blob: 65579f251828bae0439624146b97cc510ee02999 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdint.h>
#include "av1/common/blockd.h"
#include "config/aom_config.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_codec.h"
#include "aom/aom_encoder.h"
#if CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_MISMATCH_DEBUG
#include "av1/common/av1_common_int.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder_alloc.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/gop_structure.h"
#include "av1/encoder/pass2_strategy.h"
#include "av1/encoder/temporal_filter.h"
#if CONFIG_THREE_PASS
#include "av1/encoder/thirdpass.h"
#endif // CONFIG_THREE_PASS
#include "av1/encoder/tpl_model.h"
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
#define TEMPORAL_FILTER_KEY_FRAME (CONFIG_REALTIME_ONLY ? 0 : 1)
static INLINE void set_refresh_frame_flags(
RefreshFrameInfo *const refresh_frame, bool refresh_gf, bool refresh_bwdref,
bool refresh_arf) {
refresh_frame->golden_frame = refresh_gf;
refresh_frame->bwd_ref_frame = refresh_bwdref;
refresh_frame->alt_ref_frame = refresh_arf;
}
void av1_configure_buffer_updates(AV1_COMP *const cpi,
RefreshFrameInfo *const refresh_frame,
const FRAME_UPDATE_TYPE type,
const REFBUF_STATE refbuf_state,
int force_refresh_all) {
// NOTE(weitinglin): Should we define another function to take care of
// cpi->rc.is_$Source_Type to make this function as it is in the comment?
const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
&cpi->ext_flags.refresh_frame;
cpi->rc.is_src_frame_alt_ref = 0;
switch (type) {
case KF_UPDATE:
set_refresh_frame_flags(refresh_frame, true, true, true);
break;
case LF_UPDATE:
set_refresh_frame_flags(refresh_frame, false, false, false);
break;
case GF_UPDATE:
set_refresh_frame_flags(refresh_frame, true, false, false);
break;
case OVERLAY_UPDATE:
if (refbuf_state == REFBUF_RESET)
set_refresh_frame_flags(refresh_frame, true, true, true);
else
set_refresh_frame_flags(refresh_frame, true, false, false);
cpi->rc.is_src_frame_alt_ref = 1;
break;
case ARF_UPDATE:
// NOTE: BWDREF does not get updated along with ALTREF_FRAME.
if (refbuf_state == REFBUF_RESET)
set_refresh_frame_flags(refresh_frame, true, true, true);
else
set_refresh_frame_flags(refresh_frame, false, false, true);
break;
case INTNL_OVERLAY_UPDATE:
set_refresh_frame_flags(refresh_frame, false, false, false);
cpi->rc.is_src_frame_alt_ref = 1;
break;
case INTNL_ARF_UPDATE:
set_refresh_frame_flags(refresh_frame, false, true, false);
break;
default: assert(0); break;
}
if (ext_refresh_frame_flags->update_pending &&
(!is_stat_generation_stage(cpi))) {
set_refresh_frame_flags(refresh_frame,
ext_refresh_frame_flags->golden_frame,
ext_refresh_frame_flags->bwd_ref_frame,
ext_refresh_frame_flags->alt_ref_frame);
GF_GROUP *gf_group = &cpi->ppi->gf_group;
if (ext_refresh_frame_flags->golden_frame)
gf_group->update_type[cpi->gf_frame_index] = GF_UPDATE;
if (ext_refresh_frame_flags->alt_ref_frame)
gf_group->update_type[cpi->gf_frame_index] = ARF_UPDATE;
if (ext_refresh_frame_flags->bwd_ref_frame)
gf_group->update_type[cpi->gf_frame_index] = INTNL_ARF_UPDATE;
}
if (force_refresh_all)
set_refresh_frame_flags(refresh_frame, true, true, true);
}
static void set_additional_frame_flags(const AV1_COMMON *const cm,
unsigned int *const frame_flags) {
if (frame_is_intra_only(cm)) {
*frame_flags |= FRAMEFLAGS_INTRAONLY;
}
if (frame_is_sframe(cm)) {
*frame_flags |= FRAMEFLAGS_SWITCH;
}
if (cm->features.error_resilient_mode) {
*frame_flags |= FRAMEFLAGS_ERROR_RESILIENT;
}
}
static void set_ext_overrides(AV1_COMMON *const cm,
EncodeFrameParams *const frame_params,
ExternalFlags *const ext_flags) {
// Overrides the defaults with the externally supplied values with
// av1_update_reference() and av1_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to av1_encode_lowlevel()
if (ext_flags->use_s_frame) {
frame_params->frame_type = S_FRAME;
}
if (ext_flags->refresh_frame_context_pending) {
cm->features.refresh_frame_context = ext_flags->refresh_frame_context;
ext_flags->refresh_frame_context_pending = 0;
}
cm->features.allow_ref_frame_mvs = ext_flags->use_ref_frame_mvs;
frame_params->error_resilient_mode = ext_flags->use_error_resilient;
// A keyframe is already error resilient and keyframes with
// error_resilient_mode interferes with the use of show_existing_frame
// when forward reference keyframes are enabled.
frame_params->error_resilient_mode &= frame_params->frame_type != KEY_FRAME;
// For bitstream conformance, s-frames must be error-resilient
frame_params->error_resilient_mode |= frame_params->frame_type == S_FRAME;
}
static int choose_primary_ref_frame(
AV1_COMP *const cpi, const EncodeFrameParams *const frame_params) {
const AV1_COMMON *const cm = &cpi->common;
const int intra_only = frame_params->frame_type == KEY_FRAME ||
frame_params->frame_type == INTRA_ONLY_FRAME;
if (intra_only || frame_params->error_resilient_mode ||
cpi->ext_flags.use_primary_ref_none) {
return PRIMARY_REF_NONE;
}
#if !CONFIG_REALTIME_ONLY
if (cpi->use_ducky_encode) {
int wanted_fb = cpi->ppi->gf_group.primary_ref_idx[cpi->gf_frame_index];
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb)
return ref_frame - LAST_FRAME;
}
return PRIMARY_REF_NONE;
}
#endif // !CONFIG_REALTIME_ONLY
// In large scale case, always use Last frame's frame contexts.
// Note(yunqing): In other cases, primary_ref_frame is chosen based on
// cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index], which also controls
// frame bit allocation.
if (cm->tiles.large_scale) return (LAST_FRAME - LAST_FRAME);
if (cpi->ppi->use_svc || cpi->ppi->rtc_ref.set_ref_frame_config)
return av1_svc_primary_ref_frame(cpi);
// Find the most recent reference frame with the same reference type as the
// current frame
const int current_ref_type = get_current_frame_ref_type(cpi);
int wanted_fb = cpi->ppi->fb_of_context_type[current_ref_type];
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
GF_GROUP *const gf_group = &cpi->ppi->gf_group;
if (gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
int frame_level = gf_group->frame_parallel_level[cpi->gf_frame_index];
// Book keep wanted_fb of frame_parallel_level 1 frame in an FP2 set.
if (frame_level == 1) {
cpi->wanted_fb = wanted_fb;
}
// Use the wanted_fb of level 1 frame in an FP2 for a level 2 frame in the
// set.
if (frame_level == 2 &&
gf_group->update_type[cpi->gf_frame_index - 1] == INTNL_ARF_UPDATE) {
assert(gf_group->frame_parallel_level[cpi->gf_frame_index - 1] == 1);
wanted_fb = cpi->wanted_fb;
}
}
}
#endif // CONFIG_FPMT_TEST
int primary_ref_frame = PRIMARY_REF_NONE;
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb) {
primary_ref_frame = ref_frame - LAST_FRAME;
}
}
return primary_ref_frame;
}
static void adjust_frame_rate(AV1_COMP *cpi, int64_t ts_start, int64_t ts_end) {
TimeStamps *time_stamps = &cpi->time_stamps;
int64_t this_duration;
int step = 0;
// Clear down mmx registers
if (cpi->ppi->use_svc && cpi->ppi->rtc_ref.set_ref_frame_config &&
cpi->svc.number_spatial_layers > 1) {
// ts_start is the timestamp for the current frame and ts_end is the
// expected next timestamp given the duration passed into codec_encode().
