blob: 4cf7b5b9b7edfc1f1547a5018658ada1a07cd189 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_BLOCKD_H_
#define AV1_COMMON_BLOCKD_H_
#include "./aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_scale/yv12config.h"
#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#if CONFIG_PVQ
#include "av1/common/pvq.h"
#include "av1/common/pvq_state.h"
#include "av1/decoder/decint.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define SUB8X8_COMP_REF 1
#define MAX_MB_PLANE 3
#if CONFIG_EXT_INTER
// Should we try rectangular interintra predictions?
#define USE_RECT_INTERINTRA 1
#if CONFIG_COMPOUND_SEGMENT
// Set COMPOUND_SEGMENT_TYPE to one of the three
// 0: Uniform
// 1: Difference weighted
#define COMPOUND_SEGMENT_TYPE 1
#if COMPOUND_SEGMENT_TYPE == 0
#define MAX_SEG_MASK_BITS 1
// SEG_MASK_TYPES should not surpass 1 << MAX_SEG_MASK_BITS
typedef enum {
UNIFORM_45 = 0,
UNIFORM_45_INV,
SEG_MASK_TYPES,
} SEG_MASK_TYPE;
#elif COMPOUND_SEGMENT_TYPE == 1
#define MAX_SEG_MASK_BITS 1
// SEG_MASK_TYPES should not surpass 1 << MAX_SEG_MASK_BITS
typedef enum {
DIFFWTD_42 = 0,
DIFFWTD_42_INV,
SEG_MASK_TYPES,
} SEG_MASK_TYPE;
#endif // COMPOUND_SEGMENT_TYPE
#endif // CONFIG_COMPOUND_SEGMENT
#endif // CONFIG_EXT_INTER
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1,
FRAME_TYPES,
} FRAME_TYPE;
static INLINE int is_inter_mode(PREDICTION_MODE mode) {
#if CONFIG_EXT_INTER
return mode >= NEARESTMV && mode <= NEW_NEWMV;
#else
return mode >= NEARESTMV && mode <= NEWMV;
#endif // CONFIG_EXT_INTER
}
#if CONFIG_PVQ
typedef struct PVQ_INFO {
int theta[PVQ_MAX_PARTITIONS];
int max_theta[PVQ_MAX_PARTITIONS];
int qg[PVQ_MAX_PARTITIONS];
int k[PVQ_MAX_PARTITIONS];
od_coeff y[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
int nb_bands;
int off[PVQ_MAX_PARTITIONS];
int size[PVQ_MAX_PARTITIONS];
int skip_rest;
int skip_dir;
int bs; // log of the block size minus two,
// i.e. equivalent to aom's TX_SIZE
// Block skip info, indicating whether DC/AC, is coded.
PVQ_SKIP_TYPE ac_dc_coded; // bit0: DC coded, bit1 : AC coded (1 means coded)
tran_low_t dq_dc_residue;
} PVQ_INFO;
typedef struct PVQ_QUEUE {
PVQ_INFO *buf; // buffer for pvq info, stored in encoding order
int curr_pos; // curr position to write PVQ_INFO
int buf_len; // allocated buffer length
int last_pos; // last written position of PVQ_INFO in a tile
} PVQ_QUEUE;
#endif
typedef struct {
uint8_t *plane[MAX_MB_PLANE];
int stride[MAX_MB_PLANE];
} BUFFER_SET;
#if CONFIG_EXT_INTER
static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWFROMNEARMV;
}
static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
return mode >= NEAREST_NEARESTMV && mode <= NEW_NEWMV;
}
static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
static PREDICTION_MODE lut[MB_MODE_COUNT] = {
MB_MODE_COUNT, // DC_PRED
MB_MODE_COUNT, // V_PRED
MB_MODE_COUNT, // H_PRED
MB_MODE_COUNT, // D45_PRED
MB_MODE_COUNT, // D135_PRED
MB_MODE_COUNT, // D117_PRED
MB_MODE_COUNT, // D153_PRED
MB_MODE_COUNT, // D207_PRED
MB_MODE_COUNT, // D63_PRED
#if CONFIG_ALT_INTRA
MB_MODE_COUNT, // SMOOTH_PRED
#endif // CONFIG_ALT_INTRA
MB_MODE_COUNT, // TM_PRED
MB_MODE_COUNT, // NEARESTMV
MB_MODE_COUNT, // NEARMV
MB_MODE_COUNT, // ZEROMV
MB_MODE_COUNT, // NEWMV
MB_MODE_COUNT, // NEWFROMNEARMV
NEARESTMV, // NEAREST_NEARESTMV
NEARESTMV, // NEAREST_NEARMV
NEARMV, // NEAR_NEARESTMV
NEARMV, // NEAR_NEARMV
NEARESTMV, // NEAREST_NEWMV
NEWMV, // NEW_NEARESTMV
NEARMV, // NEAR_NEWMV
NEWMV, // NEW_NEARMV
ZEROMV, // ZERO_ZEROMV
NEWMV, // NEW_NEWMV
};
assert(is_inter_compound_mode(mode));
return lut[mode];
}
static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
static PREDICTION_MODE lut[MB_MODE_COUNT] = {
