| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom/aom_image.h" |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/txfm_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_util/aom_pthread.h" |
| #include "aom_util/aom_thread.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/cdef.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/restoration.h" |
| |
| // Set up nsync by width. |
| static INLINE int get_sync_range(int width) { |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| } |
| |
| static INLINE int get_lr_sync_range(int width) { |
| #if 0 |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| #else |
| (void)width; |
| return 1; |
| #endif |
| } |
| |
| // Allocate memory for lf row synchronization |
| void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, |
| int width, int num_workers) { |
| lf_sync->rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i, j; |
| |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], |
| aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); |
| if (lf_sync->mutex_[j]) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cond_[j], |
| aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); |
| if (lf_sync->cond_[j]) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&lf_sync->cond_[j][i], NULL); |
| } |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->job_mutex, |
| aom_malloc(sizeof(*(lf_sync->job_mutex)))); |
| if (lf_sync->job_mutex) { |
| pthread_mutex_init(lf_sync->job_mutex, NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, lf_sync->lfdata, |
| aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); |
| lf_sync->num_workers = num_workers; |
| |
| for (int j = 0; j < MAX_MB_PLANE; j++) { |
| CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], |
| aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); |
| } |
| CHECK_MEM_ERROR( |
| cm, lf_sync->job_queue, |
| aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); |
| // Set up nsync. |
| lf_sync->sync_range = get_sync_range(width); |
| } |
| |
| // Deallocate lf synchronization related mutex and data |
| void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { |
| if (lf_sync != NULL) { |
| int j; |
| #if CONFIG_MULTITHREAD |
| int i; |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| if (lf_sync->mutex_[j] != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_mutex_destroy(&lf_sync->mutex_[j][i]); |
| } |
| aom_free(lf_sync->mutex_[j]); |
| } |
| if (lf_sync->cond_[j] != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_cond_destroy(&lf_sync->cond_[j][i]); |
| } |
| aom_free(lf_sync->cond_[j]); |
| } |
| } |
| if (lf_sync->job_mutex != NULL) { |
| pthread_mutex_destroy(lf_sync->job_mutex); |
| aom_free(lf_sync->job_mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(lf_sync->lfdata); |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| aom_free(lf_sync->cur_sb_col[j]); |
| } |
| |
| aom_free(lf_sync->job_queue); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*lf_sync); |
| } |
| } |
| |
| void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync, |
| int num_workers) { |
| if (num_workers < 1) return; |
| #if CONFIG_MULTITHREAD |
| if (cdef_sync->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, cdef_sync->mutex_, |
| aom_malloc(sizeof(*(cdef_sync->mutex_)))); |
| if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); |
| } |
| #else |
| (void)cm; |
| (void)cdef_sync; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void av1_free_cdef_sync(AV1CdefSync *cdef_sync) { |
| if (cdef_sync == NULL) return; |
| #if CONFIG_MULTITHREAD |
| if (cdef_sync->mutex_ != NULL) { |
| pthread_mutex_destroy(cdef_sync->mutex_); |
| aom_free(cdef_sync->mutex_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync, |
| int row) { |
| if (!row) return; |
| #if CONFIG_MULTITHREAD |
| AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt; |
| pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_); |
| while (cdef_row_mt[row - 1].is_row_done != 1) |
| pthread_cond_wait(cdef_row_mt[row - 1].row_cond_, |
| cdef_row_mt[row - 1].row_mutex_); |
| cdef_row_mt[row - 1].is_row_done = 0; |
| pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_); |
| #else |
| (void)cdef_sync; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync, |
| int row) { |
| #if CONFIG_MULTITHREAD |
| AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt; |
| pthread_mutex_lock(cdef_row_mt[row].row_mutex_); |
| pthread_cond_signal(cdef_row_mt[row].row_cond_); |
| cdef_row_mt[row].is_row_done = 1; |
| pthread_mutex_unlock(cdef_row_mt[row].row_mutex_); |
| #else |
| (void)cdef_sync; |
| (void)row; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, |
| int plane) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { |
| pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, |
