_mi, left_mi, block));
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mbmi->mode]);
#if CONFIG_EXT_INTRA
write_intra_angle_info(mbmi, w);
#endif // CONFIG_EXT_INTRA
if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_write_token(
w, av1_ext_tx_tree,
cm->fc->intra_ext_tx_prob[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]],
&ext_tx_encodings[mbmi->tx_type]);
}
}
static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end, int mi_row,
int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MODE_INFO *m;
int plane;
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
m = xd->mi[0];
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
cm->mi_rows, cm->mi_cols);
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cm, xd, xd->mi, w);
} else {
pack_inter_mode_mvs(cpi, m, w);
}
if (!m->mbmi.skip) {
assert(*tok < tok_end);
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
TX_SIZE tx =
plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size;
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
}
}
}
static void write_partition(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int hbs, int mi_row,
int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
aom_writer *w) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const aom_prob *const probs = cm->fc->partition_prob[ctx];
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
av1_write_token(w, av1_partition_tree, probs, &partition_encodings[p]);
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
aom_write(w, p == PARTITION_SPLIT, probs[1]);
} else if (has_rows && !has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
aom_write(w, p == PARTITION_SPLIT, probs[2]);
} else {
assert(p == PARTITION_SPLIT);
}
}
static void write_modes_sb(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const MODE_INFO *m = NULL;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
partition = partition_lookup[bsl][m->mbmi.sb_type];
write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
if (subsize < BLOCK_8X8) {
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_row + bs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_col + bs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
subsize);
break;
default: assert(0);
}
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#if DERING_REFINEMENT
if (bsize == BLOCK_64X64 && cm->dering_level != 0 &&
!sb_all_skip(cm, mi_row, mi_col)) {
aom_write_literal(
w,
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain,
DERING_REFINEMENT_BITS);
}
#endif
}
static void write_modes(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end) {
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int mi_row, mi_col;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
av1_zero(xd->left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
}
}
static void build_tree_distribution(AV1_COMP *cpi, TX_SIZE tx_size,
av1_coeff_stats *coef_branch_ct,
av1_coeff_probs_model *coef_probs) {
av1_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
av1_tree_probs_from_distribution(av1_coef_tree,
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l]);
coef_branch_ct[i][j][k][l][0][1] =
eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
coef_probs[i][j][k][l][m] =
get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
coef_branch_ct[i][j][k][l][m][1]);
}
}
}
}
}
static void update_coef_probs_common(aom_writer *const bc, AV1_COMP *cpi,
TX_SIZE tx_size,
av1_coeff_stats *frame_branch_ct,
av1_coeff_probs_model *new_coef_probs) {
av1_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
const aom_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
int i, j, k, l, t;
int stepsize = cpi->sf.coeff_prob_appx_step;
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = { 0, 0 };
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
const aom_prob oldp = old_coef_probs[i][j][k][l][t];
int s;
int u = 0;
if (t == PIVOT_NODE)
s = av1_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd, stepsize);
else
s = av1_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp) u = 1;
if (u)
savings += s - (int)(av1_cost_zero(upd));
else
savings -= (int)(av1_cost_zero(upd));
update[u]++;
}
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
aom_write_bit(bc, 0);
break;
}
aom_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
const aom_prob upd = DIFF_UPDATE_PROB;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = av1_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd, stepsize);
