blob: f939b6d1fa9bc3e6c35d7e9d1e3b7920fe6d2461 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/intra_mode_search.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/var_based_part.h"
static INLINE int early_term_inter_search_with_sse(int early_term_idx,
BLOCK_SIZE bsize,
int64_t this_sse,
int64_t best_sse,
PREDICTION_MODE this_mode) {
// Aggressiveness to terminate inter mode search early is adjusted based on
// speed and block size.
static const double early_term_thresh[4][4] = { { 0.65, 0.65, 0.65, 0.7 },
{ 0.6, 0.65, 0.85, 0.9 },
{ 0.5, 0.5, 0.55, 0.6 },
{ 0.6, 0.75, 0.85, 0.85 } };
static const double early_term_thresh_newmv_nearestmv[4] = { 0.3, 0.3, 0.3,
0.3 };
const int size_group = size_group_lookup[bsize];
assert(size_group < 4);
assert((early_term_idx > 0) && (early_term_idx < EARLY_TERM_INDICES));
const double threshold =
((early_term_idx == EARLY_TERM_IDX_4) &&
(this_mode == NEWMV || this_mode == NEARESTMV))
? early_term_thresh_newmv_nearestmv[size_group]
: early_term_thresh[early_term_idx - 1][size_group];
// Terminate inter mode search early based on best sse so far.
if ((early_term_idx > 0) && (threshold * this_sse > best_sse)) {
return 1;
}
return 0;
}
static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
bp->best_sse = INT64_MAX;
bp->best_mode = NEARESTMV;
bp->best_ref_frame = LAST_FRAME;
bp->best_second_ref_frame = NONE_FRAME;
bp->best_tx_size = TX_8X8;
bp->tx_type = DCT_DCT;
bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
bp->best_mode_skip_txfm = 0;
bp->best_mode_initial_skip_flag = 0;
bp->best_pred = NULL;
bp->best_motion_mode = SIMPLE_TRANSLATION;
bp->num_proj_ref = 0;
av1_zero(bp->wm_params);
av1_zero(bp->pmi);
}
// Copy best inter mode parameters to best_pickmode
static INLINE void update_search_state_nonrd(
InterModeSearchStateNonrd *search_state, MB_MODE_INFO *const mi,
TxfmSearchInfo *txfm_info, RD_STATS *nonskip_rdc, PICK_MODE_CONTEXT *ctx,
PREDICTION_MODE this_best_mode, const int64_t sse_y) {
BEST_PICKMODE *const best_pickmode = &search_state->best_pickmode;
best_pickmode->best_sse = sse_y;
best_pickmode->best_mode = this_best_mode;
best_pickmode->best_motion_mode = mi->motion_mode;
best_pickmode->wm_params = mi->wm_params;
best_pickmode->num_proj_ref = mi->num_proj_ref;
best_pickmode->best_pred_filter = mi->interp_filters;
best_pickmode->best_tx_size = mi->tx_size;
best_pickmode->best_ref_frame = mi->ref_frame[0];
best_pickmode->best_second_ref_frame = mi->ref_frame[1];
best_pickmode->best_mode_skip_txfm = search_state->this_rdc.skip_txfm;
best_pickmode->best_mode_initial_skip_flag =
(nonskip_rdc->rate == INT_MAX && search_state->this_rdc.skip_txfm);
if (!best_pickmode->best_mode_skip_txfm) {
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
}
}
static INLINE int subpel_select(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int_mv *mv, MV ref_mv, FULLPEL_MV start_mv,
bool fullpel_performed_well) {
const int frame_lowmotion = cpi->rc.avg_frame_low_motion;
const int reduce_mv_pel_precision_highmotion =
cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion;
// Reduce MV precision for higher int MV value & frame-level motion
if (reduce_mv_pel_precision_highmotion >= 3) {
int mv_thresh = 4;
const int is_low_resoln =
(cpi->common.width * cpi->common.height <= 320 * 240);
mv_thresh = (bsize > BLOCK_32X32) ? 2 : (bsize > BLOCK_16X16) ? 4 : 6;
if (frame_lowmotion > 0 && frame_lowmotion < 40) mv_thresh = 12;
mv_thresh = (is_low_resoln) ? mv_thresh >> 1 : mv_thresh;
if (abs(mv->as_fullmv.row) >= mv_thresh ||
abs(mv->as_fullmv.col) >= mv_thresh)
return HALF_PEL;
} else if (reduce_mv_pel_precision_highmotion >= 1) {
int mv_thresh;
const int th_vals[2][3] = { { 4, 8, 10 }, { 4, 6, 8 } };
const int th_idx = reduce_mv_pel_precision_highmotion - 1;
assert(th_idx >= 0 && th_idx < 2);