| const int sb_cols, int plane) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&lf_sync->mutex_[plane][r]); |
| |
| // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum |
| // column number. In this case, the AOMMAX operation here ensures that |
| // cur_sb_col[plane][r] is not overwritten with a smaller value thus |
| // preventing the infinite waiting of threads in the relevant sync_read() |
| // function. |
| lf_sync->cur_sb_col[plane][r] = AOMMAX(lf_sync->cur_sb_col[plane][r], cur); |
| |
| pthread_cond_broadcast(&lf_sync->cond_[plane][r]); |
| pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // One job of row loopfiltering. |
| void av1_thread_loop_filter_rows( |
| const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, |
| struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane, |
| int dir, int lpf_opt_level, AV1LfSync *const lf_sync, |
| struct aom_internal_error_info *error_info, |
| AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, |
| int num_mis_in_lpf_unit_height_log2) { |
| // TODO(aomedia:3276): Pass error_info to the low-level functions as required |
| // in future to handle error propagation. |
| (void)error_info; |
| const int sb_cols = |
| CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2); |
| const int r = mi_row >> num_mis_in_lpf_unit_height_log2; |
| int mi_col, c; |
| |
| const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y; |
| const int num_planes = joint_filter_chroma ? 2 : 1; |
| assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U)); |
| |
| if (dir == 0) { |
| for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) { |
| c = mi_col >> MAX_MIB_SIZE_LOG2; |
| |
| av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer, |
| mi_row, mi_col, plane, plane + num_planes); |
| if (lpf_opt_level) { |
| if (plane == AOM_PLANE_Y) { |
| av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row, |
| mi_col, params_buf, tx_buf, |
| num_mis_in_lpf_unit_height_log2); |
| } else { |
| av1_filter_block_plane_vert_opt_chroma( |
| cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane, |
| joint_filter_chroma, num_mis_in_lpf_unit_height_log2); |
| } |
| } else { |
| av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, |
| mi_col); |
| } |
| if (lf_sync != NULL) { |
| sync_write(lf_sync, r, c, sb_cols, plane); |
| } |
| } |
| } else if (dir == 1) { |
| for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) { |
| c = mi_col >> MAX_MIB_SIZE_LOG2; |
| |
| if (lf_sync != NULL) { |
| // Wait for vertical edge filtering of the top-right block to be |
| // completed |
| sync_read(lf_sync, r, c, plane); |
| |
| // Wait for vertical edge filtering of the right block to be completed |
| sync_read(lf_sync, r + 1, c, plane); |
| } |
| |
| #if CONFIG_MULTITHREAD |
| if (lf_sync && lf_sync->num_workers > 1) { |
| pthread_mutex_lock(lf_sync->job_mutex); |
| const bool lf_mt_exit = lf_sync->lf_mt_exit; |
| pthread_mutex_unlock(lf_sync->job_mutex); |
| // Exit in case any worker has encountered an error. |
| if (lf_mt_exit) return; |
| } |
| #endif |
| |
| av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer, |
| mi_row, mi_col, plane, plane + num_planes); |
| if (lpf_opt_level) { |
| if (plane == AOM_PLANE_Y) { |
| av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row, |
| mi_col, params_buf, tx_buf, |
| num_mis_in_lpf_unit_height_log2); |
| } else { |
| av1_filter_block_plane_horz_opt_chroma( |
| cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane, |
| joint_filter_chroma, num_mis_in_lpf_unit_height_log2); |
| } |
| } else { |
| av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, |
| mi_col); |
| } |
| } |
| } |
| } |
| |
| void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync, |
| int num_mis_in_lpf_unit_height_log2) { |
| int plane, sb_row; |
| const int sb_cols = |
| CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, num_mis_in_lpf_unit_height_log2); |
| const int sb_rows = |
| CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2); |
| |
| // In case of loopfilter row-multithreading, the worker on an SB row waits for |
| // the vertical edge filtering of the right and top-right SBs. Hence, in case |
| // a thread (main/worker) encounters an error, update that vertical |
| // loopfiltering of every SB row in the frame is complete in order to avoid |
| // dependent workers waiting indefinitely. |
| for (sb_row = 0; sb_row < sb_rows; ++sb_row) |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) |
| sync_write(lf_sync, sb_row, sb_cols - 1, sb_cols, plane); |
| } |
| |
| static AOM_INLINE void sync_lf_workers(AVxWorker *const workers, |
| AV1_COMMON *const cm, int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int had_error = workers[0].had_error; |
| struct aom_internal_error_info error_info; |
| |
