blob: c7ba6c1a8345d84c334f8ffc65d8988eee3dd1ab [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <string.h>
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cdef.h"
#include "av1/common/cdef_block.h"
#include "av1/common/reconinter.h"
enum { TOP, LEFT, BOTTOM, RIGHT, BOUNDARIES } UENUM1BYTE(BOUNDARY);
/*!\brief Parameters related to CDEF Block */
typedef struct {
uint16_t *src;
uint16_t *top_linebuf[MAX_MB_PLANE];
uint8_t *dst;
uint16_t *colbuf[MAX_MB_PLANE];
cdef_list dlist[MI_SIZE_64X64 * MI_SIZE_64X64];
int xdec;
int ydec;
int mi_wide_l2;
int mi_high_l2;
int frame_boundary[BOUNDARIES];
int damping;
int coeff_shift;
int level;
int sec_strength;
int cdef_count;
int is_zero_level;
int dir[CDEF_NBLOCKS][CDEF_NBLOCKS];
int var[CDEF_NBLOCKS][CDEF_NBLOCKS];
int dst_stride;
int coffset;
int roffset;
} CdefBlockInfo;
static int is_8x8_block_skip(MB_MODE_INFO **grid, int mi_row, int mi_col,
int mi_stride) {
MB_MODE_INFO **mbmi = grid + mi_row * mi_stride + mi_col;
for (int r = 0; r < mi_size_high[BLOCK_8X8]; ++r, mbmi += mi_stride) {
for (int c = 0; c < mi_size_wide[BLOCK_8X8]; ++c) {
if (!mbmi[c]->skip_txfm) return 0;
}
}
return 1;
}
int av1_cdef_compute_sb_list(const CommonModeInfoParams *const mi_params,
int mi_row, int mi_col, cdef_list *dlist,
BLOCK_SIZE bs) {
MB_MODE_INFO **grid = mi_params->mi_grid_base;
int maxc = mi_params->mi_cols - mi_col;
int maxr = mi_params->mi_rows - mi_row;
if (bs == BLOCK_128X128 || bs == BLOCK_128X64)
maxc = AOMMIN(maxc, MI_SIZE_128X128);
else
maxc = AOMMIN(maxc, MI_SIZE_64X64);
if (bs == BLOCK_128X128 || bs == BLOCK_64X128)
maxr = AOMMIN(maxr, MI_SIZE_128X128);
else
maxr = AOMMIN(maxr, MI_SIZE_64X64);
const int r_step = 2; // mi_size_high[BLOCK_8X8]
const int c_step = 2; // mi_size_wide[BLOCK_8X8]
const int r_shift = 1;
const int c_shift = 1;
int count = 0;
for (int r = 0; r < maxr; r += r_step) {
for (int c = 0; c < maxc; c += c_step) {
if (!is_8x8_block_skip(grid, mi_row + r, mi_col + c,
mi_params->mi_stride)) {
dlist[count].by = r >> r_shift;
dlist[count].bx = c >> c_shift;
count++;
}
}
}
return count;
}
void cdef_copy_rect8_8bit_to_16bit_c(uint16_t *dst, int dstride,
const uint8_t *src, int sstride, int v,
int h) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
void cdef_copy_rect8_16bit_to_16bit_c(uint16_t *dst, int dstride,
const uint16_t *src, int sstride, int v,
int h) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
static void copy_sb8_16(AV1_COMMON *cm, uint16_t *dst, int dstride,
const uint8_t *src, int src_voffset, int src_hoffset,
int sstride, int vsize, int hsize) {
if (cm->seq_params.use_highbitdepth) {
const uint16_t *base =
&CONVERT_TO_SHORTPTR(src)[src_voffset * sstride + src_hoffset];
cdef_copy_rect8_16bit_to_16bit(dst, dstride, base, sstride, vsize, hsize);
} else {
const uint8_t *base = &src[src_voffset * sstride + src_hoffset];
cdef_copy_rect8_8bit_to_16bit(dst, dstride, base, sstride, vsize, hsize);
}
}
static INLINE void fill_rect(uint16_t *dst, int dstride, int v, int h,
uint16_t x) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = x;
}
}
}
static INLINE void copy_rect(uint16_t *dst, int dstride, const uint16_t *src,
int sstride, int v, int h) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
// Prepares intermediate input buffer for CDEF.