else
s = av1_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
if (s > 0 && newp != *oldp) u = 1;
aom_write(bc, u, upd);
if (u) {
/* send/use new probability */
av1_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
break;
}
case ONE_LOOP_REDUCED: {
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (t == PIVOT_NODE) {
s = av1_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd, stepsize);
} else {
s = av1_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
}
if (s > 0 && newp != *oldp) u = 1;
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
aom_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
aom_write(bc, 0, upd);
}
aom_write(bc, u, upd);
if (u) {
/* send/use new probability */
av1_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
if (updates == 0) {
aom_write_bit(bc, 0); // no updates
}
break;
}
default: assert(0);
}
#if CONFIG_RANS
av1_coef_pareto_cdfs(cpi->common.fc);
#endif // CONFIG_RANS
}
static void update_coef_probs(AV1_COMP *cpi, aom_writer *w) {
const TX_MODE tx_mode = cpi->common.tx_mode;
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
av1_coeff_stats frame_branch_ct[PLANE_TYPES];
av1_coeff_probs_model frame_coef_probs[PLANE_TYPES];
if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
(tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
aom_write_bit(w, 0);
} else {
build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
frame_coef_probs);
}
}
}
static void encode_loopfilter(struct loopfilter *lf,
struct aom_write_bit_buffer *wb) {
int i;
// Encode the loop filter level and type
aom_wb_write_literal(wb, lf->filter_level, 6);
aom_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
aom_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
for (i = 0; i < MAX_REF_FRAMES; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != lf->last_ref_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) {
lf->last_ref_deltas[i] = delta;
aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != lf->last_mode_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) {
lf->last_mode_deltas[i] = delta;
aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
}
}
}
#if CONFIG_CLPF
static void encode_clpf(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->clpf_strength, 2);
if (cm->clpf_strength) {
aom_wb_write_literal(wb, cm->clpf_size, 2);
if (cm->clpf_size) {
int i;
// TODO(stemidts): The number of bits to transmit could be
// implicitly deduced if transmitted after the filter block or
// after the frame (when it's known whether the block is all
// skip and implicitly unfiltered). And the bits do not have
// 50% probability, so a more efficient coding is possible.
aom_wb_write_literal(wb, cm->clpf_numblocks, av1_clpf_maxbits(cm));
for (i = 0; i < cm->clpf_numblocks; i++) {
aom_wb_write_literal(wb, cm->clpf_blocks[i], 1);
}
}
}
}
#endif
#if CONFIG_DERING
static void encode_dering(int level, struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, level, DERING_LEVEL_BITS);
}
#endif // CONFIG_DERING
static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
aom_wb_write_bit(wb, 1);
aom_wb_write_inv_signed_literal(wb, delta_q, CONFIG_MISC_FIXES ? 6 : 4);
} else {
aom_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
#if CONFIG_AOM_QM
aom_wb_write_bit(wb, cm->using_qmatrix);
if (cm->using_qmatrix) {
aom_wb_write_literal(wb, cm->min_qmlevel, QM_LEVEL_BITS);
aom_wb_write_literal(wb, cm->max_qmlevel, QM_LEVEL_BITS);
}
#endif
}
static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
struct aom_write_bit_buffer *wb) {
int i, j;
const struct segmentation *seg = &cm->seg;
#if !CONFIG_MISC_FIXES
const struct segmentation_probs *segp = &cm->segp;
#endif
aom_wb_write_bit(wb, seg->enabled);
if (!seg->enabled) return;
// Segmentation map
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
aom_wb_write_bit(wb, seg->update_map);
} else {
assert(seg->update_map == 1);
}
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
av1_choose_segmap_coding_method(cm, xd);
#if !CONFIG_MISC_FIXES
// Write out probabilities used to decode unpredicted macro-block segments
for (i = 0; i < SEG_TREE_PROBS; i++) {
const int prob = segp->tree_probs[i];
const int update = prob != MAX_PROB;
aom_wb_write_bit(wb, update);
if (update) aom_wb_write_literal(wb, prob, 8);
}
#endif
// Write out the chosen coding method.