// See the setting in encoder_encode() in av1_cx_iface.c:
// ts_start = timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol),
// ts_end = timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol +
// duration). So the difference ts_end - ts_start is the duration passed
// in by the user. For spatial layers SVC set the framerate based directly
// on the duration, and bypass the adjustments below.
this_duration = ts_end - ts_start;
if (this_duration > 0) {
cpi->new_framerate = 10000000.0 / this_duration;
av1_new_framerate(cpi, cpi->new_framerate);
time_stamps->prev_ts_start = ts_start;
time_stamps->prev_ts_end = ts_end;
return;
}
}
if (ts_start == time_stamps->first_ts_start) {
this_duration = ts_end - ts_start;
step = 1;
} else {
int64_t last_duration =
time_stamps->prev_ts_end - time_stamps->prev_ts_start;
this_duration = ts_end - time_stamps->prev_ts_end;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
cpi->new_framerate = 10000000.0 / this_duration;
av1_new_framerate(cpi, cpi->new_framerate);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval =
AOMMIN((double)(ts_end - time_stamps->first_ts_start), 10000000.0);
double avg_duration = 10000000.0 / cpi->framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
cpi->new_framerate = (10000000.0 / avg_duration);
// For parallel frames update cpi->framerate with new_framerate
// during av1_post_encode_updates()
double framerate =
(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
? cpi->framerate
: cpi->new_framerate;
av1_new_framerate(cpi, framerate);
}
}
time_stamps->prev_ts_start = ts_start;
time_stamps->prev_ts_end = ts_end;
}
// Determine whether there is a forced keyframe pending in the lookahead buffer
int is_forced_keyframe_pending(struct lookahead_ctx *lookahead,
const int up_to_index,
const COMPRESSOR_STAGE compressor_stage) {
for (int i = 0; i <= up_to_index; i++) {
const struct lookahead_entry *e =
av1_lookahead_peek(lookahead, i, compressor_stage);
if (e == NULL) {
// We have reached the end of the lookahead buffer and not early-returned
// so there isn't a forced key-frame pending.
return -1;
} else if (e->flags == AOM_EFLAG_FORCE_KF) {
return i;
} else {
continue;
}
}
return -1; // Never reached
}
// Check if we should encode an ARF or internal ARF. If not, try a LAST
// Do some setup associated with the chosen source
// temporal_filtered, flush, and frame_update_type are outputs.
// Return the frame source, or NULL if we couldn't find one
static struct lookahead_entry *choose_frame_source(
AV1_COMP *const cpi, int *const flush, int *pop_lookahead,
struct lookahead_entry **last_source, int *const show_frame) {
AV1_COMMON *const cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
struct lookahead_entry *source = NULL;
// Source index in lookahead buffer.
int src_index = gf_group->arf_src_offset[cpi->gf_frame_index];
// TODO(Aasaipriya): Forced key frames need to be fixed when rc_mode != AOM_Q
if (src_index &&
(is_forced_keyframe_pending(cpi->ppi->lookahead, src_index,
cpi->compressor_stage) != -1) &&
cpi->oxcf.rc_cfg.mode != AOM_Q && !is_stat_generation_stage(cpi)) {
src_index = 0;
*flush = 1;
}
// If the current frame is arf, then we should not pop from the lookahead
// buffer. If the current frame is not arf, then pop it. This assumes the
// first frame in the GF group is not arf. May need to change if it is not
// true.
*pop_lookahead = (src_index == 0);
// If this is a key frame and keyframe filtering is enabled with overlay,
// then do not pop.
if (*pop_lookahead && cpi->oxcf.kf_cfg.enable_keyframe_filtering > 1 &&
gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE &&
!is_stat_generation_stage(cpi) && cpi->ppi->lookahead) {
if (cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz &&
(*flush ||
cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz ==
cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].pop_sz)) {
*pop_lookahead = 0;
}
}
// LAP stage does not have ARFs or forward key-frames,
// hence, always pop_lookahead here.
if (is_stat_generation_stage(cpi)) {
*pop_lookahead = 1;
src_index = 0;
}
*show_frame = *pop_lookahead;
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE) {
#else
{
#endif // CONFIG_FPMT_TEST
// Future frame in parallel encode set
if (gf_group->src_offset[cpi->gf_frame_index] != 0 &&
!is_stat_generation_stage(cpi))
src_index = gf_group->src_offset[cpi->gf_frame_index];
}
if (*show_frame) {
// show frame, pop from buffer
// Get last frame source.
if (cm->current_frame.frame_number > 0) {
*last_source = av1_lookahead_peek(cpi->ppi->lookahead, src_index - 1,
cpi->compressor_stage);
}
// Read in the source frame.
source = av1_lookahead_peek(cpi->ppi->lookahead, src_index,
cpi->compressor_stage);
} else {
// no show frames are arf frames
source = av1_lookahead_peek(cpi->ppi->lookahead, src_index,
cpi->compressor_stage);
if (source != NULL) {
cm->showable_frame = 1;
}
}
return source;
}
// Don't allow a show_existing_frame to coincide with an error resilient or
// S-Frame. An exception can be made in the case of a keyframe, since it does
// not depend on any previous frames.
static int allow_show_existing(const AV1_COMP *const cpi,
unsigned int frame_flags) {
if (cpi->common.current_frame.frame_number == 0) return 0;
const struct lookahead_entry *lookahead_src =
av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage);
if (lookahead_src == NULL) return 1;
const int is_error_resilient =
cpi->oxcf.tool_cfg.error_resilient_mode ||
(lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT);
const int is_s_frame = cpi->oxcf.kf_cfg.enable_sframe ||
(lookahead_src->flags & AOM_EFLAG_SET_S_FRAME);
const int is_key_frame =
(cpi->rc.frames_to_key == 0) || (frame_flags & FRAMEFLAGS_KEY);
return !(is_error_resilient || is_s_frame) || is_key_frame;
}
// Update frame_flags to tell the encoder's caller what sort of frame was
// encoded.
static void update_frame_flags(const AV1_COMMON *const cm,
const RefreshFrameInfo *const refresh_frame,
unsigned int *frame_flags) {
if (encode_show_existing_frame(cm)) {
*frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN;
*frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF;
*frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF;
*frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY;
return;
}
if (refresh_frame->golden_frame) {
*frame_flags |= FRAMEFLAGS_GOLDEN;
} else {
*frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN;
}
if (refresh_frame->alt_ref_frame) {
*frame_flags |= FRAMEFLAGS_ALTREF;
} else {
*frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF;
}
if (refresh_frame->bwd_ref_frame) {
*frame_flags |= FRAMEFLAGS_BWDREF;
} else {
*frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF;
}
if (cm->current_frame.frame_type == KEY_FRAME) {
*frame_flags |= FRAMEFLAGS_KEY;
} else {
*frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY;
}
}
#define DUMP_REF_FRAME_IMAGES 0
#if DUMP_REF_FRAME_IMAGES == 1
static int dump_one_image(AV1_COMMON *cm,
const YV12_BUFFER_CONFIG *const ref_buf,
char *file_name) {
int h;
FILE *f_ref = NULL;
if (ref_buf == NULL) {
printf("Frame data buffer is NULL.\n");
return AOM_CODEC_MEM_ERROR;
}
if ((f_ref = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return AOM_CODEC_MEM_ERROR;
}
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
fclose(f_ref);
return AOM_CODEC_OK;
}
static void dump_ref_frame_images(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
char file_name[256] = "";
snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
cm->current_frame.frame_number, ref_frame);
dump_one_image(cm, get_ref_frame_yv12_buf(cpi, ref_frame), file_name);
}
}
#endif // DUMP_REF_FRAME_IMAGES == 1
int av1_get_refresh_ref_frame_map(int refresh_frame_flags) {
int ref_map_index;
for (ref_map_index = 0; ref_map_index < REF_FRAMES; ++ref_map_index)
if ((refresh_frame_flags >> ref_map_index) & 1) break;
if (ref_map_index == REF_FRAMES) ref_map_index = INVALID_IDX;
return ref_map_index;
}
static int get_free_ref_map_index(RefFrameMapPair ref_map_pairs[REF_FRAMES]) {
for (int idx = 0; idx < REF_FRAMES; ++idx)
if (ref_map_pairs[idx].disp_order == -1) return idx;
return INVALID_IDX;
}
static int get_refresh_idx(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES],
int update_arf, GF_GROUP *gf_group, int gf_index,
int enable_refresh_skip, int cur_frame_disp) {
int arf_count = 0;
int oldest_arf_order = INT32_MAX;
int oldest_arf_idx = -1;
int oldest_frame_order = INT32_MAX;
int oldest_idx = -1;
for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) {
RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx];
if (ref_pair.disp_order == -1) continue;
const int frame_order = ref_pair.disp_order;
const int reference_frame_level = ref_pair.pyr_level;
// Keep future frames and three closest previous frames in output order.