| // Read the error_info of main thread. |
| if (had_error) { |
| AVxWorker *const worker = &workers[0]; |
| error_info = ((LFWorkerData *)worker->data2)->error_info; |
| } |
| |
| // Wait till all rows are finished. |
| for (int i = num_workers - 1; i > 0; --i) { |
| AVxWorker *const worker = &workers[i]; |
| if (!winterface->sync(worker)) { |
| had_error = 1; |
| error_info = ((LFWorkerData *)worker->data2)->error_info; |
| } |
| } |
| if (had_error) aom_internal_error_copy(cm->error, &error_info); |
| } |
| |
| // Row-based multi-threaded loopfilter hook |
| static int loop_filter_row_worker(void *arg1, void *arg2) { |
| AV1LfSync *const lf_sync = (AV1LfSync *)arg1; |
| LFWorkerData *const lf_data = (LFWorkerData *)arg2; |
| AV1LfMTInfo *cur_job_info; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *job_mutex_ = lf_sync->job_mutex; |
| #endif |
| |
| struct aom_internal_error_info *const error_info = &lf_data->error_info; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(error_info->jmp)) { |
| error_info->setjmp = 0; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(job_mutex_); |
| lf_sync->lf_mt_exit = true; |
| pthread_mutex_unlock(job_mutex_); |
| #endif |
| av1_set_vert_loop_filter_done(lf_data->cm, lf_sync, MAX_MIB_SIZE_LOG2); |
| return 0; |
| } |
| error_info->setjmp = 1; |
| |
| while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) { |
| const int lpf_opt_level = cur_job_info->lpf_opt_level; |
| av1_thread_loop_filter_rows( |
| lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd, |
| cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir, |
| lpf_opt_level, lf_sync, error_info, lf_data->params_buf, |
| lf_data->tx_buf, MAX_MIB_SIZE_LOG2); |
| } |
| error_info->setjmp = 0; |
| return 1; |
| } |
| |
| static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| const int planes_to_lf[MAX_MB_PLANE], |
| AVxWorker *workers, int num_workers, |
| AV1LfSync *lf_sync, int lpf_opt_level) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int i; |
| loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync, |
| lpf_opt_level, MAX_MIB_SIZE_LOG2); |
| |
| // Set up loopfilter thread data. |
| for (i = num_workers - 1; i >= 0; --i) { |
| AVxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| worker->hook = loop_filter_row_worker; |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| loop_filter_data_reset(lf_data, frame, cm, xd); |
| |
| // Start loopfiltering |
| worker->had_error = 0; |
| if (i == 0) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| sync_lf_workers(workers, cm, num_workers); |
| } |
| |
| static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| const int planes_to_lf[MAX_MB_PLANE], |
| int lpf_opt_level) { |
| // Filter top rows of all planes first, in case the output can be partially |
| // reconstructed row by row. |
| int mi_row, plane, dir; |
| |
| AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE]; |
| TX_SIZE tx_buf[MAX_MIB_SIZE]; |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) { |
| continue; |
| } |
| |
| for (dir = 0; dir < 2; ++dir) { |
| av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane, |
| dir, lpf_opt_level, /*lf_sync=*/NULL, |
| xd->error_info, params_buf, tx_buf, |
| MAX_MIB_SIZE_LOG2); |
| } |
| } |
| } |
| } |
| |
| void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane_start, int plane_end, |
| int partial_frame, AVxWorker *workers, |
| int num_workers, AV1LfSync *lf_sync, |
| int lpf_opt_level) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| int planes_to_lf[MAX_MB_PLANE]; |
| |
| if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start, |
| plane_end)) |
| return; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_params.mi_rows; |
| if (partial_frame && cm->mi_params.mi_rows > 8) { |
| start_mi_row = cm->mi_params.mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| av1_loop_filter_frame_init(cm, plane_start, plane_end); |
| |
| if (num_workers > 1) { |
| // Enqueue and execute loopfiltering jobs. |
| loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf, |
| workers, num_workers, lf_sync, lpf_opt_level); |
| } else { |
| // Directly filter in the main thread. |
| loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf, |
| lpf_opt_level); |
| } |
| } |
| |
| static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { |
| #if CONFIG_MULTITHREAD |
| AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; |
| const int nsync = loop_res_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { |
| pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lr_sync; |
| (void)r; |
| (void)c; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void lr_sync_write(void *const lr_sync, int r, int c, |
| const int sb_cols, int plane) { |
| #if CONFIG_MULTITHREAD |
| AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; |