if (frame_lowmotion > 0 && frame_lowmotion < 40)
mv_thresh = 12;
else
mv_thresh = (bsize >= BLOCK_32X32) ? th_vals[th_idx][0]
: (bsize >= BLOCK_16X16) ? th_vals[th_idx][1]
: th_vals[th_idx][2];
if (abs(mv->as_fullmv.row) >= (mv_thresh << 1) ||
abs(mv->as_fullmv.col) >= (mv_thresh << 1))
return FULL_PEL;
else if (abs(mv->as_fullmv.row) >= mv_thresh ||
abs(mv->as_fullmv.col) >= mv_thresh)
return HALF_PEL;
}
// Reduce MV precision for relatively static (e.g. background), low-complex
// large areas
if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 2) {
const int qband = x->qindex >> (QINDEX_BITS - 2);
assert(qband < 4);
if (x->content_state_sb.source_sad_nonrd <= kVeryLowSad &&
bsize > BLOCK_16X16 && qband != 0) {
if (x->source_variance < 500)
return FULL_PEL;
else if (x->source_variance < 5000)
return HALF_PEL;
}
} else if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 1) {
if (fullpel_performed_well && ref_mv.row == 0 && ref_mv.col == 0 &&
start_mv.row == 0 && start_mv.col == 0)
return HALF_PEL;
}
return cpi->sf.mv_sf.subpel_force_stop;
}
static bool use_aggressive_subpel_search_method(MACROBLOCK *x,
bool use_adaptive_subpel_search,
bool fullpel_performed_well) {
if (!use_adaptive_subpel_search) return false;
const int qband = x->qindex >> (QINDEX_BITS - 2);
assert(qband < 4);
if ((qband > 0) && (fullpel_performed_well ||
(x->content_state_sb.source_sad_nonrd <= kLowSad) ||
(x->source_variance < 100)))
return true;
return false;
}
/*!\brief Runs Motion Estimation for a specific block and specific ref frame.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Finds the best Motion Vector by running Motion Estimation for a specific
* block and a specific reference frame. Exits early if RDCost of Full Pel part
* exceeds best RD Cost fund so far
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] bsize Current block size
* \param[in] tmp_mv Pointer to best found New MV
* \param[in] rate_mv Pointer to Rate of the best new MV
* \param[in] best_rd_sofar RD Cost of the best mode found so far
* \param[in] use_base_mv Flag, indicating that tmp_mv holds
* specific MV to start the search with
*
* \return Returns 0 if ME was terminated after Full Pel Search because too
* high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv.
* Rate estimation for this vector is placed to \c rate_mv
*/
static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int_mv *tmp_mv,
int *rate_mv, int64_t best_rd_sofar,
int use_base_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
const SPEED_FEATURES *sf = &cpi->sf;
MB_MODE_INFO *mi = xd->mi[0];
int step_param = (sf->rt_sf.fullpel_search_step_param)
? sf->rt_sf.fullpel_search_step_param
: cpi->mv_search_params.mv_step_param;
FULLPEL_MV start_mv;
const int ref = mi->ref_frame[0];
const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
MV center_mv;
int dis;
int rv = 0;
int cost_list[5];
int search_subpel = 1;
start_mv = get_fullmv_from_mv(&ref_mv);
if (!use_base_mv)
center_mv = ref_mv;
else
center_mv = tmp_mv->as_mv;
const SEARCH_METHODS search_method =
av1_get_default_mv_search_method(x, &cpi->sf.mv_sf, bsize);
const search_site_config *src_search_sites =
av1_get_search_site_config(cpi, x, search_method);
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
FULLPEL_MV_STATS best_mv_stats;
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
start_mv, src_search_sites, search_method,
/*fine_search_interval=*/0);
const unsigned int full_var_rd = av1_full_pixel_search(
start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list),
&tmp_mv->as_fullmv, &best_mv_stats, NULL);
// calculate the bit cost on motion vector
MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv);
*rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
// TODO(kyslov) Account for Rate Mode!
rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
if (rv && search_subpel) {
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
const bool fullpel_performed_well =
(bsize == BLOCK_64X64 && full_var_rd * 40 < 62267 * 7) ||
(bsize == BLOCK_32X32 && full_var_rd * 8 < 42380) ||
(bsize == BLOCK_16X16 && full_var_rd * 8 < 10127);
if (sf->rt_sf.reduce_mv_pel_precision_highmotion ||
sf->rt_sf.reduce_mv_pel_precision_lowcomplex)
ms_params.forced_stop = subpel_select(cpi, x, bsize, tmp_mv, ref_mv,
start_mv, fullpel_performed_well);
MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
// adaptively downgrade subpel search method based on block properties
if (use_aggressive_subpel_search_method(
x, sf->rt_sf.use_adaptive_subpel_search, fullpel_performed_well))
av1_find_best_sub_pixel_tree_pruned_more(
xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &tmp_mv->as_mv,
&dis, &x->pred_sse[ref], NULL);
else
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &tmp_mv->as_mv,
&dis, &x->pred_sse[ref], NULL);
*rate_mv =
av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
// The final MV can not be equal to the reference MV as this will trigger an
// assert later. This can happen if both NEAREST and NEAR modes were skipped.
rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row);
return rv;
}
/*!\brief Searches for the best New Motion Vector.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Finds the best Motion Vector by doing Motion Estimation. Uses reduced
* complexity ME for non-LAST frames or calls \c combined_motion_search
* for LAST reference frame
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] frame_mv Array that holds MVs for all modes
* and ref frames
* \param[in] ref_frame Reference frame for which to find
* the best New MVs
* \param[in] gf_temporal_ref Flag, indicating temporal reference
* for GOLDEN frame
* \param[in] bsize Current block size
* \param[in] mi_row Row index in 4x4 units
* \param[in] mi_col Column index in 4x4 units
* \param[in] rate_mv Pointer to Rate of the best new MV
* \param[in] best_rdc Pointer to the RD Cost for the best
* mode found so far
*
* \return Returns -1 if the search was not done, otherwise returns 0.
* Best New MV is placed into \c frame_mv array, Rate estimation for this
* vector is placed to \c rate_mv
*/
static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
int_mv frame_mv[][REF_FRAMES],
MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv,
RD_STATS *best_rdc) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
AV1_COMMON *cm = &cpi->common;
int_mv *this_ref_frm_newmv = &frame_mv[NEWMV][ref_frame];
unsigned int y_sad_zero;
if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR &&
gf_temporal_ref) {
int tmp_sad;
int dis;
if (bsize < BLOCK_16X16) return -1;
int me_search_size_col = block_size_wide[bsize] >> 1;
int me_search_size_row = block_size_high[bsize] >> 1;
tmp_sad = av1_int_pro_motion_estimation(
cpi, x, bsize, mi_row, mi_col,
&x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv, &y_sad_zero,
me_search_size_col, me_search_size_row);
if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
this_ref_frm_newmv->as_int = mi->mv[0].as_int;
int_mv best_mv = mi->mv[0];
best_mv.as_mv.row >>= 3;
best_mv.as_mv.col >>= 3;
MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
this_ref_frm_newmv->as_mv.row >>= 3;
this_ref_frm_newmv->as_mv.col >>= 3;
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, NULL);
if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion ||
cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex) {
FULLPEL_MV start_mv = { .row = 0, .col = 0 };
ms_params.forced_stop =
subpel_select(cpi, x, bsize, &best_mv, ref_mv, start_mv, false);
}
MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, start_mv));
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, start_mv, NULL, &best_mv.as_mv, &dis,
&x->pred_sse[ref_frame], NULL);
this_ref_frm_newmv->as_int = best_mv.as_int;
// When NEWMV is same as ref_mv from the drl, it is preferred to code the
// MV as NEARESTMV or NEARMV. In this case, NEWMV needs to be skipped to
// avoid an assert failure at a later stage. The scenario can occur if
// NEARESTMV was not evaluated for ALTREF.