MB_MODE_COUNT, // DC_PRED
MB_MODE_COUNT, // V_PRED
MB_MODE_COUNT, // H_PRED
MB_MODE_COUNT, // D45_PRED
MB_MODE_COUNT, // D135_PRED
MB_MODE_COUNT, // D117_PRED
MB_MODE_COUNT, // D153_PRED
MB_MODE_COUNT, // D207_PRED
MB_MODE_COUNT, // D63_PRED
#if CONFIG_ALT_INTRA
MB_MODE_COUNT, // SMOOTH_PRED
#endif // CONFIG_ALT_INTRA
MB_MODE_COUNT, // TM_PRED
MB_MODE_COUNT, // NEARESTMV
MB_MODE_COUNT, // NEARMV
MB_MODE_COUNT, // ZEROMV
MB_MODE_COUNT, // NEWMV
MB_MODE_COUNT, // NEWFROMNEARMV
NEARESTMV, // NEAREST_NEARESTMV
NEARMV, // NEAREST_NEARMV
NEARESTMV, // NEAR_NEARESTMV
NEARMV, // NEAR_NEARMV
NEWMV, // NEAREST_NEWMV
NEARESTMV, // NEW_NEARESTMV
NEWMV, // NEAR_NEWMV
NEARMV, // NEW_NEARMV
ZEROMV, // ZERO_ZEROMV
NEWMV, // NEW_NEWMV
};
assert(is_inter_compound_mode(mode));
return lut[mode];
}
static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
return (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV ||
mode == NEAREST_NEWMV || mode == NEW_NEARESTMV ||
mode == NEAR_NEWMV || mode == NEW_NEARMV);
}
static INLINE int use_masked_motion_search(COMPOUND_TYPE type) {
return (type == COMPOUND_WEDGE);
}
static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
#if CONFIG_COMPOUND_SEGMENT
return (type == COMPOUND_WEDGE || type == COMPOUND_SEG);
#else
return (type == COMPOUND_WEDGE);
#endif // CONFIG_COMPOUND_SEGMENT
}
#else
static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
return (mode == NEWMV);
}
#endif // CONFIG_EXT_INTER
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
typedef struct {
PREDICTION_MODE as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
#if CONFIG_REF_MV
int_mv pred_mv[2];
#endif
#if CONFIG_EXT_INTER
int_mv ref_mv[2];
#endif // CONFIG_EXT_INTER
} b_mode_info;
typedef int8_t MV_REFERENCE_FRAME;
#if CONFIG_PALETTE
typedef struct {
// Number of base colors for Y (0) and UV (1)
uint8_t palette_size[2];
// Value of base colors for Y, U, and V
#if CONFIG_AOM_HIGHBITDEPTH
uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
#else
uint8_t palette_colors[3 * PALETTE_MAX_SIZE];
#endif // CONFIG_AOM_HIGHBITDEPTH
// Only used by encoder to store the color index of the top left pixel.
// TODO(huisu): move this to encoder
uint8_t palette_first_color_idx[2];
} PALETTE_MODE_INFO;
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
#define USE_3TAP_INTRA_FILTER 1 // 0: 4-tap; 1: 3-tap
typedef struct {
// 1: an ext intra mode is used; 0: otherwise.
uint8_t use_filter_intra_mode[PLANE_TYPES];
FILTER_INTRA_MODE filter_intra_mode[PLANE_TYPES];
} FILTER_INTRA_MODE_INFO;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_VAR_TX
#if CONFIG_RD_DEBUG
#define TXB_COEFF_COST_MAP_SIZE (2 * MAX_MIB_SIZE)
#endif
#endif
// TODO(angiebird): Merge RD_COST and RD_STATS
typedef struct RD_STATS {
int rate;
int64_t dist;
int64_t sse;
int skip;
#if CONFIG_RD_DEBUG
int txb_coeff_cost[MAX_MB_PLANE];
#if CONFIG_VAR_TX
int txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
[TXB_COEFF_COST_MAP_SIZE];
#endif // CONFIG_VAR_TX
#endif // CONFIG_RD_DEBUG
} RD_STATS;
#if CONFIG_EXT_INTER
typedef struct {
COMPOUND_TYPE type;
int wedge_index;
int wedge_sign;
#if CONFIG_COMPOUND_SEGMENT
SEG_MASK_TYPE mask_type;
DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
#endif // CONFIG_COMPOUND_SEGMENT
} INTERINTER_COMPOUND_DATA;
#endif // CONFIG_EXT_INTER
// This structure now relates to 8x8 block regions.
typedef struct {
// Common for both INTER and INTRA blocks
BLOCK_SIZE sb_type;
PREDICTION_MODE mode;
TX_SIZE tx_size;
#if CONFIG_VAR_TX
// TODO(jingning): This effectively assigned a separate entry for each
// 8x8 block. Apparently it takes much more space than needed.
