blob: 47ce6c371d3ecee75268cf9e25d2d90653ab4879 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "test/warp_filter_test_util.h"
using std::tr1::tuple;
using std::tr1::make_tuple;
namespace libaom_test {
namespace AV1WarpFilter {
::testing::internal::ParamGenerator<WarpTestParam> BuildParams(
warp_affine_func filter) {
const WarpTestParam params[] = {
make_tuple(4, 4, 100, filter), make_tuple(8, 8, 100, filter),
make_tuple(64, 64, 100, filter), make_tuple(4, 16, 100, filter),
make_tuple(32, 8, 100, filter),
};
return ::testing::ValuesIn(params);
}
AV1WarpFilterTest::~AV1WarpFilterTest() {}
void AV1WarpFilterTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); }
void AV1WarpFilterTest::TearDown() { libaom_test::ClearSystemState(); }
int32_t AV1WarpFilterTest::random_param(int bits) {
// 1 in 8 chance of generating zero (arbitrarily chosen)
if (((rnd_.Rand8()) & 7) == 0) return 0;
// Otherwise, enerate uniform values in the range
// [-(1 << bits), 1] U [1, 1<<bits]
int32_t v = 1 + (rnd_.Rand16() & ((1 << bits) - 1));
if ((rnd_.Rand8()) & 1) return -v;
return v;
}
void AV1WarpFilterTest::generate_model(int32_t *mat, int16_t *alpha,
int16_t *beta, int16_t *gamma,
int16_t *delta) {
while (1) {
mat[0] = random_param(WARPEDMODEL_PREC_BITS + 6);
mat[1] = random_param(WARPEDMODEL_PREC_BITS + 6);
mat[2] = (random_param(WARPEDMODEL_PREC_BITS - 3)) +
(1 << WARPEDMODEL_PREC_BITS);
mat[3] = random_param(WARPEDMODEL_PREC_BITS - 3);
// 50/50 chance of generating ROTZOOM vs. AFFINE models
if (rnd_.Rand8() & 1) {
// AFFINE
mat[4] = random_param(WARPEDMODEL_PREC_BITS - 3);
mat[5] = (random_param(WARPEDMODEL_PREC_BITS - 3)) +
(1 << WARPEDMODEL_PREC_BITS);
} else {
mat[4] = -mat[3];
mat[5] = mat[2];
}
// Calculate the derived parameters and check that they are suitable
// for the warp filter.
assert(mat[2] != 0);
*alpha = clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
*beta = clamp(mat[3], INT16_MIN, INT16_MAX);
*gamma = clamp(((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) / mat[2],
INT16_MIN, INT16_MAX);
*delta =
clamp(mat[5] - (((int64_t)mat[3] * mat[4] + (mat[2] / 2)) / mat[2]) -
(1 << WARPEDMODEL_PREC_BITS),
INT16_MIN, INT16_MAX);
if ((4 * abs(*alpha) + 7 * abs(*beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
(4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS)))
continue;
*alpha = ROUND_POWER_OF_TWO_SIGNED(*alpha, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
*beta = ROUND_POWER_OF_TWO_SIGNED(*beta, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
*gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
*delta = ROUND_POWER_OF_TWO_SIGNED(*delta, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
// We have a valid model, so finish
return;
}
}
void AV1WarpFilterTest::RunCheckOutput(warp_affine_func test_impl) {
const int w = 128, h = 128;
const int border = 16;
const int stride = w + 2 * border;
const int out_w = GET_PARAM(0), out_h = GET_PARAM(1);
const int num_iters = GET_PARAM(2);
int i, j, sub_x, sub_y;
uint8_t *input_ = new uint8_t[h * stride];
uint8_t *input = input_ + border;
// The warp functions always write rows with widths that are multiples of 8.