if (frame_order > cur_frame_disp - 3) continue;
if (enable_refresh_skip) {
int skip_frame = 0;
// Prevent refreshing a frame in gf_group->skip_frame_refresh.
for (int i = 0; i < REF_FRAMES; i++) {
int frame_to_skip = gf_group->skip_frame_refresh[gf_index][i];
if (frame_to_skip == INVALID_IDX) break;
if (frame_order == frame_to_skip) {
skip_frame = 1;
break;
}
}
if (skip_frame) continue;
}
// Keep track of the oldest level 1 frame if the current frame is also level
// 1.
if (reference_frame_level == 1) {
// If there are more than 2 level 1 frames in the reference list,
// discard the oldest.
if (frame_order < oldest_arf_order) {
oldest_arf_order = frame_order;
oldest_arf_idx = map_idx;
}
arf_count++;
continue;
}
// Update the overall oldest reference frame.
if (frame_order < oldest_frame_order) {
oldest_frame_order = frame_order;
oldest_idx = map_idx;
}
}
if (update_arf && arf_count > 2) return oldest_arf_idx;
if (oldest_idx >= 0) return oldest_idx;
if (oldest_arf_idx >= 0) return oldest_arf_idx;
if (oldest_idx == -1) {
assert(arf_count > 2 && enable_refresh_skip);
return oldest_arf_idx;
}
assert(0 && "No valid refresh index found");
return -1;
}
// Computes the reference refresh index for INTNL_ARF_UPDATE frame.
int av1_calc_refresh_idx_for_intnl_arf(
AV1_COMP *cpi, RefFrameMapPair ref_frame_map_pairs[REF_FRAMES],
int gf_index) {
GF_GROUP *const gf_group = &cpi->ppi->gf_group;
// Search for the open slot to store the current frame.
int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs);
// Use a free slot if available.
if (free_fb_index != INVALID_IDX) {
return free_fb_index;
} else {
int enable_refresh_skip = !is_one_pass_rt_params(cpi);
int refresh_idx =
get_refresh_idx(ref_frame_map_pairs, 0, gf_group, gf_index,
enable_refresh_skip, gf_group->display_idx[gf_index]);
return refresh_idx;
}
}
int av1_get_refresh_frame_flags(
const AV1_COMP *const cpi, const EncodeFrameParams *const frame_params,
FRAME_UPDATE_TYPE frame_update_type, int gf_index, int cur_disp_order,
RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]) {
const AV1_COMMON *const cm = &cpi->common;
const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
&cpi->ext_flags.refresh_frame;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
if (gf_group->refbuf_state[gf_index] == REFBUF_RESET)
return SELECT_ALL_BUF_SLOTS;
// TODO(jingning): Deprecate the following operations.
// Switch frames and shown key-frames overwrite all reference slots
if (frame_params->frame_type == S_FRAME) return SELECT_ALL_BUF_SLOTS;
// show_existing_frames don't actually send refresh_frame_flags so set the
// flags to 0 to keep things consistent.
if (frame_params->show_existing_frame) return 0;
const RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
if (is_frame_droppable(rtc_ref, ext_refresh_frame_flags)) return 0;
#if !CONFIG_REALTIME_ONLY
if (cpi->use_ducky_encode &&
cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) {
int new_fb_map_idx = cpi->ppi->gf_group.update_ref_idx[gf_index];
if (new_fb_map_idx == INVALID_IDX) return 0;
return 1 << new_fb_map_idx;
}
#endif // !CONFIG_REALTIME_ONLY
int refresh_mask = 0;
if (ext_refresh_frame_flags->update_pending) {
if (rtc_ref->set_ref_frame_config ||
use_rtc_reference_structure_one_layer(cpi)) {
for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) {
int ref_frame_map_idx = rtc_ref->ref_idx[i];
refresh_mask |= rtc_ref->refresh[ref_frame_map_idx]
<< ref_frame_map_idx;
}
return refresh_mask;
}
// Unfortunately the encoder interface reflects the old refresh_*_frame
// flags so we have to replicate the old refresh_frame_flags logic here in
// order to preserve the behaviour of the flag overrides.
int ref_frame_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
if (ref_frame_map_idx != INVALID_IDX)
refresh_mask |= ext_refresh_frame_flags->last_frame << ref_frame_map_idx;
ref_frame_map_idx = get_ref_frame_map_idx(cm, EXTREF_FRAME);
if (ref_frame_map_idx != INVALID_IDX)
refresh_mask |= ext_refresh_frame_flags->bwd_ref_frame
<< ref_frame_map_idx;
ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF2_FRAME);
if (ref_frame_map_idx != INVALID_IDX)
refresh_mask |= ext_refresh_frame_flags->alt2_ref_frame
<< ref_frame_map_idx;
if (frame_update_type == OVERLAY_UPDATE) {
ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME);
if (ref_frame_map_idx != INVALID_IDX)
refresh_mask |= ext_refresh_frame_flags->golden_frame
<< ref_frame_map_idx;
} else {
ref_frame_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
if (ref_frame_map_idx != INVALID_IDX)
refresh_mask |= ext_refresh_frame_flags->golden_frame
<< ref_frame_map_idx;
ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME);
if (ref_frame_map_idx != INVALID_IDX)
refresh_mask |= ext_refresh_frame_flags->alt_ref_frame
<< ref_frame_map_idx;
}
return refresh_mask;
}
// Search for the open slot to store the current frame.
int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs);
// No refresh necessary for these frame types.
if (frame_update_type == OVERLAY_UPDATE ||
frame_update_type == INTNL_OVERLAY_UPDATE)
return refresh_mask;
// If there is an open slot, refresh that one instead of replacing a
// reference.
if (free_fb_index != INVALID_IDX) {
refresh_mask = 1 << free_fb_index;
return refresh_mask;
}
const int enable_refresh_skip = !is_one_pass_rt_params(cpi);
const int update_arf = frame_update_type == ARF_UPDATE;
const int refresh_idx =
get_refresh_idx(ref_frame_map_pairs, update_arf, &cpi->ppi->gf_group,
gf_index, enable_refresh_skip, cur_disp_order);
return 1 << refresh_idx;
}
#if !CONFIG_REALTIME_ONLY
void setup_mi(AV1_COMP *const cpi, YV12_BUFFER_CONFIG *src) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
av1_setup_src_planes(x, src, 0, 0, num_planes, cm->seq_params->sb_size);
av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
cm->seq_params->subsampling_y, num_planes);
set_mi_offsets(&cm->mi_params, xd, 0, 0);
}
// Apply temporal filtering to source frames and encode the filtered frame.