TX_SIZE inter_tx_size[MAX_MIB_SIZE][MAX_MIB_SIZE];
TX_SIZE min_tx_size;
#endif
int8_t skip;
int8_t segment_id;
#if CONFIG_SUPERTX
// Minimum of all segment IDs under the current supertx block.
int8_t segment_id_supertx;
#endif // CONFIG_SUPERTX
int8_t seg_id_predicted; // valid only when temporal_update is enabled
// Only for INTRA blocks
PREDICTION_MODE uv_mode;
#if CONFIG_PALETTE
PALETTE_MODE_INFO palette_mode_info;
#endif // CONFIG_PALETTE
// Only for INTER blocks
#if CONFIG_DUAL_FILTER
InterpFilter interp_filter[4];
#else
InterpFilter interp_filter;
#endif
MV_REFERENCE_FRAME ref_frame[2];
TX_TYPE tx_type;
#if CONFIG_FILTER_INTRA
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
// The actual prediction angle is the base angle + (angle_delta * step).
int8_t angle_delta[2];
#if CONFIG_INTRA_INTERP
// To-Do (huisu): this may be replaced by interp_filter
INTRA_FILTER intra_filter;
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_EXT_INTER
INTERINTRA_MODE interintra_mode;
// TODO(debargha): Consolidate these flags
int use_wedge_interintra;
int interintra_wedge_index;
int interintra_wedge_sign;
INTERINTER_COMPOUND_DATA interinter_compound_data;
#endif // CONFIG_EXT_INTER
MOTION_MODE motion_mode;
#if CONFIG_MOTION_VAR
int overlappable_neighbors[2];
#endif // CONFIG_MOTION_VAR
int_mv mv[2];
int_mv pred_mv[2];
#if CONFIG_REF_MV
uint8_t ref_mv_idx;
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition;
#endif
#if CONFIG_NEW_QUANT
int dq_off_index;
int send_dq_bit;
#endif // CONFIG_NEW_QUANT
/* deringing gain *per-superblock* */
int8_t dering_gain;
int8_t clpf_strength;
#if CONFIG_DELTA_Q
int current_q_index;
#endif
#if CONFIG_RD_DEBUG
RD_STATS rd_stats;
int mi_row;
int mi_col;
#endif
#if CONFIG_WARPED_MOTION
int num_proj_ref[2];
WarpedMotionParams wm_params[2];
#endif // CONFIG_WARPED_MOTION
BOUNDARY_TYPE boundary_info;
} MB_MODE_INFO;
typedef struct MODE_INFO {
MB_MODE_INFO mbmi;
b_mode_info bmi[4];
} MODE_INFO;
static INLINE PREDICTION_MODE get_y_mode(const MODE_INFO *mi, int block) {
#if CONFIG_CB4X4
(void)block;
return mi->mbmi.mode;
#else
return mi->mbmi.sb_type < BLOCK_8X8 ? mi->bmi[block].as_mode : mi->mbmi.mode;
#endif
}
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[1] > INTRA_FRAME;
}
PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *left_mi, int b);
PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *above_mi, int b);
#if CONFIG_GLOBAL_MOTION
static INLINE int is_global_mv_block(const MODE_INFO *mi, int block,
TransformationType type) {
PREDICTION_MODE mode = get_y_mode(mi, block);
#if GLOBAL_SUB8X8_USED
const int block_size_allowed = 1;
#else
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int block_size_allowed = (bsize >= BLOCK_8X8);
#endif // GLOBAL_SUB8X8_USED
#if CONFIG_EXT_INTER
return (mode == ZEROMV || mode == ZERO_ZEROMV) && type > TRANSLATION &&
block_size_allowed;
#else
return mode == ZEROMV && type > TRANSLATION && block_size_allowed;
#endif // CONFIG_EXT_INTER
}
#endif // CONFIG_GLOBAL_MOTION
enum mv_precision { MV_PRECISION_Q3, MV_PRECISION_Q4 };
struct buf_2d {
uint8_t *buf;
uint8_t *buf0;
int width;
int height;
int stride;
};
typedef struct macroblockd_plane {
tran_low_t *dqcoeff;
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
ENTROPY_CONTEXT *above_context;
ENTROPY_CONTEXT *left_context;
int16_t seg_dequant[MAX_SEGMENTS][2];
#if CONFIG_NEW_QUANT
dequant_val_type_nuq seg_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES]
[COEF_BANDS];
#endif
#if CONFIG_PALETTE
uint8_t *color_index_map;
#endif // CONFIG_PALETTE
// number of 4x4s in current block
uint16_t n4_w, n4_h;
// log2 of n4_w, n4_h
uint8_t n4_wl, n4_hl;
// block size in pixels
uint8_t width, height;
#if CONFIG_AOM_QM
const qm_val_t *seg_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
#endif
// encoder
const int16_t *dequant;
#if CONFIG_NEW_QUANT
const dequant_val_type_nuq *dequant_val_nuq[QUANT_PROFILES];
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
const qm_val_t *seg_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
#endif
#if CONFIG_PVQ || CONFIG_DAALA_DIST
DECLARE_ALIGNED(16, int16_t, pred[MAX_SB_SQUARE]);
// PVQ: forward transformed predicted image, a reference for PVQ.