// So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
int output_n = ((out_w + 7) & ~7) * out_h;
uint8_t *output = new uint8_t[output_n];
uint8_t *output2 = new uint8_t[output_n];
int32_t mat[8];
int16_t alpha, beta, gamma, delta;
ConvolveParams conv_params = get_conv_params(0, 0, 0);
#if CONFIG_CONVOLVE_ROUND
int32_t *dsta = new int32_t[output_n];
int32_t *dstb = new int32_t[output_n];
#endif
for (i = 0; i < num_iters; ++i) {
// Generate an input block and extend its borders horizontally
for (int r = 0; r < h; ++r)
for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand8();
for (int r = 0; r < h; ++r) {
memset(input + r * stride - border, input[r * stride], border);
memset(input + r * stride + w, input[r * stride + (w - 1)], border);
}
#if CONFIG_CONVOLVE_ROUND
const int use_no_round = rnd_.Rand8() & 1;
#endif
for (sub_x = 0; sub_x < 2; ++sub_x)
for (sub_y = 0; sub_y < 2; ++sub_y) {
generate_model(mat, &alpha, &beta, &gamma, &delta);
#if CONFIG_CONVOLVE_ROUND
if (use_no_round) {
// Prepare two copies of the destination
for (j = 0; j < out_w * out_h; ++j) {
int32_t v = rnd_.Rand16();
dsta[j] = v;
dstb[j] = v;
}
conv_params = get_conv_params_no_round(0, 0, 0, dsta, out_w);
} else {
conv_params = get_conv_params(0, 0, 0);
}
#endif
av1_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w,
out_h, out_w, sub_x, sub_y, &conv_params, alpha, beta,
gamma, delta);
#if CONFIG_CONVOLVE_ROUND
if (use_no_round) {
conv_params = get_conv_params_no_round(0, 0, 0, dstb, out_w);
}
#endif
test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h,
out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma, delta);
#if CONFIG_CONVOLVE_ROUND
if (use_no_round) {
for (j = 0; j < out_w * out_h; ++j)
ASSERT_EQ(dsta[j], dstb[j])
<< "Pixel mismatch at index " << j << " = (" << (j % out_w)
<< ", " << (j / out_w) << ") on iteration " << i;
} else {
for (j = 0; j < out_w * out_h; ++j)
ASSERT_EQ(output[j], output2[j])
<< "Pixel mismatch at index " << j << " = (" << (j % out_w)
<< ", " << (j / out_w) << ") on iteration " << i;
}
#else
for (j = 0; j < out_w * out_h; ++j)
ASSERT_EQ(output[j], output2[j])
<< "Pixel mismatch at index " << j << " = (" << (j % out_w)
<< ", " << (j / out_w) << ") on iteration " << i;
#endif
}
}
delete[] input_;
delete[] output;
delete[] output2;
#if CONFIG_CONVOLVE_ROUND
delete[] dsta;
delete[] dstb;
#endif
}
} // namespace AV1WarpFilter
#if CONFIG_HIGHBITDEPTH
namespace AV1HighbdWarpFilter {
::testing::internal::ParamGenerator<HighbdWarpTestParam> GetDefaultParams() {
const HighbdWarpTestParam defaultParams[] = {
make_tuple(4, 4, 100, 8), make_tuple(8, 8, 100, 8),
make_tuple(64, 64, 100, 8), make_tuple(4, 16, 100, 8),
make_tuple(32, 8, 100, 8), make_tuple(4, 4, 100, 10),
make_tuple(8, 8, 100, 10), make_tuple(64, 64, 100, 10),
make_tuple(4, 16, 100, 10), make_tuple(32, 8, 100, 10),
make_tuple(4, 4, 100, 12), make_tuple(8, 8, 100, 12),
make_tuple(64, 64, 100, 12), make_tuple(4, 16, 100, 12),
make_tuple(32, 8, 100, 12),
};
return ::testing::ValuesIn(defaultParams);
}
AV1HighbdWarpFilterTest::~AV1HighbdWarpFilterTest() {}
void AV1HighbdWarpFilterTest::SetUp() {
rnd_.Reset(ACMRandom::DeterministicSeed());
}
void AV1HighbdWarpFilterTest::TearDown() { libaom_test::ClearSystemState(); }
int32_t AV1HighbdWarpFilterTest::random_param(int bits) {
// 1 in 8 chance of generating zero (arbitrarily chosen)
if (((rnd_.Rand8()) & 7) == 0) return 0;
// Otherwise, enerate uniform values in the range
// [-(1 << bits), 1] U [1, 1<<bits]
int32_t v = 1 + (rnd_.Rand16() & ((1 << bits) - 1));
if ((rnd_.Rand8()) & 1) return -v;
return v;
}
void AV1HighbdWarpFilterTest::generate_model(int32_t *mat, int16_t *alpha,
int16_t *beta, int16_t *gamma,
int16_t *delta) {
while (1) {
mat[0] = random_param(WARPEDMODEL_PREC_BITS + 6);
mat[1] = random_param(WARPEDMODEL_PREC_BITS + 6);
mat[2] = (random_param(WARPEDMODEL_PREC_BITS - 3)) +
(1 << WARPEDMODEL_PREC_BITS);
mat[3] = random_param(WARPEDMODEL_PREC_BITS - 3);
// 50/50 chance of generating ROTZOOM vs. AFFINE models
if (rnd_.Rand8() & 1) {
// AFFINE
mat[4] = random_param(WARPEDMODEL_PREC_BITS - 3);
mat[5] = (random_param(WARPEDMODEL_PREC_BITS - 3)) +
(1 << WARPEDMODEL_PREC_BITS);
} else {
mat[4] = -mat[3];
mat[5] = mat[2];
}
// Calculate the derived parameters and check that they are suitable
// for the warp filter.