// If the current frame does not require filtering, this function is identical
// to av1_encode() except that tpl is not performed.
static int denoise_and_encode(AV1_COMP *const cpi, uint8_t *const dest,
EncodeFrameInput *const frame_input,
const EncodeFrameParams *const frame_params,
EncodeFrameResults *const frame_results) {
#if CONFIG_COLLECT_COMPONENT_TIMING
if (cpi->oxcf.pass == 2) start_timing(cpi, denoise_and_encode_time);
#endif
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
AV1_COMMON *const cm = &cpi->common;
GF_GROUP *const gf_group = &cpi->ppi->gf_group;
FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
const int is_second_arf =
av1_gop_is_second_arf(gf_group, cpi->gf_frame_index);
// Decide whether to apply temporal filtering to the source frame.
int apply_filtering =
av1_is_temporal_filter_on(oxcf) && !is_stat_generation_stage(cpi);
if (update_type != KF_UPDATE && update_type != ARF_UPDATE && !is_second_arf) {
apply_filtering = 0;
}
if (apply_filtering) {
if (frame_params->frame_type == KEY_FRAME) {
// TODO(angiebird): Move the noise level check to av1_tf_info_filtering.
// Decide whether it is allowed to perform key frame filtering
int allow_kf_filtering = oxcf->kf_cfg.enable_keyframe_filtering &&
!frame_params->show_existing_frame &&
!is_lossless_requested(&oxcf->rc_cfg);
if (allow_kf_filtering) {
double y_noise_level = 0.0;
av1_estimate_noise_level(
frame_input->source, &y_noise_level, AOM_PLANE_Y, AOM_PLANE_Y,
cm->seq_params->bit_depth, NOISE_ESTIMATION_EDGE_THRESHOLD);
apply_filtering = y_noise_level > 0;
} else {
apply_filtering = 0;
}
// If we are doing kf filtering, set up a few things.
if (apply_filtering) {
av1_setup_past_independence(cm);
}
} else if (is_second_arf) {
apply_filtering = cpi->sf.hl_sf.second_alt_ref_filtering;
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
if (cpi->oxcf.pass == 2) start_timing(cpi, apply_filtering_time);
#endif
// Save the pointer to the original source image.
YV12_BUFFER_CONFIG *source_buffer = frame_input->source;
// apply filtering to frame
if (apply_filtering) {
int show_existing_alt_ref = 0;
FRAME_DIFF frame_diff;
int top_index = 0;
int bottom_index = 0;
const int q_index = av1_rc_pick_q_and_bounds(
cpi, cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height,
cpi->gf_frame_index, &bottom_index, &top_index);
// TODO(bohanli): figure out why we need frame_type in cm here.
cm->current_frame.frame_type = frame_params->frame_type;
if (update_type == KF_UPDATE || update_type == ARF_UPDATE) {
YV12_BUFFER_CONFIG *tf_buf = av1_tf_info_get_filtered_buf(
&cpi->ppi->tf_info, cpi->gf_frame_index, &frame_diff);
if (tf_buf != NULL) {
frame_input->source = tf_buf;
show_existing_alt_ref = av1_check_show_filtered_frame(
tf_buf, &frame_diff, q_index, cm->seq_params->bit_depth);
if (show_existing_alt_ref) {
cpi->common.showable_frame |= 1;
} else {
cpi->common.showable_frame = 0;
}
}
if (gf_group->frame_type[cpi->gf_frame_index] != KEY_FRAME) {
cpi->ppi->show_existing_alt_ref = show_existing_alt_ref;
}
}
if (is_second_arf) {
// Allocate the memory for tf_buf_second_arf buffer, only when it is
// required.
int ret = aom_realloc_frame_buffer(
&cpi->ppi->tf_info.tf_buf_second_arf, oxcf->frm_dim_cfg.width,
oxcf->frm_dim_cfg.height, cm->seq_params->subsampling_x,
cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
NULL, cpi->image_pyramid_levels, 0);
if (ret)
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate tf_buf_second_arf");
YV12_BUFFER_CONFIG *tf_buf_second_arf =
&cpi->ppi->tf_info.tf_buf_second_arf;
// We didn't apply temporal filtering for second arf ahead in
// av1_tf_info_filtering().
const int arf_src_index = gf_group->arf_src_offset[cpi->gf_frame_index];
// Right now, we are still using tf_buf_second_arf due to
// implementation complexity.
// TODO(angiebird): Reuse tf_info->tf_buf here.
av1_temporal_filter(cpi, arf_src_index, cpi->gf_frame_index, &frame_diff,
tf_buf_second_arf);
show_existing_alt_ref = av1_check_show_filtered_frame(
tf_buf_second_arf, &frame_diff, q_index, cm->seq_params->bit_depth);
if (show_existing_alt_ref) {
aom_extend_frame_borders(tf_buf_second_arf, av1_num_planes(cm));
frame_input->source = tf_buf_second_arf;
}
// Currently INTNL_ARF_UPDATE only do show_existing.
cpi->common.showable_frame |= 1;
}
// Copy source metadata to the temporal filtered frame
if (source_buffer->metadata &&
aom_copy_metadata_to_frame_buffer(frame_input->source,
source_buffer->metadata)) {
aom_internal_error(
cm->error, AOM_CODEC_MEM_ERROR,
"Failed to copy source metadata to the temporal filtered frame");
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
if (cpi->oxcf.pass == 2) end_timing(cpi, apply_filtering_time);
#endif
int set_mv_params = frame_params->frame_type == KEY_FRAME ||
update_type == ARF_UPDATE || update_type == GF_UPDATE;
cm->show_frame = frame_params->show_frame;
cm->current_frame.frame_type = frame_params->frame_type;
// TODO(bohanli): Why is this? what part of it is necessary?
av1_set_frame_size(cpi, cm->width, cm->height);
if (set_mv_params) av1_set_mv_search_params(cpi);
#if CONFIG_RD_COMMAND
if (frame_params->frame_type == KEY_FRAME) {
char filepath[] = "rd_command.txt";
av1_read_rd_command(filepath, &cpi->rd_command);
}
#endif // CONFIG_RD_COMMAND
if (cpi->gf_frame_index == 0 && !is_stat_generation_stage(cpi)) {
// perform tpl after filtering
int allow_tpl =
oxcf->gf_cfg.lag_in_frames > 1 && oxcf->algo_cfg.enable_tpl_model;
if (gf_group->size > MAX_LENGTH_TPL_FRAME_STATS) {
allow_tpl = 0;
}
if (frame_params->frame_type != KEY_FRAME) {
// In rare case, it's possible to have non ARF/GF update_type here.
// We should set allow_tpl to zero in the situation
allow_tpl =
allow_tpl && (update_type == ARF_UPDATE || update_type == GF_UPDATE ||
(cpi->use_ducky_encode &&
cpi->ducky_encode_info.frame_info.gop_mode ==
DUCKY_ENCODE_GOP_MODE_RCL));
}
if (allow_tpl) {
if (!cpi->skip_tpl_setup_stats) {
av1_tpl_preload_rc_estimate(cpi, frame_params);
av1_tpl_setup_stats(cpi, 0, frame_params);
#if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS
assert(cpi->gf_frame_index == 0);
av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data,
gf_group, cm->seq_params->bit_depth);
#endif
}
} else {
av1_init_tpl_stats(&cpi->ppi->tpl_data);
}
#if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
if (cpi->oxcf.pass == AOM_RC_SECOND_PASS &&
cpi->second_pass_log_stream != NULL) {
TPL_INFO *tpl_info;
AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info)));
av1_pack_tpl_info(tpl_info, gf_group, &cpi->ppi->tpl_data);
av1_write_tpl_info(tpl_info, cpi->second_pass_log_stream,
cpi->common.error);
aom_free(tpl_info);
}
#endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
}
if (av1_encode(cpi, dest, frame_input, frame_params, frame_results) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
// Set frame_input source to true source for psnr calculation.
if (apply_filtering && is_psnr_calc_enabled(cpi)) {
cpi->source = av1_realloc_and_scale_if_required(
cm, source_buffer, &cpi->scaled_source, cm->features.interp_filter, 0,
false, true, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels);
cpi->unscaled_source = source_buffer;
}
#if CONFIG_COLLECT_COMPONENT_TIMING
if (cpi->oxcf.pass == 2) end_timing(cpi, denoise_and_encode_time);
#endif
return AOM_CODEC_OK;
}
#endif // !CONFIG_REALTIME_ONLY
/*!\cond */
// Struct to keep track of relevant reference frame data.
typedef struct {
int map_idx;
int disp_order;
int pyr_level;
int used;
} RefBufMapData;
/*!\endcond */
// Comparison function to sort reference frames in ascending display order.
static int compare_map_idx_pair_asc(const void *a, const void *b) {
if (((RefBufMapData *)a)->disp_order == ((RefBufMapData *)b)->disp_order) {
return 0;
} else if (((const RefBufMapData *)a)->disp_order >
((const RefBufMapData *)b)->disp_order) {
return 1;
} else {
return -1;
}
}
// Checks to see if a particular reference frame is already in the reference
// frame map.
static int is_in_ref_map(RefBufMapData *map, int disp_order, int n_frames) {
for (int i = 0; i < n_frames; i++) {
if (disp_order == map[i].disp_order) return 1;
}
return 0;
}
// Add a reference buffer index to a named reference slot.
static void add_ref_to_slot(RefBufMapData *ref, int *const remapped_ref_idx,
int frame) {
remapped_ref_idx[frame - LAST_FRAME] = ref->map_idx;
ref->used = 1;
}
// Threshold dictating when we are allowed to start considering
// leaving lowest level frames unmapped.
