blob: a972a19ef534eaeb1f593351e7c1f8f607681d67 [file] [log] [blame]
/*
* Copyright (c) 2024, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include <stdint.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "av1/common/arm/convolve_scale_neon.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
static INLINE int16x4_t convolve8_4_h(const int16x4_t s0, const int16x4_t s1,
const int16x4_t s2, const int16x4_t s3,
const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7,
const int16x8_t filter,
const int32x4_t horiz_const) {
int16x4_t filter_lo = vget_low_s16(filter);
int16x4_t filter_hi = vget_high_s16(filter);
int32x4_t sum = horiz_const;
sum = vmlal_lane_s16(sum, s0, filter_lo, 0);
sum = vmlal_lane_s16(sum, s1, filter_lo, 1);
sum = vmlal_lane_s16(sum, s2, filter_lo, 2);
sum = vmlal_lane_s16(sum, s3, filter_lo, 3);
sum = vmlal_lane_s16(sum, s4, filter_hi, 0);
sum = vmlal_lane_s16(sum, s5, filter_hi, 1);
sum = vmlal_lane_s16(sum, s6, filter_hi, 2);
sum = vmlal_lane_s16(sum, s7, filter_hi, 3);
return vshrn_n_s32(sum, ROUND0_BITS);
}
static INLINE int16x8_t convolve8_8_h(const int16x8_t s0, const int16x8_t s1,
const int16x8_t s2, const int16x8_t s3,
const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7,
const int16x8_t filter,
const int16x8_t horiz_const) {
int16x4_t filter_lo = vget_low_s16(filter);
int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum = horiz_const;
sum = vmlaq_lane_s16(sum, s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s3, filter_lo, 3);
sum = vmlaq_lane_s16(sum, s4, filter_hi, 0);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
return vshrq_n_s16(sum, ROUND0_BITS - 1);
}
static INLINE void convolve_horiz_scale_neon(const uint8_t *src, int src_stride,
int16_t *dst, int dst_stride,
int w, int h,
const int16_t *x_filter,
const int subpel_x_qn,
const int x_step_qn) {
DECLARE_ALIGNED(16, int16_t, temp[8 * 8]);
const int bd = 8;
if (w == 4) {
// The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts.
const int32x4_t horiz_offset =
vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
do {
int x_qn = subpel_x_qn;
// Process a 4x4 tile.
for (int r = 0; r < 4; ++r) {
const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS];
const ptrdiff_t filter_offset =
SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
const int16x8_t filter = vld1q_s16(x_filter + filter_offset);
uint8x8_t t0, t1, t2, t3;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3);
int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
int16x4_t d0 =
convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset);
vst1_s16(&temp[r * 4], d0);
x_qn += x_step_qn;
}
// Transpose the 4x4 result tile and store.
int16x4_t d0, d1, d2, d3;
load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3);
transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3);
store_s16_4x4(dst, dst_stride, d0, d1, d2, d3);
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h > 0);
} else {
// The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts.
// The additional -1 is needed because we are halving the filter values.
const int16x8_t horiz_offset =
vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2)));
do {
int x_qn = subpel_x_qn;
int16_t *d = dst;
int width = w;
do {
// Process an 8x8 tile.
for (int r = 0; r < 8; ++r) {
const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)];
const ptrdiff_t filter_offset =
SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
int16x8_t filter = vld1q_s16(x_filter + filter_offset);
// Filter values are all even so halve them to allow convolution
// kernel computations to stay in 16-bit element types.
filter = vshrq_n_s16(filter, 1);
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2,
&t3, &t4, &t5, &t6, &t7);
int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
int16x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter,
horiz_offset);
vst1q_s16(&temp[r * 8], d0);
x_qn += x_step_qn;
}
// Transpose the 8x8 result tile and store.
int16x8_t d0, d1, d2, d3, d4, d5, d6, d7;
load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
d += 8;
width -= 8;
} while (width != 0);
dst += 8 * dst_stride;
src += 8 * src_stride;
h -= 8;
} while (h > 0);
}
}
void av1_convolve_2d_scale_neon(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
if (w < 4 || h < 4) {
av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
x_step_qn, subpel_y_qn, y_step_qn, conv_params);
return;
}
// For the interpolation 8-tap filters are used.
assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8);
DECLARE_ALIGNED(32, int16_t,
im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
// Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2
// lines post both horizontally and vertically.
const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1;
const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride;
// Horizontal filter
convolve_horiz_scale_neon(
src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w,
im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn);
// Vertical filter
if (filter_params_y->interp_filter == MULTITAP_SHARP) {
if (UNLIKELY(conv_params->is_compound)) {
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
compound_dist_wtd_convolve_vert_scale_8tap_neon(
im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn);
} else {
compound_avg_convolve_vert_scale_8tap_neon(
im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
} else {
compound_convolve_vert_scale_8tap_neon(
im_block, im_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
} else {
convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn,
y_step_qn);
}
} else {
if (UNLIKELY(conv_params->is_compound)) {
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
compound_dist_wtd_convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst, dst_stride, dst16,
dst16_stride, w, h, filter_params_y->filter_ptr, conv_params,
subpel_y_qn, y_step_qn);
} else {
compound_avg_convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst, dst_stride, dst16,
dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn,
y_step_qn);
}
} else {
compound_convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
} else {
convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst, dst_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
}
}