blob: 8ebcf5ff7caf232fe43a54cbf75574e20d13118a [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_TEST_TRANSFORM_TEST_BASE_H_
#define AOM_TEST_TRANSFORM_TEST_BASE_H_
#include "config/aom_config.h"
#include "aom_mem/aom_mem.h"
#include "aom/aom_codec.h"
#include "aom_dsp/txfm_common.h"
namespace libaom_test {
// Note:
// Same constant are defined in av1/common/av1_entropy.h and
// av1/common/entropy.h. Goal is to make this base class
// to use for future codec transform testing. But including
// either of them would lead to compiling error when we do
// unit test for another codec. Suggest to move the definition
// to a aom header file.
const int kDctMaxValue = 16384;
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param);
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param);
class TransformTestBase {
public:
virtual ~TransformTestBase() {}
protected:
virtual void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) = 0;
virtual void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck(uint32_t ref_max_error, double ref_avg_error) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
int16_t *test_input_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *test_temp_block = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
uint8_t *dst = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
uint8_t *src = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
uint16_t *dst16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
uint16_t *src16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < num_coeffs_; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
}
for (int j = 0; j < num_coeffs_; ++j) {
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
double avg_error = total_error * 1. / count_test_block / num_coeffs_;
EXPECT_GE(ref_max_error, max_error)
<< "Error: FHT/IHT has an individual round trip error > "
<< ref_max_error;
EXPECT_GE(ref_avg_error, avg_error)
<< "Error: FHT/IHT has average round trip error > " << ref_avg_error
<< " per block";
aom_free(test_input_block);
aom_free(test_temp_block);
aom_free(dst);
aom_free(src);
aom_free(dst16);
aom_free(src16);
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
// Use a stride value which is not the width of any transform, to catch
// cases where the transforms use the stride incorrectly.
int stride = 96;
int16_t *input_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * stride * height_));
tran_low_t *output_ref_block = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
tran_low_t *output_block = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
for (int i = 0; i < count_test_block; ++i) {
int j, k;
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int in_idx = j * stride + k;
int out_idx = j * pitch_ + k;
input_block[in_idx] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
if (bit_depth_ == AOM_BITS_8) {
output_block[out_idx] = output_ref_block[out_idx] = rnd.Rand8();
} else {
output_block[out_idx] = output_ref_block[out_idx] =
rnd.Rand16() & mask_;
}
}
}
fwd_txfm_ref(input_block, output_ref_block, stride, &txfm_param_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, stride));
// The minimum quant value is 4.
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int out_idx = j * pitch_ + k;
ASSERT_EQ(output_block[out_idx], output_ref_block[out_idx])
<< "Error: not bit-exact result at index: " << out_idx
<< " at test block: " << i;
}
}
}
aom_free(input_block);
aom_free(output_ref_block);
aom_free(output_block);
}
void RunInvCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
// Use a stride value which is not the width of any transform, to catch
// cases where the transforms use the stride incorrectly.
int stride = 96;
int16_t *input_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *trans_block = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
uint8_t *output_block = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * stride * height_));
uint8_t *output_ref_block = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * stride * height_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
int j, k;
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int in_idx = j * pitch_ + k;
int out_idx = j * stride + k;
input_block[in_idx] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
output_ref_block[out_idx] = rnd.Rand16() & mask_;
output_block[out_idx] = output_ref_block[out_idx];
}
}
fwd_txfm_ref(input_block, trans_block, pitch_, &txfm_param_);
inv_txfm_ref(trans_block, output_ref_block, stride, &txfm_param_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(trans_block, output_block, stride));
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int out_idx = j * stride + k;
ASSERT_EQ(output_block[out_idx], output_ref_block[out_idx])
<< "Error: not bit-exact result at index: " << out_idx
<< " j = " << j << " k = " << k << " at test block: " << i;
}
}
}
aom_free(input_block);
aom_free(trans_block);
aom_free(output_ref_block);
aom_free(output_block);
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
int16_t *input_extreme_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *output_ref_block = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
tran_low_t *output_block = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < num_coeffs_; ++j) input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < num_coeffs_; ++j) input_extreme_block[j] = -mask_;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, &txfm_param_);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(input_extreme_block, output_block, pitch_));
int row_length = FindRowLength();
// The minimum quant value is 4.
for (int j = 0; j < num_coeffs_; ++j) {
ASSERT_EQ(output_block[j], output_ref_block[j])
<< "Not bit-exact at test index: " << i << ", "
<< "j = " << j << std::endl;
EXPECT_GE(row_length * kDctMaxValue << (bit_depth_ - 8),
abs(output_block[j]))
<< "Error: NxN FDCT has coefficient larger than N*DCT_MAX_VALUE";
}
}
aom_free(input_extreme_block);
aom_free(output_ref_block);
aom_free(output_block);
}
void RunInvAccuracyCheck(int limit) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
int16_t *in = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *coeff = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(tran_low_t) * num_coeffs_));
uint8_t *dst = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
uint8_t *src = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
uint16_t *dst16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
uint16_t *src16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
}
}
fwd_txfm_ref(in, coeff, pitch_, &txfm_param_);
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_));
}
for (int j = 0; j < num_coeffs_; ++j) {
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
const uint32_t error = diff * diff;
ASSERT_GE(static_cast<uint32_t>(limit), error)
<< "Error: 4x4 IDCT has error " << error << " at index " << j;
}
}
aom_free(in);
aom_free(coeff);
aom_free(dst);
aom_free(src);
aom_free(src16);
aom_free(dst16);
}
int pitch_;
int height_;
FhtFunc fwd_txfm_ref;
IhtFunc inv_txfm_ref;
aom_bit_depth_t bit_depth_;
int mask_;
int num_coeffs_;
TxfmParam txfm_param_;
private:
// Assume transform size is 4x4, 8x8, 16x16,...
int FindRowLength() const {
int row = 4;
if (16 == num_coeffs_) {
row = 4;
} else if (64 == num_coeffs_) {
row = 8;
} else if (256 == num_coeffs_) {
row = 16;
} else if (1024 == num_coeffs_) {
row = 32;
}
return row;
}
};
} // namespace libaom_test
#endif // AOM_TEST_TRANSFORM_TEST_BASE_H_