#define LOW_LEVEL_FRAMES_TR 5
// Find which reference buffer should be left out of the named mapping.
// This is because there are 8 reference buffers and only 7 named slots.
static void set_unmapped_ref(RefBufMapData *buffer_map, int n_bufs,
int n_min_level_refs, int min_level,
int cur_frame_disp) {
int max_dist = 0;
int unmapped_idx = -1;
if (n_bufs <= ALTREF_FRAME) return;
for (int i = 0; i < n_bufs; i++) {
if (buffer_map[i].used) continue;
if (buffer_map[i].pyr_level != min_level ||
n_min_level_refs >= LOW_LEVEL_FRAMES_TR) {
int dist = abs(cur_frame_disp - buffer_map[i].disp_order);
if (dist > max_dist) {
max_dist = dist;
unmapped_idx = i;
}
}
}
assert(unmapped_idx >= 0 && "Unmapped reference not found");
buffer_map[unmapped_idx].used = 1;
}
void av1_get_ref_frames(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES],
int cur_frame_disp, const AV1_COMP *cpi, int gf_index,
int is_parallel_encode,
int remapped_ref_idx[REF_FRAMES]) {
int buf_map_idx = 0;
// Initialize reference frame mappings.
for (int i = 0; i < REF_FRAMES; ++i) remapped_ref_idx[i] = INVALID_IDX;
#if !CONFIG_REALTIME_ONLY
if (cpi->use_ducky_encode &&
cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) {
for (int rf = LAST_FRAME; rf < REF_FRAMES; ++rf) {
if (cpi->ppi->gf_group.ref_frame_list[gf_index][rf] != INVALID_IDX) {
remapped_ref_idx[rf - LAST_FRAME] =
cpi->ppi->gf_group.ref_frame_list[gf_index][rf];
}
}
int valid_rf_idx = 0;
static const int ref_frame_type_order[REF_FRAMES - LAST_FRAME] = {
GOLDEN_FRAME, ALTREF_FRAME, LAST_FRAME, BWDREF_FRAME,
ALTREF2_FRAME, LAST2_FRAME, LAST3_FRAME
};
for (int i = 0; i < REF_FRAMES - LAST_FRAME; i++) {
int rf = ref_frame_type_order[i];
if (remapped_ref_idx[rf - LAST_FRAME] != INVALID_IDX) {
valid_rf_idx = remapped_ref_idx[rf - LAST_FRAME];
break;
}
}
for (int i = 0; i < REF_FRAMES; ++i) {
if (remapped_ref_idx[i] == INVALID_IDX) {
remapped_ref_idx[i] = valid_rf_idx;
}
}
return;
}
#endif // !CONFIG_REALTIME_ONLY
RefBufMapData buffer_map[REF_FRAMES];
int n_bufs = 0;
memset(buffer_map, 0, REF_FRAMES * sizeof(buffer_map[0]));
int min_level = MAX_ARF_LAYERS;
int max_level = 0;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
int skip_ref_unmapping = 0;
int is_one_pass_rt = is_one_pass_rt_params(cpi);
// Go through current reference buffers and store display order, pyr level,
// and map index.
for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) {
// Get reference frame buffer.
RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx];
if (ref_pair.disp_order == -1) continue;
const int frame_order = ref_pair.disp_order;
// Avoid duplicates.
if (is_in_ref_map(buffer_map, frame_order, n_bufs)) continue;
const int reference_frame_level = ref_pair.pyr_level;
// Keep track of the lowest and highest levels that currently exist.
if (reference_frame_level < min_level) min_level = reference_frame_level;
if (reference_frame_level > max_level) max_level = reference_frame_level;
buffer_map[n_bufs].map_idx = map_idx;
buffer_map[n_bufs].disp_order = frame_order;
buffer_map[n_bufs].pyr_level = reference_frame_level;
buffer_map[n_bufs].used = 0;
n_bufs++;
}
// Sort frames in ascending display order.
qsort(buffer_map, n_bufs, sizeof(buffer_map[0]), compare_map_idx_pair_asc);
int n_min_level_refs = 0;
int closest_past_ref = -1;
int golden_idx = -1;
int altref_idx = -1;
// Find the GOLDEN_FRAME and BWDREF_FRAME.
// Also collect various stats about the reference frames for the remaining
// mappings.
for (int i = n_bufs - 1; i >= 0; i--) {
if (buffer_map[i].pyr_level == min_level) {
// Keep track of the number of lowest level frames.
n_min_level_refs++;
if (buffer_map[i].disp_order < cur_frame_disp && golden_idx == -1 &&
remapped_ref_idx[GOLDEN_FRAME - LAST_FRAME] == INVALID_IDX) {
// Save index for GOLDEN.
golden_idx = i;
} else if (buffer_map[i].disp_order > cur_frame_disp &&
altref_idx == -1 &&
remapped_ref_idx[ALTREF_FRAME - LAST_FRAME] == INVALID_IDX) {
// Save index for ALTREF.
altref_idx = i;
}
} else if (buffer_map[i].disp_order == cur_frame_disp) {
// Map the BWDREF_FRAME if this is the show_existing_frame.
add_ref_to_slot(&buffer_map[i], remapped_ref_idx, BWDREF_FRAME);
}
// During parallel encodes of lower layer frames, exclude the first frame
// (frame_parallel_level 1) from being used for the reference assignment of
// the second frame (frame_parallel_level 2).
if (!is_one_pass_rt && gf_group->frame_parallel_level[gf_index] == 2 &&
gf_group->frame_parallel_level[gf_index - 1] == 1 &&
gf_group->update_type[gf_index - 1] == INTNL_ARF_UPDATE) {
assert(gf_group->update_type[gf_index] == INTNL_ARF_UPDATE);
#if CONFIG_FPMT_TEST
is_parallel_encode = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE)
? is_parallel_encode
: 0;
#endif // CONFIG_FPMT_TEST
// If parallel cpis are active, use ref_idx_to_skip, else, use display
// index.
assert(IMPLIES(is_parallel_encode, cpi->ref_idx_to_skip != INVALID_IDX));
assert(IMPLIES(!is_parallel_encode,
gf_group->skip_frame_as_ref[gf_index] != INVALID_IDX));
buffer_map[i].used = is_parallel_encode
? (buffer_map[i].map_idx == cpi->ref_idx_to_skip)
: (buffer_map[i].disp_order ==
gf_group->skip_frame_as_ref[gf_index]);
// In case a ref frame is excluded from being used during assignment,
// skip the call to set_unmapped_ref(). Applicable in steady state.
if (buffer_map[i].used) skip_ref_unmapping = 1;
}
// Keep track of where the frames change from being past frames to future
// frames.
if (buffer_map[i].disp_order < cur_frame_disp && closest_past_ref < 0)
closest_past_ref = i;
}
// Do not map GOLDEN and ALTREF based on their pyramid level if all reference
// frames have the same level.
if (n_min_level_refs <= n_bufs) {
// Map the GOLDEN_FRAME.
if (golden_idx > -1)
add_ref_to_slot(&buffer_map[golden_idx], remapped_ref_idx, GOLDEN_FRAME);
// Map the ALTREF_FRAME.