| const int nsync = loop_res_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); |
| |
| // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum |
| // column number. In this case, the AOMMAX operation here ensures that |
| // cur_sb_col[plane][r] is not overwritten with a smaller value thus |
| // preventing the infinite waiting of threads in the relevant sync_read() |
| // function. |
| loop_res_sync->cur_sb_col[plane][r] = |
| AOMMAX(loop_res_sync->cur_sb_col[plane][r], cur); |
| |
| pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); |
| pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); |
| } |
| #else |
| (void)lr_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Allocate memory for loop restoration row synchronization |
| void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, |
| int num_workers, int num_rows_lr, |
| int num_planes, int width) { |
| lr_sync->rows = num_rows_lr; |
| lr_sync->num_planes = num_planes; |
| #if CONFIG_MULTITHREAD |
| { |
| int i, j; |
| |
| for (j = 0; j < num_planes; j++) { |
| CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], |
| aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); |
| if (lr_sync->mutex_[j]) { |
| for (i = 0; i < num_rows_lr; ++i) { |
| pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lr_sync->cond_[j], |
| aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); |
| if (lr_sync->cond_[j]) { |
| for (i = 0; i < num_rows_lr; ++i) { |
| pthread_cond_init(&lr_sync->cond_[j][i], NULL); |
| } |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lr_sync->job_mutex, |
| aom_malloc(sizeof(*(lr_sync->job_mutex)))); |
| if (lr_sync->job_mutex) { |
| pthread_mutex_init(lr_sync->job_mutex, NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, |
| aom_calloc(num_workers, sizeof(*(lr_sync->lrworkerdata)))); |
| lr_sync->num_workers = num_workers; |
| |
| for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { |
| if (worker_idx < num_workers - 1) { |
| CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, |
| (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); |
| CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, |
| aom_malloc(sizeof(RestorationLineBuffers))); |
| |
| } else { |
| lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; |
| lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; |
| } |
| } |
| |
| for (int j = 0; j < num_planes; j++) { |
| CHECK_MEM_ERROR( |
| cm, lr_sync->cur_sb_col[j], |
| aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); |
| } |
| CHECK_MEM_ERROR( |
| cm, lr_sync->job_queue, |
| aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); |
| // Set up nsync. |
| lr_sync->sync_range = get_lr_sync_range(width); |
| } |
| |
| // Deallocate loop restoration synchronization related mutex and data |
| void av1_loop_restoration_dealloc(AV1LrSync *lr_sync) { |
| if (lr_sync != NULL) { |
| int j; |
| #if CONFIG_MULTITHREAD |
| int i; |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| if (lr_sync->mutex_[j] != NULL) { |
| for (i = 0; i < lr_sync->rows; ++i) { |
| pthread_mutex_destroy(&lr_sync->mutex_[j][i]); |
| } |
| aom_free(lr_sync->mutex_[j]); |
| } |
| if (lr_sync->cond_[j] != NULL) { |
| for (i = 0; i < lr_sync->rows; ++i) { |
| pthread_cond_destroy(&lr_sync->cond_[j][i]); |
| } |
| aom_free(lr_sync->cond_[j]); |
| } |
| } |
| if (lr_sync->job_mutex != NULL) { |
| pthread_mutex_destroy(lr_sync->job_mutex); |
| aom_free(lr_sync->job_mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| aom_free(lr_sync->cur_sb_col[j]); |
| } |
| |
| aom_free(lr_sync->job_queue); |
| |
| if (lr_sync->lrworkerdata) { |
| for (int worker_idx = 0; worker_idx < lr_sync->num_workers - 1; |
| worker_idx++) { |
| LRWorkerData *const workerdata_data = |
| lr_sync->lrworkerdata + worker_idx; |
| |
| aom_free(workerdata_data->rst_tmpbuf); |
| aom_free(workerdata_data->rlbs); |
| } |
| aom_free(lr_sync->lrworkerdata); |
| } |
| |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*lr_sync); |
| } |
| } |
| |
| static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, |
| AV1_COMMON *cm) { |
| FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
| |
| const int num_planes = av1_num_planes(cm); |
| AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; |
| int32_t lr_job_counter[2], num_even_lr_jobs = 0; |
| lr_sync->jobs_enqueued = 0; |
| lr_sync->jobs_dequeued = 0; |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| num_even_lr_jobs = |
| num_even_lr_jobs + ((ctxt[plane].rsi->vert_units + 1) >> 1); |
| } |
| lr_job_counter[0] = 0; |
| lr_job_counter[1] = num_even_lr_jobs; |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| const int is_uv = plane > 0; |
| const int ss_y = is_uv && cm->seq_params->subsampling_y; |
| const int unit_size = ctxt[plane].rsi->restoration_unit_size; |