tran_low_t *pvq_ref_coeff;
#endif
} MACROBLOCKD_PLANE;
#define BLOCK_OFFSET(x, i) \
((x) + (i) * (1 << (tx_size_wide_log2[0] + tx_size_high_log2[0])))
typedef struct RefBuffer {
// TODO(dkovalev): idx is not really required and should be removed, now it
// is used in av1_onyxd_if.c
int idx;
YV12_BUFFER_CONFIG *buf;
struct scale_factors sf;
} RefBuffer;
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
uint8_t bmode_blocks_wl;
uint8_t bmode_blocks_hl;
FRAME_COUNTS *counts;
TileInfo tile;
int mi_stride;
MODE_INFO **mi;
MODE_INFO *left_mi;
MODE_INFO *above_mi;
MB_MODE_INFO *left_mbmi;
MB_MODE_INFO *above_mbmi;
int up_available;
int left_available;
const aom_prob (*partition_probs)[PARTITION_TYPES - 1];
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
FRAME_CONTEXT *fc;
/* pointers to reference frames */
const RefBuffer *block_refs[2];
/* pointer to current frame */
const YV12_BUFFER_CONFIG *cur_buf;
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
ENTROPY_CONTEXT left_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE];
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT left_seg_context[MAX_MIB_SIZE];
#if CONFIG_VAR_TX
TXFM_CONTEXT *above_txfm_context;
TXFM_CONTEXT *left_txfm_context;
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
TX_SIZE max_tx_size;
#if CONFIG_SUPERTX
TX_SIZE supertx_size;
#endif
#endif
// block dimension in the unit of mode_info.
uint8_t n8_w, n8_h;
#if CONFIG_REF_MV
uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
uint8_t is_sec_rect;
#endif
#if CONFIG_PVQ
daala_dec_ctx daala_dec;
#endif
#if CONFIG_EC_ADAPT
FRAME_CONTEXT *tile_ctx;
#endif
#if CONFIG_AOM_HIGHBITDEPTH
/* Bit depth: 8, 10, 12 */
int bd;
#endif
int qindex[MAX_SEGMENTS];
int lossless[MAX_SEGMENTS];
int corrupted;
struct aom_internal_error_info *error_info;
#if CONFIG_GLOBAL_MOTION
WarpedMotionParams *global_motion;
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_DELTA_Q
int prev_qindex;
int delta_qindex;
int current_qindex;
#endif
} MACROBLOCKD;
static INLINE BLOCK_SIZE get_subsize(BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (partition == PARTITION_INVALID)
return BLOCK_INVALID;
else
return subsize_lookup[partition][bsize];
}
static const TX_TYPE intra_mode_to_tx_type_context[INTRA_MODES] = {
DCT_DCT, // DC
ADST_DCT, // V
DCT_ADST, // H
DCT_DCT, // D45
ADST_ADST, // D135
ADST_DCT, // D117
DCT_ADST, // D153
DCT_ADST, // D207
ADST_DCT, // D63
#if CONFIG_ALT_INTRA
ADST_ADST, // SMOOTH
#endif // CONFIG_ALT_INTRA
ADST_ADST, // TM
};
#if CONFIG_SUPERTX
static INLINE int supertx_enabled(const MB_MODE_INFO *mbmi) {
TX_SIZE max_tx_size = txsize_sqr_map[mbmi->tx_size];
return tx_size_wide[max_tx_size] >
AOMMIN(block_size_wide[mbmi->sb_type], block_size_high[mbmi->sb_type]);
}
#endif // CONFIG_SUPERTX
#define USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 1
#if CONFIG_RECT_TX
static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
#endif // CONFIG_RECT_TX
#if CONFIG_EXT_TX
#define ALLOW_INTRA_EXT_TX 1
typedef enum {
// DCT only
EXT_TX_SET_DCTONLY = 0,
// DCT + Identity only
EXT_TX_SET_DCT_IDTX = 1,
// Discrete Trig transforms w/o flip (4) + Identity (1)