if (altref_idx > -1)
add_ref_to_slot(&buffer_map[altref_idx], remapped_ref_idx, ALTREF_FRAME);
}
// Find the buffer to be excluded from the mapping.
if (!skip_ref_unmapping)
set_unmapped_ref(buffer_map, n_bufs, n_min_level_refs, min_level,
cur_frame_disp);
// Place past frames in LAST_FRAME, LAST2_FRAME, and LAST3_FRAME.
for (int frame = LAST_FRAME; frame < GOLDEN_FRAME; frame++) {
// Continue if the current ref slot is already full.
if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
// Find the next unmapped reference buffer
// in decreasing ouptut order relative to current picture.
int next_buf_max = 0;
int next_disp_order = INT_MIN;
for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) {
if (!buffer_map[buf_map_idx].used &&
buffer_map[buf_map_idx].disp_order < cur_frame_disp &&
buffer_map[buf_map_idx].disp_order > next_disp_order) {
next_disp_order = buffer_map[buf_map_idx].disp_order;
next_buf_max = buf_map_idx;
}
}
buf_map_idx = next_buf_max;
if (buf_map_idx < 0) break;
if (buffer_map[buf_map_idx].used) break;
add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
}
// Place future frames (if there are any) in BWDREF_FRAME and ALTREF2_FRAME.
for (int frame = BWDREF_FRAME; frame < REF_FRAMES; frame++) {
// Continue if the current ref slot is already full.
if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
// Find the next unmapped reference buffer
// in increasing ouptut order relative to current picture.
int next_buf_max = 0;
int next_disp_order = INT_MAX;
for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) {
if (!buffer_map[buf_map_idx].used &&
buffer_map[buf_map_idx].disp_order > cur_frame_disp &&
buffer_map[buf_map_idx].disp_order < next_disp_order) {
next_disp_order = buffer_map[buf_map_idx].disp_order;
next_buf_max = buf_map_idx;
}
}
buf_map_idx = next_buf_max;
if (buf_map_idx < 0) break;
if (buffer_map[buf_map_idx].used) break;
add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
}
// Place remaining past frames.
buf_map_idx = closest_past_ref;
for (int frame = LAST_FRAME; frame < REF_FRAMES; frame++) {
// Continue if the current ref slot is already full.
if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
// Find the next unmapped reference buffer.
for (; buf_map_idx >= 0; buf_map_idx--) {
if (!buffer_map[buf_map_idx].used) break;
}
if (buf_map_idx < 0) break;
if (buffer_map[buf_map_idx].used) break;
add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
}
// Place remaining future frames.
buf_map_idx = n_bufs - 1;
for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; frame--) {
// Continue if the current ref slot is already full.
if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
// Find the next unmapped reference buffer.
for (; buf_map_idx > closest_past_ref; buf_map_idx--) {
if (!buffer_map[buf_map_idx].used) break;
}
if (buf_map_idx < 0) break;
if (buffer_map[buf_map_idx].used) break;
add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
}
// Fill any slots that are empty (should only happen for the first 7 frames).
for (int i = 0; i < REF_FRAMES; ++i)
if (remapped_ref_idx[i] == INVALID_IDX) remapped_ref_idx[i] = 0;
}
int av1_encode_strategy(AV1_COMP *const cpi, size_t *const size,
uint8_t *const dest, unsigned int *frame_flags,
int64_t *const time_stamp, int64_t *const time_end,
const aom_rational64_t *const timestamp_ratio,
int *const pop_lookahead, int flush) {
AV1EncoderConfig *const oxcf = &cpi->oxcf;
AV1_COMMON *const cm = &cpi->common;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
ExternalFlags *const ext_flags = &cpi->ext_flags;
GFConfig *const gf_cfg = &oxcf->gf_cfg;
EncodeFrameInput frame_input;
EncodeFrameParams frame_params;
EncodeFrameResults frame_results;
memset(&frame_input, 0, sizeof(frame_input));
memset(&frame_params, 0, sizeof(frame_params));
memset(&frame_results, 0, sizeof(frame_results));
#if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
VBR_RATECTRL_INFO *vbr_rc_info = &cpi->vbr_rc_info;
if (oxcf->pass == AOM_RC_THIRD_PASS && vbr_rc_info->ready == 0) {
THIRD_PASS_FRAME_INFO frame_info[MAX_THIRD_PASS_BUF];
av1_open_second_pass_log(cpi, 1);
FILE *second_pass_log_stream = cpi->second_pass_log_stream;
fseek(second_pass_log_stream, 0, SEEK_END);
size_t file_size = ftell(second_pass_log_stream);
rewind(second_pass_log_stream);
size_t read_size = 0;
while (read_size < file_size) {
THIRD_PASS_GOP_INFO gop_info;
struct aom_internal_error_info *error = cpi->common.error;
// Read in GOP information from the second pass file.
av1_read_second_pass_gop_info(second_pass_log_stream, &gop_info, error);
TPL_INFO *tpl_info;
AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info)));
av1_read_tpl_info(tpl_info, second_pass_log_stream, error);
// Read in per-frame info from second-pass encoding
av1_read_second_pass_per_frame_info(second_pass_log_stream, frame_info,
gop_info.num_frames, error);
av1_vbr_rc_append_tpl_info(vbr_rc_info, tpl_info);
read_size = ftell(second_pass_log_stream);
aom_free(tpl_info);
}
av1_close_second_pass_log(cpi);
if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
vbr_rc_info->base_q_index = cpi->oxcf.rc_cfg.cq_level;
av1_vbr_rc_compute_q_indices(
vbr_rc_info->base_q_index, vbr_rc_info->total_frame_count,
vbr_rc_info->qstep_ratio_list, cm->seq_params->bit_depth,
vbr_rc_info->q_index_list);
} else {
vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
vbr_rc_info->total_bit_budget, cm->seq_params->bit_depth,
vbr_rc_info->scale_factors, vbr_rc_info->total_frame_count,
vbr_rc_info->update_type_list, vbr_rc_info->qstep_ratio_list,
vbr_rc_info->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
}
vbr_rc_info->ready = 1;
#if CONFIG_RATECTRL_LOG
rc_log_record_chunk_info(&cpi->rc_log, vbr_rc_info->base_q_index,
vbr_rc_info->total_frame_count);
#endif // CONFIG_RATECTRL_LOG
}
#endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
// Check if we need to stuff more src frames
if (flush == 0) {
int srcbuf_size =
av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage);
int pop_size =
av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage);
// Continue buffering look ahead buffer.
if (srcbuf_size < pop_size) return -1;
}
if (!av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage)) {
#if !CONFIG_REALTIME_ONLY
if (flush && oxcf->pass == AOM_RC_FIRST_PASS &&
!cpi->ppi->twopass.first_pass_done) {
av1_end_first_pass(cpi); /* get last stats packet */
cpi->ppi->twopass.first_pass_done = 1;
}
#endif
return -1;
}
// TODO(sarahparker) finish bit allocation for one pass pyramid
if (has_no_stats_stage(cpi)) {
gf_cfg->gf_max_pyr_height =
AOMMIN(gf_cfg->gf_max_pyr_height, USE_ALTREF_FOR_ONE_PASS);
gf_cfg->gf_min_pyr_height =
AOMMIN(gf_cfg->gf_min_pyr_height, gf_cfg->gf_max_pyr_height);
}
// Allocation of mi buffers.
alloc_mb_mode_info_buffers(cpi);
cpi->skip_tpl_setup_stats = 0;
#if !CONFIG_REALTIME_ONLY
if (oxcf->pass != AOM_RC_FIRST_PASS) {
TplParams *const tpl_data = &cpi->ppi->tpl_data;
if (tpl_data->tpl_stats_pool[0] == NULL) {
av1_setup_tpl_buffers(cpi->ppi, &cm->mi_params, oxcf->frm_dim_cfg.width,
oxcf->frm_dim_cfg.height, 0,
oxcf->gf_cfg.lag_in_frames);
}
}
cpi->twopass_frame.this_frame = NULL;
const int use_one_pass_rt_params = is_one_pass_rt_params(cpi);
if (!use_one_pass_rt_params && !is_stat_generation_stage(cpi)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_get_second_pass_params_time);
#endif
// Initialise frame_level_rate_correction_factors with value previous
// to the parallel frames.