// Inputs:
// cm: Pointer to common structure.
// fb_info: Pointer to the CDEF block-level parameter structure.
// cdef_left: Left block is filtered or not.
// fbc, fbr: col and row index of a block.
// plane: plane index Y/CB/CR.
// Returns:
// Nothing will be returned.
static void cdef_prepare_fb(AV1_COMMON *cm, CdefBlockInfo *fb_info,
const int *cdef_left, int fbc, int fbr,
uint8_t plane) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
uint16_t *src = fb_info->src;
const int stride = mi_params->mi_cols << MI_SIZE_LOG2;
const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
int cstart = 0;
if (!*cdef_left) cstart = -CDEF_HBORDER;
int rend, cend;
int nhb = AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
int nvb = AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
int hsize = nhb << fb_info->mi_wide_l2;
int vsize = nvb << fb_info->mi_high_l2;
const uint16_t *top_linebuf = fb_info->top_linebuf[plane];
if (fbc == nhfb - 1)
cend = hsize;
else
cend = hsize + CDEF_HBORDER;
if (fbr == nvfb - 1)
rend = vsize;
else
rend = vsize + CDEF_VBORDER;
if (fbr == nvfb - 1) {
/* On the last superblock row, fill in the bottom border with
CDEF_VERY_LARGE to avoid filtering with the outside. */
fill_rect(&src[(rend + CDEF_VBORDER) * CDEF_BSTRIDE], CDEF_BSTRIDE,
CDEF_VBORDER, hsize + 2 * CDEF_HBORDER, CDEF_VERY_LARGE);
}
/* Copy in the pixels we need from the current superblock for
deringing.*/
copy_sb8_16(cm, &src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER + cstart],
CDEF_BSTRIDE, fb_info->dst, fb_info->roffset,
fb_info->coffset + cstart, fb_info->dst_stride, rend,
cend - cstart);
/* Copy in the pixels we need from the current superblock from top buffer.*/
if (fbr > 0) {
copy_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, &top_linebuf[fb_info->coffset],
stride, CDEF_VBORDER, hsize);
} else {
fill_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hsize,
CDEF_VERY_LARGE);
}
if (fbr > 0 && fbc > 0) {
copy_rect(src, CDEF_BSTRIDE, &top_linebuf[fb_info->coffset - CDEF_HBORDER],
stride, CDEF_VBORDER, CDEF_HBORDER);
} else {
fill_rect(src, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
}
if (fbr > 0 && fbc < nhfb - 1) {
copy_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
&top_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
CDEF_HBORDER);
} else {
fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
CDEF_HBORDER, CDEF_VERY_LARGE);
}
if (*cdef_left) {
/* If we deringed the superblock on the left then we need to copy in
saved pixels. */
copy_rect(src, CDEF_BSTRIDE, fb_info->colbuf[plane], CDEF_HBORDER,
rend + CDEF_VBORDER, CDEF_HBORDER);
}
/* Saving pixels in case we need to dering the superblock on the
right. */
copy_rect(fb_info->colbuf[plane], CDEF_HBORDER, src + hsize, CDEF_BSTRIDE,
rend + CDEF_VBORDER, CDEF_HBORDER);
if (fb_info->frame_boundary[LEFT]) {
fill_rect(src, CDEF_BSTRIDE, vsize + 2 * CDEF_VBORDER, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (fb_info->frame_boundary[RIGHT]) {
fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
vsize + 2 * CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
}
}
static INLINE void cdef_filter_fb(CdefBlockInfo *fb_info, uint8_t plane,
uint8_t use_highbitdepth) {
int offset = fb_info->dst_stride * fb_info->roffset + fb_info->coffset;
if (use_highbitdepth) {
av1_cdef_filter_fb(
NULL, CONVERT_TO_SHORTPTR(fb_info->dst + offset), fb_info->dst_stride,
&fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
fb_info->dlist, fb_info->cdef_count, fb_info->level,
fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
} else {
av1_cdef_filter_fb(
fb_info->dst + offset, NULL, fb_info->dst_stride,
&fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
fb_info->dlist, fb_info->cdef_count, fb_info->level,
fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
}
}
// Initializes block-level parameters for CDEF.