| const int plane_h = ctxt[plane].plane_h; |
| const int ext_size = unit_size * 3 / 2; |
| |
| int y0 = 0, i = 0; |
| while (y0 < plane_h) { |
| int remaining_h = plane_h - y0; |
| int h = (remaining_h < ext_size) ? remaining_h : unit_size; |
| |
| RestorationTileLimits limits; |
| limits.v_start = y0; |
| limits.v_end = y0 + h; |
| assert(limits.v_end <= plane_h); |
| // Offset upwards to align with the restoration processing stripe |
| const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; |
| limits.v_start = AOMMAX(0, limits.v_start - voffset); |
| if (limits.v_end < plane_h) limits.v_end -= voffset; |
| |
| assert(lr_job_counter[0] <= num_even_lr_jobs); |
| |
| lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; |
| lr_job_queue[lr_job_counter[i & 1]].plane = plane; |
| lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; |
| lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; |
| lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; |
| if ((i & 1) == 0) { |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_start = |
| limits.v_start + RESTORATION_BORDER; |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_end = |
| limits.v_end - RESTORATION_BORDER; |
| if (i == 0) { |
| assert(limits.v_start == 0); |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_start = 0; |
| } |
| if (i == (ctxt[plane].rsi->vert_units - 1)) { |
| assert(limits.v_end == plane_h); |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_end = plane_h; |
| } |
| } else { |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_start = |
| AOMMAX(limits.v_start - RESTORATION_BORDER, 0); |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_end = |
| AOMMIN(limits.v_end + RESTORATION_BORDER, plane_h); |
| } |
| lr_job_counter[i & 1]++; |
| lr_sync->jobs_enqueued++; |
| |
| y0 += h; |
| ++i; |
| } |
| } |
| } |
| |
| static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { |
| AV1LrMTInfo *cur_job_info = NULL; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(lr_sync->job_mutex); |
| |
| if (!lr_sync->lr_mt_exit && lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { |
| cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; |
| lr_sync->jobs_dequeued++; |
| } |
| |
| pthread_mutex_unlock(lr_sync->job_mutex); |
| #else |
| (void)lr_sync; |
| #endif |
| |
| return cur_job_info; |
| } |
| |
| static void set_loop_restoration_done(AV1LrSync *const lr_sync, |
| FilterFrameCtxt *const ctxt) { |
| for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| if (ctxt[plane].rsi->frame_restoration_type == RESTORE_NONE) continue; |
| int y0 = 0, row_number = 0; |
| const int unit_size = ctxt[plane].rsi->restoration_unit_size; |
| const int plane_h = ctxt[plane].plane_h; |
| const int ext_size = unit_size * 3 / 2; |
| const int hnum_rest_units = ctxt[plane].rsi->horz_units; |
| while (y0 < plane_h) { |
| const int remaining_h = plane_h - y0; |
| const int h = (remaining_h < ext_size) ? remaining_h : unit_size; |
| lr_sync_write(lr_sync, row_number, hnum_rest_units - 1, hnum_rest_units, |
| plane); |
| y0 += h; |
| ++row_number; |
| } |
| } |
| } |
| |
| // Implement row loop restoration for each thread. |
| static int loop_restoration_row_worker(void *arg1, void *arg2) { |
| AV1LrSync *const lr_sync = (AV1LrSync *)arg1; |
| LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; |
| AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; |
| FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
| int lr_unit_row; |
| int plane; |
| int plane_w; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *job_mutex_ = lr_sync->job_mutex; |
| #endif |
| struct aom_internal_error_info *const error_info = &lrworkerdata->error_info; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(error_info->jmp)) { |
| error_info->setjmp = 0; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(job_mutex_); |
| lr_sync->lr_mt_exit = true; |
| pthread_mutex_unlock(job_mutex_); |
| #endif |
| // In case of loop restoration multithreading, the worker on an even lr |
| // block row waits for the completion of the filtering of the top-right and |
| // bottom-right blocks. Hence, in case a thread (main/worker) encounters an |
| // error, update that filtering of every row in the frame is complete in |
| // order to avoid the dependent workers from waiting indefinitely. |
| set_loop_restoration_done(lr_sync, lr_ctxt->ctxt); |
| return 0; |
| } |
| error_info->setjmp = 1; |
| |
| typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, |
| YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, |
| int vstart, int vend); |
| static const copy_fun copy_funs[MAX_MB_PLANE] = { |
| aom_yv12_partial_coloc_copy_y, aom_yv12_partial_coloc_copy_u, |
| aom_yv12_partial_coloc_copy_v |
| }; |
| |
| while (1) { |
| AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); |