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
for (int i = 0; i < RATE_FACTOR_LEVELS; i++) {
cpi->rc.frame_level_rate_correction_factors[i] =
#if CONFIG_FPMT_TEST
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE)
? cpi->ppi->p_rc.temp_rate_correction_factors[i]
:
#endif // CONFIG_FPMT_TEST
cpi->ppi->p_rc.rate_correction_factors[i];
}
}
// copy mv_stats from ppi to frame_level cpi.
cpi->mv_stats = cpi->ppi->mv_stats;
av1_get_second_pass_params(cpi, &frame_params, *frame_flags);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_get_second_pass_params_time);
#endif
}
#endif
if (!is_stat_generation_stage(cpi)) {
// TODO(jingning): fwd key frame always uses show existing frame?
if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE &&
gf_group->refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
frame_params.show_existing_frame = 1;
} else {
frame_params.show_existing_frame =
(cpi->ppi->show_existing_alt_ref &&
gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) ||
gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE;
}
frame_params.show_existing_frame &= allow_show_existing(cpi, *frame_flags);
// Special handling to reset 'show_existing_frame' in case of dropped
// frames.
if (oxcf->rc_cfg.drop_frames_water_mark &&
(gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE ||
gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE)) {
// During the encode of an OVERLAY_UPDATE/INTNL_OVERLAY_UPDATE frame, loop
// over the gf group to check if the corresponding
// ARF_UPDATE/INTNL_ARF_UPDATE frame was dropped.
int cur_disp_idx = gf_group->display_idx[cpi->gf_frame_index];
for (int idx = 0; idx < cpi->gf_frame_index; idx++) {
if (cur_disp_idx == gf_group->display_idx[idx]) {
assert(IMPLIES(
gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE,
gf_group->update_type[idx] == ARF_UPDATE));
assert(IMPLIES(gf_group->update_type[cpi->gf_frame_index] ==
INTNL_OVERLAY_UPDATE,
gf_group->update_type[idx] == INTNL_ARF_UPDATE));
// Reset show_existing_frame and set cpi->is_dropped_frame to true if
// the frame was dropped during its first encode.
if (gf_group->is_frame_dropped[idx]) {
frame_params.show_existing_frame = 0;
assert(!cpi->is_dropped_frame);
cpi->is_dropped_frame = true;
}
break;
}
}
}
// Reset show_existing_alt_ref decision to 0 after it is used.
if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
cpi->ppi->show_existing_alt_ref = 0;
}
} else {
frame_params.show_existing_frame = 0;
}
struct lookahead_entry *source = NULL;
struct lookahead_entry *last_source = NULL;
if (frame_params.show_existing_frame) {
source = av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage);
*pop_lookahead = 1;
frame_params.show_frame = 1;
} else {
source = choose_frame_source(cpi, &flush, pop_lookahead, &last_source,
&frame_params.show_frame);
}
if (source == NULL) { // If no source was found, we can't encode a frame.
#if !CONFIG_REALTIME_ONLY
if (flush && oxcf->pass == AOM_RC_FIRST_PASS &&
!cpi->ppi->twopass.first_pass_done) {
av1_end_first_pass(cpi); /* get last stats packet */
cpi->ppi->twopass.first_pass_done = 1;
}
#endif
return -1;
}
// reset src_offset to allow actual encode call for this frame to get its
// source.
gf_group->src_offset[cpi->gf_frame_index] = 0;
// Source may be changed if temporal filtered later.
frame_input.source = &source->img;
if ((cpi->ppi->use_svc || cpi->rc.prev_frame_is_dropped) &&
last_source != NULL)
av1_svc_set_last_source(cpi, &frame_input, &last_source->img);
else
frame_input.last_source = last_source != NULL ? &last_source->img : NULL;
frame_input.ts_duration = source->ts_end - source->ts_start;
// Save unfiltered source. It is used in av1_get_second_pass_params().
cpi->unfiltered_source = frame_input.source;
*time_stamp = source->ts_start;
*time_end = source->ts_end;
if (source->ts_start < cpi->time_stamps.first_ts_start) {
cpi->time_stamps.first_ts_start = source->ts_start;
cpi->time_stamps.prev_ts_end = source->ts_start;
}
av1_apply_encoding_flags(cpi, source->flags);
*frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
cpi->framerate = cpi->temp_framerate;
}
}
#endif // CONFIG_FPMT_TEST
// Shown frames and arf-overlay frames need frame-rate considering
if (frame_params.show_frame)
adjust_frame_rate(cpi, source->ts_start, source->ts_end);
if (!frame_params.show_existing_frame) {
if (cpi->film_grain_table) {
cm->cur_frame->film_grain_params_present = aom_film_grain_table_lookup(
cpi->film_grain_table, *time_stamp, *time_end, 0 /* =erase */,
&cm->film_grain_params);
} else {
cm->cur_frame->film_grain_params_present =
cm->seq_params->film_grain_params_present;
}
// only one operating point supported now
const int64_t pts64 = ticks_to_timebase_units(timestamp_ratio, *time_stamp);
if (pts64 < 0 || pts64 > UINT32_MAX) return AOM_CODEC_ERROR;
cm->frame_presentation_time = (uint32_t)pts64;
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_get_one_pass_rt_params_time);
#endif
#if CONFIG_REALTIME_ONLY
av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input,
*frame_flags);
if (use_rtc_reference_structure_one_layer(cpi))
av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0);
#else
if (use_one_pass_rt_params) {
av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input,
*frame_flags);
if (use_rtc_reference_structure_one_layer(cpi))
av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0);
}
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_get_one_pass_rt_params_time);
#endif
FRAME_UPDATE_TYPE frame_update_type =
get_frame_update_type(gf_group, cpi->gf_frame_index);
if (frame_params.show_existing_frame &&
frame_params.frame_type != KEY_FRAME) {
// Force show-existing frames to be INTER, except forward keyframes
frame_params.frame_type = INTER_FRAME;
}
// Per-frame encode speed. In theory this can vary, but things may have
// been written assuming speed-level will not change within a sequence, so
// this parameter should be used with caution.
frame_params.speed = oxcf->speed;
#if !CONFIG_REALTIME_ONLY
// Set forced key frames when necessary. For two-pass encoding / lap mode,
// this is already handled by av1_get_second_pass_params. However when no
// stats are available, we still need to check if the new frame is a keyframe.
// For one pass rt, this is already checked in av1_get_one_pass_rt_params.
if (!use_one_pass_rt_params &&
(is_stat_generation_stage(cpi) || has_no_stats_stage(cpi))) {
// Current frame is coded as a key-frame for any of the following cases:
// 1) First frame of a video
// 2) For all-intra frame encoding
// 3) When a key-frame is forced
const int kf_requested =
(cm->current_frame.frame_number == 0 ||
oxcf->kf_cfg.key_freq_max == 0 || (*frame_flags & FRAMEFLAGS_KEY));
if (kf_requested && frame_update_type != OVERLAY_UPDATE &&
frame_update_type != INTNL_OVERLAY_UPDATE) {
frame_params.frame_type = KEY_FRAME;
} else if (is_stat_generation_stage(cpi)) {
// For stats generation, set the frame type to inter here.