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
aom_wb_write_bit(wb, seg->temporal_update);
} else {
assert(seg->temporal_update == 0);
}
#if !CONFIG_MISC_FIXES
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = segp->pred_probs[i];
const int update = prob != MAX_PROB;
aom_wb_write_bit(wb, update);
if (update) aom_wb_write_literal(wb, prob, 8);
}
}
#endif
}
// Segmentation data
aom_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
aom_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
aom_wb_write_bit(wb, active);
if (active) {
const int data = get_segdata(seg, i, j);
const int data_max = av1_seg_feature_data_max(j);
if (av1_is_segfeature_signed(j)) {
encode_unsigned_max(wb, abs(data), data_max);
aom_wb_write_bit(wb, data < 0);
} else {
encode_unsigned_max(wb, data, data_max);
}
}
}
}
}
}
#if CONFIG_MISC_FIXES
static void update_seg_probs(AV1_COMP *cpi, aom_writer *w) {
AV1_COMMON *cm = &cpi->common;
if (!cpi->common.seg.enabled) return;
if (cpi->common.seg.temporal_update) {
int i;
for (i = 0; i < PREDICTION_PROBS; i++)
av1_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i],
cm->counts.seg.pred[i]);
prob_diff_update(av1_segment_tree, cm->fc->seg.tree_probs,
cm->counts.seg.tree_mispred, MAX_SEGMENTS, w);
} else {
prob_diff_update(av1_segment_tree, cm->fc->seg.tree_probs,
cm->counts.seg.tree_total, MAX_SEGMENTS, w);
}
}
static void write_txfm_mode(TX_MODE mode, struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, mode == TX_MODE_SELECT);
if (mode != TX_MODE_SELECT) aom_wb_write_literal(wb, mode, 2);
}
#else
static void write_txfm_mode(TX_MODE mode, aom_writer *wb) {
aom_write_literal(wb, AOMMIN(mode, ALLOW_32X32), 2);
if (mode >= ALLOW_32X32) aom_write_bit(wb, mode == TX_MODE_SELECT);
}
#endif
static void update_txfm_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
if (cm->tx_mode == TX_MODE_SELECT) {
int i, j;
unsigned int ct_8x8p[TX_SIZES - 3][2];
unsigned int ct_16x16p[TX_SIZES - 2][2];
unsigned int ct_32x32p[TX_SIZES - 1][2];
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
av1_tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
for (j = 0; j < TX_SIZES - 3; j++)
av1_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
av1_tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
for (j = 0; j < TX_SIZES - 2; j++)
av1_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
ct_16x16p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
av1_tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
for (j = 0; j < TX_SIZES - 1; j++)
av1_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
ct_32x32p[j]);
}
}
}
static void write_interp_filter(InterpFilter filter,
struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}
static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) {
if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += counts->switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
cm->interp_filter = i;
break;
}
}
}
}
}
static void write_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
int min_log2_tile_cols, max_log2_tile_cols, ones;
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
ones = cm->log2_tile_cols - min_log2_tile_cols;
while (ones--) aom_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tile_cols) aom_wb_write_bit(wb, 0);
// rows
aom_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0) aom_wb_write_bit(wb, cm->log2_tile_rows != 1);
}
static int get_refresh_mask(AV1_COMP *cpi) {
int refresh_mask = 0;
#if CONFIG_EXT_REFS
// NOTE: When LAST_FRAME is to get refreshed, the decoder will be
// notified to get LAST3_FRAME refreshed and then the virtual indexes for all
// the 3 LAST reference frames will be updated accordingly, i.e.:
// (1) The original virtual index for LAST3_FRAME will become the new virtual
// index for LAST_FRAME; and
// (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be
// shifted and become the new virtual indexes for LAST2_FRAME and
// LAST3_FRAME.
refresh_mask |=
(cpi->refresh_last_frame << cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]);
refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->bwd_fb_idx);
#else
refresh_mask |= (cpi->refresh_last_frame << cpi->lst_fb_idx);
#endif // CONFIG_EXT_REFS
if (av1_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term we leave it in the GF slot and,
// if we're updating the GF with the current decoded frame, we save it
// instead to the ARF slot.
// Later, in the function av1_encoder.c:av1_update_reference_frames() we
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
// there so that it can be done outside of the recode loop.