EXT_TX_SET_DTT4_IDTX = 2,
// Discrete Trig transforms w/o flip (4) + Identity (1) + 1D Hor/vert DCT (2)
EXT_TX_SET_DTT4_IDTX_1DDCT = 3,
// Discrete Trig transforms w/ flip (9) + Identity (1) + 1D Hor/Ver DCT (2)
EXT_TX_SET_DTT9_IDTX_1DDCT = 4,
// Discrete Trig transforms w/ flip (9) + Identity (1) + 1D Hor/Ver (6)
EXT_TX_SET_ALL16 = 5,
EXT_TX_SET_TYPES
} TxSetType;
// Number of transform types in each set type
static const int num_ext_tx_set[EXT_TX_SET_TYPES] = { 1, 2, 5, 7, 12, 16 };
// Maps intra set index to the set type
static const int ext_tx_set_type_intra[EXT_TX_SETS_INTRA] = {
EXT_TX_SET_DCTONLY, EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX
};
// Maps inter set index to the set type
static const int ext_tx_set_type_inter[EXT_TX_SETS_INTER] = {
EXT_TX_SET_DCTONLY, EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT,
EXT_TX_SET_DCT_IDTX
};
// Maps set types above to the indices used for intra
static const int ext_tx_set_index_intra[EXT_TX_SET_TYPES] = { 0, -1, 2,
1, -1, -1 };
// Maps set types above to the indices used for inter
static const int ext_tx_set_index_inter[EXT_TX_SET_TYPES] = {
0, 3, -1, -1, 2, 1
};
static INLINE TxSetType get_ext_tx_set_type(TX_SIZE tx_size, BLOCK_SIZE bs,
int is_inter, int use_reduced_set) {
const TX_SIZE tx_size2 = txsize_sqr_up_map[tx_size];
tx_size = txsize_sqr_map[tx_size];
#if CONFIG_CB4X4 && USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4
(void)bs;
if (tx_size > TX_32X32) return EXT_TX_SET_DCTONLY;
#else
if (tx_size > TX_32X32 || bs < BLOCK_8X8) return EXT_TX_SET_DCTONLY;
#endif
if (use_reduced_set)
return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
if (tx_size2 == TX_32X32)
return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
if (is_inter)
return (tx_size == TX_16X16 ? EXT_TX_SET_DTT9_IDTX_1DDCT
: EXT_TX_SET_ALL16);
else
return (tx_size == TX_16X16 ? EXT_TX_SET_DTT4_IDTX
: EXT_TX_SET_DTT4_IDTX_1DDCT);
}
static INLINE int get_ext_tx_set(TX_SIZE tx_size, BLOCK_SIZE bs, int is_inter,
int use_reduced_set) {
const TxSetType set_type =
get_ext_tx_set_type(tx_size, bs, is_inter, use_reduced_set);
return is_inter ? ext_tx_set_index_inter[set_type]
: ext_tx_set_index_intra[set_type];
}
static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA][EXT_TX_SIZES] =
{
#if CONFIG_CB4X4
{ 1, 1, 1, 1, 1 }, // unused
{ 0, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0 },
#else
{ 1, 1, 1, 1 }, // unused
{ 1, 1, 0, 0 },
{ 0, 0, 1, 0 },
#endif // CONFIG_CB4X4
};
static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER][EXT_TX_SIZES] =
{
#if CONFIG_CB4X4
{ 1, 1, 1, 1, 1 }, // unused
{ 0, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0 },
{ 0, 0, 0, 0, 1 },
#else
{ 1, 1, 1, 1 }, // unused
{ 1, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 },
#endif // CONFIG_CB4X4
};
// Transform types used in each intra set
static const int ext_tx_used_intra[EXT_TX_SETS_INTRA][TX_TYPES] = {
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
};
// Transform types used in each inter set
static const int ext_tx_used_inter[EXT_TX_SETS_INTER][TX_TYPES] = {
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