assert(mat[2] != 0);
*alpha = clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
*beta = clamp(mat[3], INT16_MIN, INT16_MAX);
*gamma = clamp(((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) / mat[2],
INT16_MIN, INT16_MAX);
*delta =
clamp(mat[5] - (((int64_t)mat[3] * mat[4] + (mat[2] / 2)) / mat[2]) -
(1 << WARPEDMODEL_PREC_BITS),
INT16_MIN, INT16_MAX);
if ((4 * abs(*alpha) + 7 * abs(*beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
(4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS)))
continue;
*alpha = ROUND_POWER_OF_TWO_SIGNED(*alpha, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
*beta = ROUND_POWER_OF_TWO_SIGNED(*beta, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
*gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
*delta = ROUND_POWER_OF_TWO_SIGNED(*delta, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
// We have a valid model, so finish
return;
}
}
void AV1HighbdWarpFilterTest::RunCheckOutput(
highbd_warp_affine_func test_impl) {
const int w = 128, h = 128;
const int border = 16;
const int stride = w + 2 * border;
const int out_w = GET_PARAM(0), out_h = GET_PARAM(1);
const int num_iters = GET_PARAM(2);
const int bd = GET_PARAM(3);
const int mask = (1 << bd) - 1;
int i, j, sub_x, sub_y;
// The warp functions always write rows with widths that are multiples of 8.
// So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
int output_n = ((out_w + 7) & ~7) * out_h;
uint16_t *input_ = new uint16_t[h * stride];
uint16_t *input = input_ + border;
uint16_t *output = new uint16_t[output_n];
uint16_t *output2 = new uint16_t[output_n];
int32_t mat[8];
int16_t alpha, beta, gamma, delta;
ConvolveParams conv_params = get_conv_params(0, 0, 0);
#if CONFIG_CONVOLVE_ROUND
int32_t *dsta = new int32_t[output_n];
int32_t *dstb = new int32_t[output_n];
#endif
for (i = 0; i < num_iters; ++i) {
// Generate an input block and extend its borders horizontally
for (int r = 0; r < h; ++r)
for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand16() & mask;
for (int r = 0; r < h; ++r) {
for (int c = 0; c < border; ++c) {
input[r * stride - border + c] = input[r * stride];
input[r * stride + w + c] = input[r * stride + (w - 1)];
}
}
#if CONFIG_CONVOLVE_ROUND
const int use_no_round = rnd_.Rand8() & 1;
#endif
for (sub_x = 0; sub_x < 2; ++sub_x)
for (sub_y = 0; sub_y < 2; ++sub_y) {
generate_model(mat, &alpha, &beta, &gamma, &delta);
#if CONFIG_CONVOLVE_ROUND
if (use_no_round) {
// Prepare two copies of the destination
for (j = 0; j < out_w * out_h; ++j) {
int32_t v = rnd_.Rand16();
dsta[j] = v;
dstb[j] = v;
}
conv_params = get_conv_params_no_round(0, 0, 0, dsta, out_w);
} else {
conv_params = get_conv_params(0, 0, 0);
}
#endif
av1_highbd_warp_affine_c(mat, input, w, h, stride, output, 32, 32,
out_w, out_h, out_w, sub_x, sub_y, bd,
&conv_params, alpha, beta, gamma, delta);
#if CONFIG_CONVOLVE_ROUND
if (use_no_round) {
// TODO(angiebird): Change this to test_impl once we have SIMD
// implementation
conv_params = get_conv_params_no_round(0, 0, 0, dstb, out_w);
}
#endif
test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h,
out_w, sub_x, sub_y, bd, &conv_params, alpha, beta, gamma,
delta);
#if CONFIG_CONVOLVE_ROUND
if (use_no_round) {
for (j = 0; j < out_w * out_h; ++j)
ASSERT_EQ(dsta[j], dstb[j])
<< "Pixel mismatch at index " << j << " = (" << (j % out_w)
<< ", " << (j / out_w) << ") on iteration " << i;
} else {
for (j = 0; j < out_w * out_h; ++j)
ASSERT_EQ(output[j], output2[j])
<< "Pixel mismatch at index " << j << " = (" << (j % out_w)
<< ", " << (j / out_w) << ") on iteration " << i;
}
#else
for (j = 0; j < out_w * out_h; ++j)
ASSERT_EQ(output[j], output2[j])
<< "Pixel mismatch at index " << j << " = (" << (j % out_w)
<< ", " << (j / out_w) << ") on iteration " << i;
#endif
}
}
delete[] input_;
delete[] output;
delete[] output2;
#if CONFIG_CONVOLVE_ROUND
delete[] dsta;
delete[] dstb;
#endif
}
} // namespace AV1HighbdWarpFilter
#endif // CONFIG_HIGHBITDEPTH
} // namespace libaom_test