// Note: This is highly specific to the use of ARF as a forward reference,
// and this needs to be generalized as other uses are implemented
// (like RTC/temporal scalability).
return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
return refresh_mask | (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
static size_t encode_tiles(AV1_COMP *cpi, uint8_t *data_ptr,
unsigned int *max_tile_sz) {
AV1_COMMON *const cm = &cpi->common;
#if CONFIG_ANS
struct AnsCoder ans;
struct BufAnsCoder *buf_ans = &cpi->buf_ans;
#else
aom_writer residual_bc;
#endif // CONFIG_ANS
int tile_row, tile_col;
TOKENEXTRA *tok_end;
size_t total_size = 0;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
unsigned int max_tile = 0;
memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
const int is_last_tile = tile_idx == tile_rows * tile_cols - 1;
unsigned int tile_size;
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
tok_end = cpi->tile_tok[tile_row][tile_col] +
cpi->tok_count[tile_row][tile_col];
#if CONFIG_ANS
buf_ans_write_reset(buf_ans);
write_modes(cpi, &cpi->tile_data[tile_idx].tile_info, buf_ans, &tok,
tok_end);
assert(tok == tok_end);
ans_write_init(&ans, data_ptr + total_size + 4 * !is_last_tile);
buf_ans_flush(buf_ans, &ans);
tile_size = ans_write_end(&ans) - CONFIG_MISC_FIXES;
#else
aom_start_encode(&residual_bc, data_ptr + total_size + 4 * !is_last_tile);
write_modes(cpi, &cpi->tile_data[tile_idx].tile_info, &residual_bc, &tok,
tok_end);
assert(tok == tok_end);
aom_stop_encode(&residual_bc);
tile_size = residual_bc.pos - CONFIG_MISC_FIXES;
#endif
assert(tile_size > 0);
if (!is_last_tile) {
// size of this tile
mem_put_le32(data_ptr + total_size, tile_size);
max_tile = max_tile > tile_size ? max_tile : tile_size;
total_size += 4;
}
total_size += tile_size + CONFIG_MISC_FIXES;
}
}
*max_tile_sz = max_tile;
return total_size;
}
static void write_render_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
const int scaling_active =
cm->width != cm->render_width || cm->height != cm->render_height;
aom_wb_write_bit(wb, scaling_active);
if (scaling_active) {
aom_wb_write_literal(wb, cm->render_width - 1, 16);
aom_wb_write_literal(wb, cm->render_height - 1, 16);
}
}
static void write_frame_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->width - 1, 16);
aom_wb_write_literal(wb, cm->height - 1, 16);
write_render_size(cm, wb);
}
static void write_frame_size_with_refs(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
if (cfg != NULL) {
found =
cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
#if CONFIG_MISC_FIXES
found &= cm->render_width == cfg->render_width &&
cm->render_height == cfg->render_height;
#endif
}
aom_wb_write_bit(wb, found);
if (found) {
break;
}
}
if (!found) {
aom_wb_write_literal(wb, cm->width - 1, 16);
aom_wb_write_literal(wb, cm->height - 1, 16);
#if CONFIG_MISC_FIXES
write_render_size(cm, wb);
#endif
}
#if !CONFIG_MISC_FIXES
write_render_size(cm, wb);
#endif
}
static void write_sync_code(struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, AV1_SYNC_CODE_0, 8);
aom_wb_write_literal(wb, AV1_SYNC_CODE_1, 8);
aom_wb_write_literal(wb, AV1_SYNC_CODE_2, 8);
}
static void write_profile(BITSTREAM_PROFILE profile,
struct aom_write_bit_buffer *wb) {
switch (profile) {
case PROFILE_0: aom_wb_write_literal(wb, 0, 2); break;
case PROFILE_1: aom_wb_write_literal(wb, 2, 2); break;
case PROFILE_2: aom_wb_write_literal(wb, 1, 2); break;
case PROFILE_3: aom_wb_write_literal(wb, 6, 3); break;
default: assert(0);
}
}
static void write_bitdepth_colorspace_sampling(
AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
if (cm->profile >= PROFILE_2) {