| if (cur_job_info != NULL) { |
| RestorationTileLimits limits; |
| sync_read_fn_t on_sync_read; |
| sync_write_fn_t on_sync_write; |
| limits.v_start = cur_job_info->v_start; |
| limits.v_end = cur_job_info->v_end; |
| lr_unit_row = cur_job_info->lr_unit_row; |
| plane = cur_job_info->plane; |
| plane_w = ctxt[plane].plane_w; |
| |
| // sync_mode == 1 implies only sync read is required in LR Multi-threading |
| // sync_mode == 0 implies only sync write is required. |
| on_sync_read = |
| cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; |
| on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write |
| : av1_lr_sync_write_dummy; |
| |
| av1_foreach_rest_unit_in_row( |
| &limits, plane_w, lr_ctxt->on_rest_unit, lr_unit_row, |
| ctxt[plane].rsi->restoration_unit_size, ctxt[plane].rsi->horz_units, |
| ctxt[plane].rsi->vert_units, plane, &ctxt[plane], |
| lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, |
| on_sync_write, lr_sync, error_info); |
| |
| copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, 0, plane_w, |
| cur_job_info->v_copy_start, cur_job_info->v_copy_end); |
| |
| if (lrworkerdata->do_extend_border) { |
| aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane, |
| cur_job_info->v_copy_start, |
| cur_job_info->v_copy_end); |
| } |
| } else { |
| break; |
| } |
| } |
| error_info->setjmp = 0; |
| return 1; |
| } |
| |
| static AOM_INLINE void sync_lr_workers(AVxWorker *const workers, |
| AV1_COMMON *const cm, int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int had_error = workers[0].had_error; |
| struct aom_internal_error_info error_info; |
| |
| // Read the error_info of main thread. |
| if (had_error) { |
| AVxWorker *const worker = &workers[0]; |
| error_info = ((LRWorkerData *)worker->data2)->error_info; |
| } |
| |
| // Wait till all rows are finished. |
| for (int i = num_workers - 1; i > 0; --i) { |
| AVxWorker *const worker = &workers[i]; |
| if (!winterface->sync(worker)) { |
| had_error = 1; |
| error_info = ((LRWorkerData *)worker->data2)->error_info; |
| } |
| } |
| if (had_error) aom_internal_error_copy(cm->error, &error_info); |
| } |
| |
| static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, |
| AVxWorker *workers, int num_workers, |
| AV1LrSync *lr_sync, AV1_COMMON *cm, |
| int do_extend_border) { |
| FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
| |
| const int num_planes = av1_num_planes(cm); |
| |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int num_rows_lr = 0; |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| |
| const int plane_h = ctxt[plane].plane_h; |
| const int unit_size = cm->rst_info[plane].restoration_unit_size; |
| |
| num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units(unit_size, plane_h)); |
| } |
| |
| int i; |
| assert(MAX_MB_PLANE == 3); |
| |
| if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows || |
| num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) { |
| av1_loop_restoration_dealloc(lr_sync); |
| av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, |
| num_planes, cm->width); |
| } |
| lr_sync->lr_mt_exit = false; |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| for (i = 0; i < num_planes; i++) { |
| memset(lr_sync->cur_sb_col[i], -1, |
| sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); |
| } |
| |
| enqueue_lr_jobs(lr_sync, lr_ctxt, cm); |
| |
| // Set up looprestoration thread data. |
| for (i = num_workers - 1; i >= 0; --i) { |
| AVxWorker *const worker = &workers[i]; |
| lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; |
| lr_sync->lrworkerdata[i].do_extend_border = do_extend_border; |
| worker->hook = loop_restoration_row_worker; |
| worker->data1 = lr_sync; |
| worker->data2 = &lr_sync->lrworkerdata[i]; |
| |
| // Start loop restoration |
| worker->had_error = 0; |
| if (i == 0) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| sync_lr_workers(workers, cm, num_workers); |
| } |
| |
| void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, |
| AV1_COMMON *cm, int optimized_lr, |
| AVxWorker *workers, int num_workers, |
| AV1LrSync *lr_sync, void *lr_ctxt, |
| int do_extend_border) { |
| assert(!cm->features.all_lossless); |
| |
| const int num_planes = av1_num_planes(cm); |
| |
| AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; |
| |
| av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, |
| optimized_lr, num_planes); |
| |
| foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, |
| cm, do_extend_border); |
| } |
| |
| // Initializes cdef_sync parameters. |
| static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *const cdef_sync) { |
| cdef_sync->end_of_frame = 0; |
| cdef_sync->fbr = 0; |
| cdef_sync->fbc = 0; |
| cdef_sync->cdef_mt_exit = false; |
| } |
| |
| static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &workers[i]; |