static INLINE void cdef_init_fb_col(MACROBLOCKD *xd,
const CdefInfo *const cdef_info,
CdefBlockInfo *fb_info,
const int mbmi_cdef_strength, int fbc,
int fbr, uint8_t plane) {
if (plane == AOM_PLANE_Y) {
fb_info->level =
cdef_info->cdef_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
fb_info->sec_strength =
cdef_info->cdef_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
fb_info->sec_strength += fb_info->sec_strength == 3;
int uv_level =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
int uv_sec_strength =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
uv_sec_strength += uv_sec_strength == 3;
fb_info->is_zero_level = (fb_info->level == 0) &&
(fb_info->sec_strength == 0) && (uv_level == 0) &&
(uv_sec_strength == 0);
} else {
fb_info->level =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
fb_info->sec_strength =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
fb_info->sec_strength += fb_info->sec_strength == 3;
}
fb_info->dst = xd->plane[plane].dst.buf;
fb_info->dst_stride = xd->plane[plane].dst.stride;
fb_info->xdec = xd->plane[plane].subsampling_x;
fb_info->ydec = xd->plane[plane].subsampling_y;
fb_info->mi_wide_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_x;
fb_info->mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
fb_info->roffset = MI_SIZE_64X64 * fbr << fb_info->mi_high_l2;
fb_info->coffset = MI_SIZE_64X64 * fbc << fb_info->mi_wide_l2;
}
static void cdef_fb_col(AV1_COMMON *cm, MACROBLOCKD *xd, CdefBlockInfo *fb_info,
int *cdef_left, int fbc, int fbr) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mbmi_cdef_strength =
mi_params
->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
MI_SIZE_64X64 * fbc]
->cdef_strength;
const int num_planes = av1_num_planes(cm);
if (mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
MI_SIZE_64X64 * fbc] == NULL ||
mbmi_cdef_strength == -1) {
*cdef_left = 0;
return;
}
for (uint8_t plane = 0; plane < num_planes; plane++) {
cdef_init_fb_col(xd, &cm->cdef_info, fb_info, mbmi_cdef_strength, fbc, fbr,
plane);
if (fb_info->is_zero_level ||
(fb_info->cdef_count = av1_cdef_compute_sb_list(
mi_params, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64,
fb_info->dlist, BLOCK_64X64)) == 0) {
*cdef_left = 0;
return;
}
cdef_prepare_fb(cm, fb_info, cdef_left, fbc, fbr, plane);
cdef_filter_fb(fb_info, plane, cm->seq_params.use_highbitdepth);
}
*cdef_left = 1;
}
static INLINE void cdef_init_fb_row(AV1_COMMON *cm, const MACROBLOCKD *const xd,
CdefBlockInfo *const fb_info,
uint16_t **const linebuf, int fbr) {
const int num_planes = av1_num_planes(cm);
const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int stride = cm->mi_params.mi_cols << MI_SIZE_LOG2;
const bool ping_pong = fbr & 1;
// for the current filter block, it's top left corner mi structure (mi_tl)
// is first accessed to check whether the top and left boundaries are
// frame boundaries. Then bottom-left and top-right mi structures are
// accessed to check whether the bottom and right boundaries
// (respectively) are frame boundaries.