assert(cm->bit_depth > AOM_BITS_8);
aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_10 ? 0 : 1);
}
aom_wb_write_literal(wb, cm->color_space, 3);
if (cm->color_space != AOM_CS_SRGB) {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, cm->color_range);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
aom_wb_write_bit(wb, cm->subsampling_x);
aom_wb_write_bit(wb, cm->subsampling_y);
aom_wb_write_bit(wb, 0); // unused
} else {
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
}
} else {
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
aom_wb_write_bit(wb, 0); // unused
}
}
static void write_uncompressed_header(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
aom_wb_write_literal(wb, AOM_FRAME_MARKER, 2);
write_profile(cm->profile, wb);
#if CONFIG_EXT_REFS
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
if (cm->show_existing_frame) {
MV_REFERENCE_FRAME ref_frame;
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show];
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a reconstructed frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
aom_wb_write_bit(wb, 1); // show_existing_frame
aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
cpi->refresh_frame_mask = get_refresh_mask(cpi);
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
aom_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
return;
} else {
#endif // CONFIG_EXT_REFS
aom_wb_write_bit(wb, 0); // show_existing_frame
#if CONFIG_EXT_REFS
}
#endif // CONFIG_EXT_REFS
aom_wb_write_bit(wb, cm->frame_type);
aom_wb_write_bit(wb, cm->show_frame);
aom_wb_write_bit(wb, cm->error_resilient_mode);
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
write_frame_size(cm, wb);
} else {
if (!cm->show_frame) aom_wb_write_bit(wb, cm->intra_only);
if (!cm->error_resilient_mode) {
#if CONFIG_MISC_FIXES
if (cm->intra_only) {
aom_wb_write_bit(wb,
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
} else {
aom_wb_write_bit(wb,
cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE);
if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE)
aom_wb_write_bit(wb,
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
}
#else
static const int reset_frame_context_conv_tbl[3] = { 0, 2, 3 };
aom_wb_write_literal(
wb, reset_frame_context_conv_tbl[cm->reset_frame_context], 2);
#endif
}
#if CONFIG_EXT_REFS
cpi->refresh_frame_mask = get_refresh_mask(cpi);
#endif // CONFIG_EXT_REFS
if (cm->intra_only) {
write_sync_code(wb);
#if CONFIG_MISC_FIXES
write_bitdepth_colorspace_sampling(cm, wb);
#else
// Note for profile 0, 420 8bpp is assumed.
if (cm->profile > PROFILE_0) {
write_bitdepth_colorspace_sampling(cm, wb);
}
#endif
#if CONFIG_EXT_REFS
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
#else
aom_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
#endif // CONFIG_EXT_REFS
write_frame_size(cm, wb);
} else {
MV_REFERENCE_FRAME ref_frame;
#if CONFIG_EXT_REFS
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
#else
aom_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
if (!cpi->refresh_frame_mask) {
// NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
#endif // CONFIG_EXT_REFS
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
aom_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
write_frame_size_with_refs(cpi, wb);
aom_wb_write_bit(wb, cm->allow_high_precision_mv);
fix_interp_filter(cm, cpi->td.counts);
write_interp_filter(cm->interp_filter, wb);
}
}
if (!cm->error_resilient_mode) {
aom_wb_write_bit(wb,
cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF);
#if CONFIG_MISC_FIXES
if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF)
#endif
aom_wb_write_bit(