};
// 1D Transforms used in inter set, this needs to be changed if
// ext_tx_used_inter is changed
static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = {
{ 1, 0, 0, 0 }, { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, { 1, 0, 0, 1 },
};
static INLINE int get_ext_tx_types(TX_SIZE tx_size, BLOCK_SIZE bs, int is_inter,
int use_reduced_set) {
const int set_type =
get_ext_tx_set_type(tx_size, bs, is_inter, use_reduced_set);
return num_ext_tx_set[set_type];
}
#if CONFIG_RECT_TX
static INLINE int is_rect_tx_allowed_bsize(BLOCK_SIZE bsize) {
static const char LUT[BLOCK_SIZES] = {
#if CONFIG_CB4X4
0, // BLOCK_2X2
0, // BLOCK_2X4
0, // BLOCK_4X2
#endif
0, // BLOCK_4X4
1, // BLOCK_4X8
1, // BLOCK_8X4
0, // BLOCK_8X8
1, // BLOCK_8X16
1, // BLOCK_16X8
0, // BLOCK_16X16
1, // BLOCK_16X32
1, // BLOCK_32X16
0, // BLOCK_32X32
0, // BLOCK_32X64
0, // BLOCK_64X32
0, // BLOCK_64X64
#if CONFIG_EXT_PARTITION
0, // BLOCK_64X128
0, // BLOCK_128X64
0, // BLOCK_128X128
#endif // CONFIG_EXT_PARTITION
};
return LUT[bsize];
}
static INLINE int is_rect_tx_allowed(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
return is_rect_tx_allowed_bsize(mbmi->sb_type) &&
!xd->lossless[mbmi->segment_id];
}
#endif // CONFIG_RECT_TX
#endif // CONFIG_EXT_TX
static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode,
int is_inter) {
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
#if (CONFIG_VAR_TX || CONFIG_EXT_TX) && CONFIG_RECT_TX
const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
#else
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
#endif // (CONFIG_VAR_TX || CONFIG_EXT_TX) && CONFIG_RECT_TX
(void)is_inter;
#if CONFIG_VAR_TX && CONFIG_RECT_TX
#if CONFIG_CB4X4
if (bsize == BLOCK_4X4)
return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
#else
if (bsize < BLOCK_8X8)
return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
#endif
if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
return max_rect_tx_size;
else
return largest_tx_size;
#elif CONFIG_EXT_TX && CONFIG_RECT_TX
if (txsize_sqr_up_map[max_rect_tx_size] <= largest_tx_size) {
return max_rect_tx_size;
} else {
return largest_tx_size;
}
#else
return AOMMIN(max_tx_size, largest_tx_size);
#endif // CONFIG_VAR_TX && CONFIG_RECT_TX
}
#if CONFIG_EXT_INTRA
#define MAX_ANGLE_DELTA_UV 2
#define ANGLE_STEP_UV 4
static const uint8_t av1_angle_step_y[TX_SIZES] = {
0, 4, 3, 3,
};
static const uint8_t av1_max_angle_delta_y[TX_SIZES] = {
0, 2, 3, 3,
};
extern const int16_t dr_intra_derivative[90];
static const uint8_t mode_to_angle_map[INTRA_MODES] = {
0, 90, 180, 45, 135, 111, 157, 203, 67, 0,
};
static INLINE int av1_get_angle_step(BLOCK_SIZE sb_type, int plane) {
const TX_SIZE max_tx_size = max_txsize_lookup[sb_type];
return plane ? ANGLE_STEP_UV : av1_angle_step_y[max_tx_size];
}
static INLINE int av1_get_max_angle_delta(BLOCK_SIZE sb_type, int plane) {
const TX_SIZE max_tx_size = max_txsize_lookup[sb_type];
return plane ? MAX_ANGLE_DELTA_UV : av1_max_angle_delta_y[max_tx_size];
}
#if CONFIG_INTRA_INTERP
// Returns whether filter selection is needed for a given
// intra prediction angle.