frame_params.frame_type = INTER_FRAME;
}
}
#endif
// Work out some encoding parameters specific to the pass:
if (has_no_stats_stage(cpi) && oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_update_parameters(cpi);
} else if (is_stat_generation_stage(cpi)) {
cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(&oxcf->rc_cfg);
} else if (is_stat_consumption_stage(cpi)) {
#if CONFIG_MISMATCH_DEBUG
mismatch_move_frame_idx_w();
#endif
#if TXCOEFF_COST_TIMER
cm->txcoeff_cost_timer = 0;
cm->txcoeff_cost_count = 0;
#endif
}
if (!is_stat_generation_stage(cpi))
set_ext_overrides(cm, &frame_params, ext_flags);
// Shown keyframes and S frames refresh all reference buffers
const int force_refresh_all =
((frame_params.frame_type == KEY_FRAME && frame_params.show_frame) ||
frame_params.frame_type == S_FRAME) &&
!frame_params.show_existing_frame;
av1_configure_buffer_updates(
cpi, &frame_params.refresh_frame, frame_update_type,
gf_group->refbuf_state[cpi->gf_frame_index], force_refresh_all);
if (!is_stat_generation_stage(cpi)) {
const YV12_BUFFER_CONFIG *ref_frame_buf[INTER_REFS_PER_FRAME];
RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
init_ref_map_pair(cpi, ref_frame_map_pairs);
const int order_offset = gf_group->arf_src_offset[cpi->gf_frame_index];
const int cur_frame_disp =
cpi->common.current_frame.frame_number + order_offset;
int get_ref_frames = 0;
#if CONFIG_FPMT_TEST
get_ref_frames =
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0;
#endif // CONFIG_FPMT_TEST
if (get_ref_frames ||
gf_group->frame_parallel_level[cpi->gf_frame_index] == 0) {
if (!ext_flags->refresh_frame.update_pending) {
av1_get_ref_frames(ref_frame_map_pairs, cur_frame_disp, cpi,
cpi->gf_frame_index, 1, cm->remapped_ref_idx);
} else if (cpi->ppi->rtc_ref.set_ref_frame_config ||
use_rtc_reference_structure_one_layer(cpi)) {
for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++)
cm->remapped_ref_idx[i] = cpi->ppi->rtc_ref.ref_idx[i];
}
}
// Get the reference frames
bool has_ref_frames = false;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const RefCntBuffer *ref_frame =
get_ref_frame_buf(cm, ref_frame_priority_order[i]);
ref_frame_buf[i] = ref_frame != NULL ? &ref_frame->buf : NULL;
if (ref_frame != NULL) has_ref_frames = true;
}
if (!has_ref_frames && (frame_params.frame_type == INTER_FRAME ||
frame_params.frame_type == S_FRAME)) {
return AOM_CODEC_ERROR;
}
// Work out which reference frame slots may be used.
frame_params.ref_frame_flags =
get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi), ref_frame_buf,
ext_flags->ref_frame_flags);
// Set primary_ref_frame of non-reference frames as PRIMARY_REF_NONE.
if (cpi->ppi->gf_group.is_frame_non_ref[cpi->gf_frame_index]) {
frame_params.primary_ref_frame = PRIMARY_REF_NONE;
} else {
frame_params.primary_ref_frame =
choose_primary_ref_frame(cpi, &frame_params);
}
frame_params.order_offset = gf_group->arf_src_offset[cpi->gf_frame_index];
// Call av1_get_refresh_frame_flags() if refresh index not available.
if (!cpi->refresh_idx_available) {
frame_params.refresh_frame_flags = av1_get_refresh_frame_flags(
cpi, &frame_params, frame_update_type, cpi->gf_frame_index,
cur_frame_disp, ref_frame_map_pairs);
} else {
assert(cpi->ref_refresh_index != INVALID_IDX);
frame_params.refresh_frame_flags = (1 << cpi->ref_refresh_index);
}
// Make the frames marked as is_frame_non_ref to non-reference frames.
if (gf_group->is_frame_non_ref[cpi->gf_frame_index])
frame_params.refresh_frame_flags = 0;
frame_params.existing_fb_idx_to_show = INVALID_IDX;
// Find the frame buffer to show based on display order.
if (frame_params.show_existing_frame) {
for (int frame = 0; frame < REF_FRAMES; frame++) {
const RefCntBuffer *const buf = cm->ref_frame_map[frame];
if (buf == NULL) continue;
const int frame_order = (int)buf->display_order_hint;
if (frame_order == cur_frame_disp)
frame_params.existing_fb_idx_to_show = frame;
}
}
}
// The way frame_params->remapped_ref_idx is setup is a placeholder.
// Currently, reference buffer assignment is done by update_ref_frame_map()
// which is called by high-level strategy AFTER encoding a frame. It
// modifies cm->remapped_ref_idx. If you want to use an alternative method
// to determine reference buffer assignment, just put your assignments into
// frame_params->remapped_ref_idx here and they will be used when encoding
// this frame. If frame_params->remapped_ref_idx is setup independently of
// cm->remapped_ref_idx then update_ref_frame_map() will have no effect.
memcpy(frame_params.remapped_ref_idx, cm->remapped_ref_idx,
REF_FRAMES * sizeof(*cm->remapped_ref_idx));
cpi->td.mb.rdmult_delta_qindex = cpi->td.mb.delta_qindex = 0;
if (!frame_params.show_existing_frame) {
cm->quant_params.using_qmatrix = oxcf->q_cfg.using_qm;
}
const int is_intra_frame = frame_params.frame_type == KEY_FRAME ||
frame_params.frame_type == INTRA_ONLY_FRAME;
FeatureFlags *const features = &cm->features;
if (!is_stat_generation_stage(cpi) &&
(oxcf->pass == AOM_RC_ONE_PASS || oxcf->pass >= AOM_RC_SECOND_PASS) &&
is_intra_frame) {
av1_set_screen_content_options(cpi, features);
}
#if CONFIG_REALTIME_ONLY
if (av1_encode(cpi, dest, &frame_input, &frame_params, &frame_results) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
#else
if (has_no_stats_stage(cpi) && oxcf->mode == REALTIME &&
gf_cfg->lag_in_frames == 0) {
if (av1_encode(cpi, dest, &frame_input, &frame_params, &frame_results) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
} else if (denoise_and_encode(cpi, dest, &frame_input, &frame_params,
&frame_results) != AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
#endif // CONFIG_REALTIME_ONLY
// This is used in rtc temporal filter case. Use true source in the PSNR
// calculation.
if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf) {
assert(cpi->orig_source.buffer_alloc_sz > 0);
cpi->source = &cpi->orig_source;
}
if (!is_stat_generation_stage(cpi)) {
// First pass doesn't modify reference buffer assignment or produce frame
// flags
update_frame_flags(&cpi->common, &cpi->refresh_frame, frame_flags);
set_additional_frame_flags(cm, frame_flags);
}
#if !CONFIG_REALTIME_ONLY
#if TXCOEFF_COST_TIMER
if (!is_stat_generation_stage(cpi)) {
cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer;
fprintf(stderr,
"\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld "
"in us\n",
cm->txcoeff_cost_count, cm->txcoeff_cost_timer,
cm->cum_txcoeff_cost_timer);
}
#endif
#endif // !CONFIG_REALTIME_ONLY
#if CONFIG_TUNE_VMAF
if (!is_stat_generation_stage(cpi) &&
(oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING &&
oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) {
av1_update_vmaf_curve(cpi);
}
#endif
// Unpack frame_results:
*size = frame_results.size;
// Leave a signal for a higher level caller about if this frame is droppable
if (*size > 0) {
cpi->droppable =
is_frame_droppable(&cpi->ppi->rtc_ref, &ext_flags->refresh_frame);
}
// For SVC, or when frame-dropper is enabled:
// keep track of the (unscaled) source corresponding to the refresh of LAST
// reference (base temporal layer - TL0). Copy only for the
// top spatial enhancement layer so all spatial layers of the next
// superframe have last_source to be aligned with previous TL0 superframe.
// Avoid cases where resolution changes for unscaled source (top spatial
// layer). Only needs to be done for frame that are encoded (size > 0).
if (*size > 0 &&
(cpi->ppi->use_svc || cpi->oxcf.rc_cfg.drop_frames_water_mark > 0) &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
cpi->svc.temporal_layer_id == 0 &&
cpi->unscaled_source->y_width == cpi->svc.source_last_TL0.y_width &&
cpi->unscaled_source->y_height == cpi->svc.source_last_TL0.y_height) {
aom_yv12_copy_y(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1);
aom_yv12_copy_u(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1);
aom_yv12_copy_v(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1);
}
return AOM_CODEC_OK;
}