wb, cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD);
}
aom_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
encode_loopfilter(&cm->lf, wb);
#if CONFIG_CLPF
encode_clpf(cm, wb);
#endif
#if CONFIG_DERING
encode_dering(cm->dering_level, wb);
#endif // CONFIG_DERING
encode_quantization(cm, wb);
encode_segmentation(cm, xd, wb);
#if CONFIG_MISC_FIXES
if (!cm->seg.enabled && xd->lossless[0])
cm->tx_mode = TX_4X4;
else
write_txfm_mode(cm->tx_mode, wb);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
aom_wb_write_bit(wb, use_hybrid_pred);
if (!use_hybrid_pred) aom_wb_write_bit(wb, use_compound_pred);
}
#endif
write_tile_info(cm, wb);
}
static size_t write_compressed_header(AV1_COMP *cpi, uint8_t *data) {
AV1_COMMON *const cm = &cpi->common;
FRAME_CONTEXT *const fc = cm->fc;
FRAME_COUNTS *counts = cpi->td.counts;
aom_writer *header_bc;
int i, j;
#if CONFIG_ANS
struct AnsCoder header_ans;
int header_size;
header_bc = &cpi->buf_ans;
buf_ans_write_reset(header_bc);
#else
aom_writer real_header_bc;
header_bc = &real_header_bc;
aom_start_encode(header_bc, data);
#endif
#if !CONFIG_MISC_FIXES
if (cpi->td.mb.e_mbd.lossless[0]) {
cm->tx_mode = TX_4X4;
} else {
write_txfm_mode(cm->tx_mode, header_bc);
update_txfm_probs(cm, header_bc, counts);
}
#else
update_txfm_probs(cm, header_bc, counts);
#endif
update_coef_probs(cpi, header_bc);
update_skip_probs(cm, header_bc, counts);
#if CONFIG_MISC_FIXES
update_seg_probs(cpi, header_bc);
for (i = 0; i < INTRA_MODES; ++i)
prob_diff_update(av1_intra_mode_tree, fc->uv_mode_prob[i],
counts->uv_mode[i], INTRA_MODES, header_bc);
for (i = 0; i < PARTITION_CONTEXTS; ++i)
prob_diff_update(av1_partition_tree, fc->partition_prob[i],
counts->partition[i], PARTITION_TYPES, header_bc);
#endif
if (frame_is_intra_only(cm)) {
av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob);
#if CONFIG_MISC_FIXES
for (i = 0; i < INTRA_MODES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
prob_diff_update(av1_intra_mode_tree, cm->kf_y_prob[i][j],
counts->kf_y_mode[i][j], INTRA_MODES, header_bc);
#endif
} else {
#if CONFIG_REF_MV
update_inter_mode_probs(cm, header_bc, counts);
#else
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
prob_diff_update(av1_inter_mode_tree, cm->fc->inter_mode_probs[i],
counts->inter_mode[i], INTER_MODES, header_bc);
#endif
#if CONFIG_MOTION_VAR
for (i = 0; i < BLOCK_SIZES; ++i)
if (is_motion_variation_allowed_bsize(i))
prob_diff_update(av1_motion_mode_tree, cm->fc->motion_mode_prob[i],
counts->motion_mode[i], MOTION_MODES, header_bc);
#endif // CONFIG_MOTION_VAR
if (cm->interp_filter == SWITCHABLE)
update_switchable_interp_probs(cm, header_bc, counts);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
av1_cond_prob_diff_update(header_bc, &fc->intra_inter_prob[i],
counts->intra_inter[i]);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
#if !CONFIG_MISC_FIXES
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
aom_write_bit(header_bc, use_compound_pred);
if (use_compound_pred) {
aom_write_bit(header_bc, use_hybrid_pred);
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
av1_cond_prob_diff_update(header_bc, &fc->comp_inter_prob[i],
counts->comp_inter[i]);
}
#else
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
av1_cond_prob_diff_update(header_bc, &fc->comp_inter_prob[i],
counts->comp_inter[i]);
#endif
}
if (cm->reference_mode != COMPOUND_REFERENCE)
for (i = 0; i < REF_CONTEXTS; i++)
for (j = 0; j < (SINGLE_REFS - 1); j++)
av1_cond_prob_diff_update(header_bc, &fc->single_ref_prob[i][j],
counts->single_ref[i][j]);
if (cm->reference_mode != SINGLE_REFERENCE)
#if CONFIG_EXT_REFS
for (i = 0; i < REF_CONTEXTS; i++) {