int av1_is_intra_filter_switchable(int angle);
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_EXT_TILE
#define FIXED_TX_TYPE 1
#else
#define FIXED_TX_TYPE 0
#endif
static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
const MACROBLOCKD *xd, int block_idx,
TX_SIZE tx_size) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32)
return DCT_DCT;
return intra_mode_to_tx_type_context[plane_type == PLANE_TYPE_Y
? get_y_mode(xd->mi[0], block_idx)
: mbmi->uv_mode];
}
static INLINE TX_TYPE get_tx_type(PLANE_TYPE plane_type, const MACROBLOCKD *xd,
int block_idx, TX_SIZE tx_size) {
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (FIXED_TX_TYPE)
return get_default_tx_type(plane_type, xd, block_idx, tx_size);
#if CONFIG_EXT_TX
if (xd->lossless[mbmi->segment_id] || txsize_sqr_map[tx_size] > TX_32X32 ||
(txsize_sqr_map[tx_size] >= TX_32X32 && !is_inter_block(mbmi)))
return DCT_DCT;
if (mbmi->sb_type >= BLOCK_8X8 || CONFIG_CB4X4) {
if (plane_type == PLANE_TYPE_Y) {
#if !ALLOW_INTRA_EXT_TX
if (is_inter_block(mbmi))
#endif // ALLOW_INTRA_EXT_TX
return mbmi->tx_type;
}
if (is_inter_block(mbmi)) {
// UV Inter only
#if CONFIG_CB4X4
if (tx_size < TX_4X4) return DCT_DCT;
#endif
return (mbmi->tx_type == IDTX && txsize_sqr_map[tx_size] >= TX_32X32)
? DCT_DCT
: mbmi->tx_type;
}
}
#if CONFIG_CB4X4
if (tx_size < TX_4X4)
return DCT_DCT;
else
return intra_mode_to_tx_type_context[mbmi->uv_mode];
#endif
// Sub8x8-Inter/Intra OR UV-Intra
if (is_inter_block(mbmi)) // Sub8x8-Inter
return DCT_DCT;
else // Sub8x8 Intra OR UV-Intra
return intra_mode_to_tx_type_context[plane_type == PLANE_TYPE_Y
? get_y_mode(mi, block_idx)
: mbmi->uv_mode];
#else // CONFIG_EXT_TX
(void)block_idx;
if (plane_type != PLANE_TYPE_Y || xd->lossless[mbmi->segment_id] ||
txsize_sqr_map[tx_size] >= TX_32X32)
return DCT_DCT;
return mbmi->tx_type;
#endif // CONFIG_EXT_TX
}
void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y);
static INLINE int tx_size_to_depth(const TX_SIZE tx_size) {
return (int)(tx_size - TX_4X4);
}
static INLINE TX_SIZE depth_to_tx_size(const int depth) {
return (TX_SIZE)(depth + TX_4X4);
}
static INLINE TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi,
const struct macroblockd_plane *pd) {
TX_SIZE uv_txsize;
#if CONFIG_CB4X4
assert(mbmi->tx_size > TX_2X2);
#endif
#if CONFIG_SUPERTX
if (supertx_enabled(mbmi))
return uvsupertx_size_lookup[txsize_sqr_map[mbmi->tx_size]]
[pd->subsampling_x][pd->subsampling_y];
#endif // CONFIG_SUPERTX
uv_txsize = uv_txsize_lookup[mbmi->sb_type][mbmi->tx_size][pd->subsampling_x]
[pd->subsampling_y];
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
uv_txsize = AOMMAX(uv_txsize, TX_4X4);
#endif
assert(uv_txsize != TX_INVALID);
return uv_txsize;
}
static INLINE TX_SIZE get_tx_size(int plane, const MACROBLOCKD *xd) {
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
return tx_size;
}
static INLINE BLOCK_SIZE
get_plane_block_size(BLOCK_SIZE bsize, const struct macroblockd_plane *pd) {
return ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y];
}
static INLINE void reset_skip_context(MACROBLOCKD *xd, BLOCK_SIZE bsize) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int txs_wide = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int txs_high = block_size_high[plane_bsize] >> tx_size_high_log2[0];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg);
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg);
#if CONFIG_LV_MAP
void av1_foreach_transformed_block(const MACROBLOCKD *const xd,
BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit,
void *arg);
#endif
#if CONFIG_DAALA_DIST
void av1_foreach_8x8_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
foreach_transformed_block_visitor visit,
foreach_transformed_block_visitor mi_visit, void *arg);
#endif
#if CONFIG_COEF_INTERLEAVE
static INLINE int get_max_4x4_size(int num_4x4, int mb_to_edge,
int subsampling) {
return num_4x4 + (mb_to_edge >= 0 ? 0 : mb_to_edge >> (5 + subsampling));
}
void av1_foreach_transformed_block_interleave(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg);
#endif
void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
int plane, TX_SIZE tx_size, int has_eob, int aoff,
int loff);
#if CONFIG_EXT_INTER
static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
#if !USE_RECT_INTERINTRA
if (block_size_wide[bsize] != block_size_high[bsize]) return 0;
#endif
// TODO(debargha): Should this be bsize < BLOCK_LARGEST?