//
// Note that we can't just check the bottom-right mi structure - eg. if
// we're at the right-hand edge of the frame but not the bottom, then
// the bottom-right mi is NULL but the bottom-left is not.
fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
if (fbr != nvfb - 1)
fb_info->frame_boundary[BOTTOM] =
(MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
else
fb_info->frame_boundary[BOTTOM] = 1;
for (uint8_t plane = 0; plane < num_planes; plane++) {
const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
const int offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
// here ping-pong buffers are maintained for top linebuf
// to avoid linebuf over-write by consecutive row.
uint16_t *const top_linebuf =
&linebuf[plane][ping_pong * CDEF_VBORDER * stride];
if (fbr != nvfb - 1) // top line buffer copy
copy_sb8_16(cm, top_linebuf, stride, xd->plane[plane].dst.buf,
offset - CDEF_VBORDER, 0, xd->plane[plane].dst.stride,
CDEF_VBORDER, stride);
fb_info->top_linebuf[plane] =
&linebuf[plane][(!ping_pong) * CDEF_VBORDER * stride];
}
}
static void cdef_fb_row(AV1_COMMON *cm, MACROBLOCKD *xd, CdefBlockInfo *fb_info,
uint16_t **const linebuf, int fbr) {
int cdef_left = 1;
const int nhfb = (cm->mi_params.mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
cdef_init_fb_row(cm, xd, fb_info, linebuf, fbr);
for (int fbc = 0; fbc < nhfb; fbc++) {
fb_info->frame_boundary[LEFT] = (MI_SIZE_64X64 * fbc == 0) ? 1 : 0;
if (fbc != nhfb - 1)
fb_info->frame_boundary[RIGHT] =
(MI_SIZE_64X64 * (fbc + 1) == cm->mi_params.mi_cols) ? 1 : 0;
else
fb_info->frame_boundary[RIGHT] = 1;
cdef_fb_col(cm, xd, fb_info, &cdef_left, fbc, fbr);
}
}
// Initialize the frame-level CDEF parameters.
// Inputs:
// frame: Pointer to input frame buffer.
// cm: Pointer to common structure.
// xd: Pointer to common current coding block structure.
// fb_info: Pointer to the CDEF block-level parameter structure.
// src: Intermediate input buffer for CDEF.
// colbuf: Left line buffer for CDEF.
// Returns:
// Nothing will be returned.
static void cdef_prepare_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd, CdefBlockInfo *fb_info,
uint16_t *src, uint16_t **colbuf) {
const int num_planes = av1_num_planes(cm);
av1_setup_dst_planes(xd->plane, cm->seq_params.sb_size, frame, 0, 0, 0,
num_planes);
for (uint8_t plane = 0; plane < num_planes; plane++) {
const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
const int block_height = (MI_SIZE_64X64 << mi_high_l2) + 2 * CDEF_VBORDER;
colbuf[plane] = aom_malloc(
sizeof(*colbuf) *
((CDEF_BLOCKSIZE << (MI_SIZE_LOG2 - xd->plane[plane].subsampling_y)) +
2 * CDEF_VBORDER) *
CDEF_HBORDER);
fill_rect(colbuf[plane], CDEF_HBORDER, block_height, CDEF_HBORDER,
CDEF_VERY_LARGE);
fb_info->colbuf[plane] = colbuf[plane];
}
fb_info->src = src;
fb_info->damping = cm->cdef_info.cdef_damping;
fb_info->coeff_shift = AOMMAX(cm->seq_params.bit_depth - 8, 0);
memset(fb_info->dir, 0, sizeof(fb_info->dir));
memset(fb_info->var, 0, sizeof(fb_info->var));
}
static void cdef_free(uint16_t **colbuf, const int num_planes) {
for (uint8_t plane = 0; plane < num_planes; plane++) aom_free(colbuf[plane]);
}
// Perform CDEF on input frame.
// Inputs:
// frame: Pointer to input frame buffer.
// cm: Pointer to common structure.
// xd: Pointer to common current coding block structure.
// Returns:
// Nothing will be returned.
void av1_cdef_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd) {
DECLARE_ALIGNED(16, uint16_t, src[CDEF_INBUF_SIZE]);
uint16_t *colbuf[MAX_MB_PLANE] = { NULL };
CdefBlockInfo fb_info;
const int num_planes = av1_num_planes(cm);
const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
cdef_prepare_frame(frame, cm, xd, &fb_info, src, colbuf);
for (int fbr = 0; fbr < nvfb; fbr++)
cdef_fb_row(cm, xd, &fb_info, cm->cdef_info.linebuf, fbr);
cdef_free(colbuf, num_planes);
}