| worker->had_error = 0; |
| if (i == 0) |
| winterface->execute(worker); |
| else |
| winterface->launch(worker); |
| } |
| } |
| |
| static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers, |
| AV1_COMMON *const cm, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int had_error = workers[0].had_error; |
| struct aom_internal_error_info error_info; |
| |
| // Read the error_info of main thread. |
| if (had_error) { |
| AVxWorker *const worker = &workers[0]; |
| error_info = ((AV1CdefWorkerData *)worker->data2)->error_info; |
| } |
| |
| // Wait till all rows are finished. |
| for (int i = num_workers - 1; i > 0; --i) { |
| AVxWorker *const worker = &workers[i]; |
| if (!winterface->sync(worker)) { |
| had_error = 1; |
| error_info = ((AV1CdefWorkerData *)worker->data2)->error_info; |
| } |
| } |
| if (had_error) aom_internal_error_copy(cm->error, &error_info); |
| } |
| |
| // Updates the row index of the next job to be processed. |
| // Also updates end_of_frame flag when the processing of all rows is complete. |
| static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync, |
| const int nvfb) { |
| cdef_sync->fbr++; |
| if (cdef_sync->fbr == nvfb) { |
| cdef_sync->end_of_frame = 1; |
| } |
| } |
| |
| // Checks if a job is available. If job is available, |
| // populates next job information and returns 1, else returns 0. |
| static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *const cdef_sync, |
| volatile int *cur_fbr, |
| const int nvfb) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(cdef_sync->mutex_); |
| #endif // CONFIG_MULTITHREAD |
| int do_next_row = 0; |
| // Populates information needed for current job and update the row |
| // index of the next row to be processed. |
| if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) { |
| do_next_row = 1; |
| *cur_fbr = cdef_sync->fbr; |
| update_cdef_row_next_job_info(cdef_sync, nvfb); |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(cdef_sync->mutex_); |
| #endif // CONFIG_MULTITHREAD |
| return do_next_row; |
| } |
| |
| static void set_cdef_init_fb_row_done(AV1CdefSync *const cdef_sync, int nvfb) { |
| for (int fbr = 0; fbr < nvfb; fbr++) cdef_row_mt_sync_write(cdef_sync, fbr); |
| } |
| |
| // Hook function for each thread in CDEF multi-threading. |
| static int cdef_sb_row_worker_hook(void *arg1, void *arg2) { |
| AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1; |
| AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2; |
| AV1_COMMON *cm = cdef_worker->cm; |
| const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *job_mutex_ = cdef_sync->mutex_; |
| #endif |
| struct aom_internal_error_info *const error_info = &cdef_worker->error_info; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(error_info->jmp)) { |
| error_info->setjmp = 0; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(job_mutex_); |
| cdef_sync->cdef_mt_exit = true; |
| pthread_mutex_unlock(job_mutex_); |
| #endif |
| // In case of cdef row-multithreading, the worker on a filter block row |
| // (fbr) waits for the line buffers (top and bottom) copy of the above row. |
| // Hence, in case a thread (main/worker) encounters an error before copying |
| // of the line buffers, update that line buffer copy is complete in order to |
| // avoid dependent workers waiting indefinitely. |
| set_cdef_init_fb_row_done(cdef_sync, nvfb); |
| return 0; |
| } |
| error_info->setjmp = 1; |
| |
| volatile int cur_fbr; |
| const int num_planes = av1_num_planes(cm); |
| while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) { |
| MACROBLOCKD *xd = cdef_worker->xd; |
| av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf, |
| cdef_worker->srcbuf, cur_fbr, |
| cdef_worker->cdef_init_fb_row_fn, cdef_sync, error_info); |
| if (cdef_worker->do_extend_border) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf; |
| const int is_uv = plane > 0; |
| const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; |
| const int unit_height = MI_SIZE_64X64 << mi_high; |
| const int v_start = cur_fbr * unit_height; |
| const int v_end = |
| AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]); |
| aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end); |
| } |
| } |
| } |
| error_info->setjmp = 0; |
| return 1; |
| } |
| |
| // Assigns CDEF hook function and thread data to each worker. |
| static void prepare_cdef_frame_workers( |
| AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker, |
| AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync, |
| int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, |
| int do_extend_border) { |
| const int num_planes = av1_num_planes(cm); |
| |
| cdef_worker[0].srcbuf = cm->cdef_info.srcbuf; |
| for (int plane = 0; plane < num_planes; plane++) |
| cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane]; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &workers[i]; |
| cdef_worker[i].cm = cm; |
| cdef_worker[i].xd = xd; |
| cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn; |
| cdef_worker[i].do_extend_border = do_extend_border; |
| for (int plane = 0; plane < num_planes; plane++) |
| cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane]; |
| |
| worker->hook = hook; |
| worker->data1 = cdef_sync; |
| worker->data2 = &cdef_worker[i]; |
| } |
| } |
| |
| // Initializes row-level parameters for CDEF frame. |
| void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| CdefBlockInfo *const fb_info, |
| uint16_t **const linebuf, uint16_t *const src, |
| struct AV1CdefSyncData *const cdef_sync, int fbr) { |
| const int num_planes = av1_num_planes(cm); |
| const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; |
| const int luma_stride = |
| ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4); |
| |
| // for the current filter block, it's top left corner mi structure (mi_tl) |
| // is first accessed to check whether the top and left boundaries are |
| // frame boundaries. Then bottom-left and top-right mi structures are |
| // accessed to check whether the bottom and right boundaries |
| // (respectively) are frame boundaries. |
| // |
| // Note that we can't just check the bottom-right mi structure - eg. if |
| // we're at the right-hand edge of the frame but not the bottom, then |
| // the bottom-right mi is NULL but the bottom-left is not. |
| fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0; |
| if (fbr != nvfb - 1) |
| fb_info->frame_boundary[BOTTOM] = |
| (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0; |
| else |
| fb_info->frame_boundary[BOTTOM] = 1; |
| |
| fb_info->src = src; |
| fb_info->damping = cm->cdef_info.cdef_damping; |
| fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0); |
| av1_zero(fb_info->dir); |
| av1_zero(fb_info->var); |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| const int stride = luma_stride >> xd->plane[plane].subsampling_x; |
| uint16_t *top_linebuf = &linebuf[plane][0]; |
| uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride]; |
| { |
| const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; |
| const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; |
| const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; |
| |
| if (fbr != nvfb - 1) // if (fbr != 0) // top line buffer copy |
| av1_cdef_copy_sb8_16( |
| cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride, |
| xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0, |
| xd->plane[plane].dst.stride, CDEF_VBORDER, stride); |
| if (fbr != nvfb - 1) // bottom line buffer copy |
| av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride], |
| stride, xd->plane[plane].dst.buf, bot_offset, 0, |
| xd->plane[plane].dst.stride, CDEF_VBORDER, stride); |
| } |
| |
| fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride]; |
| fb_info->bot_linebuf[plane] = |
| &linebuf[plane] |
| [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)]; |
| } |
| |
| cdef_row_mt_sync_write(cdef_sync, fbr); |
| cdef_row_mt_sync_read(cdef_sync, fbr); |
| } |
| |
| // Implements multi-threading for CDEF. |
| // Perform CDEF on input frame. |
| // Inputs: |
| // frame: Pointer to input frame buffer. |
| // cm: Pointer to common structure. |
| // xd: Pointer to common current coding block structure. |
| // Returns: |
| // Nothing will be returned. |
| void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| AV1CdefWorkerData *const cdef_worker, |
| AVxWorker *const workers, AV1CdefSync *const cdef_sync, |
| int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, |
| int do_extend_border) { |
| YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf; |
| const int num_planes = av1_num_planes(cm); |
| |
| av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0, |
| num_planes); |
| |
| reset_cdef_job_info(cdef_sync); |
| prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook, |
| workers, cdef_sync, num_workers, |
| cdef_init_fb_row_fn, do_extend_border); |
| launch_cdef_workers(workers, num_workers); |
| sync_cdef_workers(workers, cm, num_workers); |
| } |
| |
| int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) { |
| // No additional top-right delay when intraBC tool is not enabled. |
| if (!av1_allow_intrabc(cm)) return 0; |
| // Due to the hardware constraints on processing the intraBC tool with row |
| // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5 |
| // superblocks of size 64x64 is mandated. However, a minimum top-right delay |
| // of 1 superblock is assured with 'sync_range'. Hence return only the |
| // additional superblock delay when the intraBC tool is enabled. |
| return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4; |
| } |