return (bsize >= BLOCK_8X8) && (bsize < BLOCK_64X64);
}
static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
return (mode >= NEARESTMV) && (mode <= NEWMV);
}
static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
}
static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
return is_interintra_allowed_bsize(mbmi->sb_type) &&
is_interintra_allowed_mode(mbmi->mode) &&
is_interintra_allowed_ref(mbmi->ref_frame);
}
static INLINE int is_interintra_allowed_bsize_group(const int group) {
int i;
for (i = 0; i < BLOCK_SIZES; i++) {
if (size_group_lookup[i] == group &&
is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
return 1;
}
}
return 0;
}
static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
return (mbmi->ref_frame[1] == INTRA_FRAME) && is_interintra_allowed(mbmi);
}
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
return (bsize >= BLOCK_8X8);
}
#if CONFIG_MOTION_VAR
static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
if (mbmi->overlappable_neighbors[0] == 0 &&
mbmi->overlappable_neighbors[1] == 0)
return 0;
if (mbmi->overlappable_neighbors[0] > 2 ||
mbmi->overlappable_neighbors[1] > 2)
return 0;
return 1;
}
#endif
static INLINE MOTION_MODE motion_mode_allowed(
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
int block, const WarpedMotionParams *gm_params,
#endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
const MODE_INFO *mi) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
if (is_global_mv_block(mi, block, gm_type)) return SIMPLE_TRANSLATION;
#endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
#if CONFIG_EXT_INTER
if (is_motion_variation_allowed_bsize(mbmi->sb_type) &&
is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME) {
#else
if (is_motion_variation_allowed_bsize(mbmi->sb_type) &&
is_inter_mode(mbmi->mode)) {
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR
if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
#endif
#if CONFIG_WARPED_MOTION
if (!has_second_ref(mbmi) && mbmi->num_proj_ref[0] >= 3)
return WARPED_CAUSAL;
else
#endif // CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
return OBMC_CAUSAL;
#else
return SIMPLE_TRANSLATION;
#endif // CONFIG_MOTION_VAR
} else {
return SIMPLE_TRANSLATION;
}
}
static INLINE void assert_motion_mode_valid(MOTION_MODE mode,
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
int block,
const WarpedMotionParams *gm_params,
#endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
const MODE_INFO *mi) {
const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
block, gm_params,
#endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
mi);
// Check that the input mode is not illegal
if (last_motion_mode_allowed < mode)
assert(0 && "Illegal motion mode selected");
}
#if CONFIG_MOTION_VAR
static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
return (is_inter_block(mbmi));
}
#endif // CONFIG_MOTION_VAR
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
// Returns sub-sampled dimensions of the given block.
// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
// differ from 'height' and 'width' when part of the block is outside the right
// and/or bottom image boundary.
static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
const MACROBLOCKD *xd, int *width,
int *height,
int *rows_within_bounds,
int *cols_within_bounds) {
const int block_height = block_size_high[bsize];
const int block_width = block_size_wide[bsize];
const int block_rows = (xd->mb_to_bottom_edge >= 0)
? block_height
: (xd->mb_to_bottom_edge >> 3) + block_height;
const int block_cols = (xd->mb_to_right_edge >= 0)
? block_width
: (xd->mb_to_right_edge >> 3) + block_width;
const struct macroblockd_plane *const pd = &xd->plane[plane];
assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
assert(block_width >= block_cols);
assert(block_height >= block_rows);
if (width) *width = block_width >> pd->subsampling_x;
if (height) *height = block_height >> pd->subsampling_y;
if (rows_within_bounds) *rows_within_bounds = block_rows >> pd->subsampling_y;
if (cols_within_bounds) *cols_within_bounds = block_cols >> pd->subsampling_x;
}
#if CONFIG_GLOBAL_MOTION
static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd) {
const MODE_INFO *mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
int ref;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
// First check if all modes are ZEROMV
if (mbmi->sb_type >= BLOCK_8X8 || unify_bsize) {
#if CONFIG_EXT_INTER
if (mbmi->mode != ZEROMV && mbmi->mode != ZERO_ZEROMV) return 0;
#else
if (mbmi->mode != ZEROMV) return 0;
#endif // CONFIG_EXT_INTER
} else {
#if !GLOBAL_SUB8X8_USED
return 0;
#endif // !GLOBAL_SUB8X8_USED
#if CONFIG_EXT_INTER
if (mi->bmi[0].as_mode != ZEROMV || mi->bmi[1].as_mode != ZEROMV ||
mi->bmi[2].as_mode != ZEROMV || mi->bmi[3].as_mode != ZEROMV ||
mi->bmi[0].as_mode != ZERO_ZEROMV ||
mi->bmi[1].as_mode != ZERO_ZEROMV ||
mi->bmi[2].as_mode != ZERO_ZEROMV || mi->bmi[3].as_mode != ZERO_ZEROMV)
return 0;
#else
if (mi->bmi[0].as_mode != ZEROMV || mi->bmi[1].as_mode != ZEROMV ||
mi->bmi[2].as_mode != ZEROMV || mi->bmi[3].as_mode != ZEROMV)
return 0;
#endif // CONFIG_EXT_INTER
}
// Now check if all global motion is non translational
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
if (xd->global_motion[mbmi->ref_frame[ref]].wmtype <= TRANSLATION) return 0;
}
return 1;
}
#endif // CONFIG_GLOBAL_MOTION
static INLINE PLANE_TYPE get_plane_type(const int plane) {
return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_BLOCKD_H_