for (j = 0; j < (FWD_REFS - 1); j++)
av1_cond_prob_diff_update(header_bc, &fc->comp_fwdref_prob[i][j],
counts->comp_fwdref[i][j]);
for (j = 0; j < (BWD_REFS - 1); j++)
av1_cond_prob_diff_update(header_bc, &fc->comp_bwdref_prob[i][j],
counts->comp_bwdref[i][j]);
}
#else
for (i = 0; i < REF_CONTEXTS; i++)
av1_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i],
counts->comp_ref[i]);
#endif // CONFIG_EXT_REFS
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
prob_diff_update(av1_intra_mode_tree, cm->fc->y_mode_prob[i],
counts->y_mode[i], INTRA_MODES, header_bc);
#if !CONFIG_MISC_FIXES
for (i = 0; i < PARTITION_CONTEXTS; ++i)
prob_diff_update(av1_partition_tree, fc->partition_prob[i],
counts->partition[i], PARTITION_TYPES, header_bc);
#endif
av1_write_nmv_probs(cm, cm->allow_high_precision_mv, header_bc,
#if CONFIG_REF_MV
counts->mv);
#else
&counts->mv);
#endif
update_ext_tx_probs(cm, header_bc);
}
#if CONFIG_ANS
ans_write_init(&header_ans, data);
buf_ans_flush(header_bc, &header_ans);
header_size = ans_write_end(&header_ans);
assert(header_size <= 0xffff);
return header_size;
#else
aom_stop_encode(header_bc);
assert(header_bc->pos <= 0xffff);
return header_bc->pos;
#endif // CONFIG_ANS
}
#if CONFIG_MISC_FIXES
static int remux_tiles(uint8_t *dest, const int sz, const int n_tiles,
const int mag) {
int rpos = 0, wpos = 0, n;
for (n = 0; n < n_tiles; n++) {
int tile_sz;
if (n == n_tiles - 1) {
tile_sz = sz - rpos;
} else {
tile_sz = mem_get_le32(&dest[rpos]) + 1;
rpos += 4;
switch (mag) {
case 0: dest[wpos] = tile_sz - 1; break;
case 1: mem_put_le16(&dest[wpos], tile_sz - 1); break;
case 2: mem_put_le24(&dest[wpos], tile_sz - 1); break;
case 3: // remuxing should only happen if mag < 3
default: assert("Invalid value for tile size magnitude" && 0);
}
wpos += mag + 1;
}
memmove(&dest[wpos], &dest[rpos], tile_sz);
wpos += tile_sz;
rpos += tile_sz;
}
assert(rpos > wpos);
assert(rpos == sz);
return wpos;
}
#endif
void av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dest, size_t *size) {
uint8_t *data = dest;
size_t first_part_size, uncompressed_hdr_size, data_sz;
struct aom_write_bit_buffer wb = { data, 0 };
struct aom_write_bit_buffer saved_wb;
unsigned int max_tile;
#if CONFIG_MISC_FIXES || CONFIG_EXT_REFS
AV1_COMMON *const cm = &cpi->common;
#endif // CONFIG_MISC_FIXES || CONFIG_EXT_REFS
#if CONFIG_MISC_FIXES
const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols;
const int have_tiles = n_log2_tiles > 0;
#else
const int have_tiles = 0; // we have tiles, but we don't want to write a
// tile size marker in the header
#endif
write_uncompressed_header(cpi, &wb);
#if CONFIG_EXT_REFS
if (cm->show_existing_frame) {
*size = aom_wb_bytes_written(&wb);
return;
}
#endif // CONFIG_EXT_REFS
saved_wb = wb;
// don't know in advance first part. size
aom_wb_write_literal(&wb, 0, 16 + have_tiles * 2);
uncompressed_hdr_size = aom_wb_bytes_written(&wb);
data += uncompressed_hdr_size;
aom_clear_system_state();
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
data_sz = encode_tiles(cpi, data, &max_tile);
#if CONFIG_MISC_FIXES
if (max_tile > 0) {
int mag;
unsigned int mask;
// Choose the (tile size) magnitude
for (mag = 0, mask = 0xff; mag < 4; mag++) {
if (max_tile <= mask) break;
mask <<= 8;
mask |= 0xff;
}
assert(n_log2_tiles > 0);
aom_wb_write_literal(&saved_wb, mag, 2);
if (mag < 3)
data_sz = remux_tiles(data, (int)data_sz, 1 << n_log2_tiles, mag);
} else {
assert(n_log2_tiles == 0);
}
#endif
data += data_sz;
// TODO(jbb): Figure out what to do if first_part_size > 16 bits.
aom_wb_write_literal(&saved_wb, (int)first_part_size, 16);
*size = data - dest;
}