if (this_ref_frm_newmv->as_mv.col == ref_mv.col &&
this_ref_frm_newmv->as_mv.row == ref_mv.row)
return -1;
*rate_mv = av1_mv_bit_cost(&this_ref_frm_newmv->as_mv, &ref_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
} else if (!combined_motion_search(cpi, x, bsize, &frame_mv[NEWMV][ref_frame],
rate_mv, best_rdc->rdcost, 0)) {
return -1;
}
return 0;
}
static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const ModeCosts *mode_costs,
int segment_id, BLOCK_SIZE bsize,
unsigned int *ref_costs_single) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
ref_costs_single[INTRA_FRAME] =
mode_costs->intra_inter_cost[intra_inter_ctx][0];
unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT &&
is_comp_ref_allowed(bsize)) {
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
base_cost += mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
}
ref_costs_single[LAST_FRAME] = base_cost;
ref_costs_single[GOLDEN_FRAME] = base_cost;
ref_costs_single[ALTREF_FRAME] = base_cost;
// add cost for last, golden, altref
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0];
}
}
static INLINE void set_force_skip_flag(const AV1_COMP *const cpi,
MACROBLOCK *const x, unsigned int sse,
int *force_skip) {
if (x->txfm_search_params.tx_mode_search_type == TX_MODE_SELECT &&
cpi->sf.rt_sf.tx_size_level_based_on_qstep &&
cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) {
const int qstep = x->plane[AOM_PLANE_Y].dequant_QTX[1] >> (x->e_mbd.bd - 5);
const unsigned int qstep_sq = qstep * qstep;
// If the sse is low for low source variance blocks, mark those as
// transform skip.
// Note: Though qstep_sq is based on ac qstep, the threshold is kept
// low so that reliable early estimate of tx skip can be obtained
// through its comparison with sse.
if (sse < qstep_sq && x->source_variance < qstep_sq &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0)
*force_skip = 1;
}
}
#define CAP_TX_SIZE_FOR_BSIZE_GT32(tx_mode_search_type, bsize) \
(((tx_mode_search_type) != ONLY_4X4 && (bsize) > BLOCK_32X32) ? true : false)
#define TX_SIZE_FOR_BSIZE_GT32 (TX_16X16)
static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *const x, unsigned int var,
unsigned int sse, int *force_skip) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE tx_size;
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) {
int multiplier = 8;
unsigned int var_thresh = 0;
unsigned int is_high_var = 1;
// Use quantizer based thresholds to determine transform size.
if (cpi->sf.rt_sf.tx_size_level_based_on_qstep) {
const int qband = x->qindex >> (QINDEX_BITS - 2);
const int mult[4] = { 8, 7, 6, 5 };
assert(qband < 4);
multiplier = mult[qband];
const int qstep = x->plane[AOM_PLANE_Y].dequant_QTX[1] >> (xd->bd - 5);
const unsigned int qstep_sq = qstep * qstep;
var_thresh = qstep_sq * 2;
if (cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) {
// If the sse is low for low source variance blocks, mark those as
// transform skip.
// Note: Though qstep_sq is based on ac qstep, the threshold is kept
// low so that reliable early estimate of tx skip can be obtained
// through its comparison with sse.
if (sse < qstep_sq && x->source_variance < qstep_sq &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0)
*force_skip = 1;
// Further lower transform size based on aq mode only if residual
// variance is high.
is_high_var = (var >= var_thresh);
}
}
// Choose larger transform size for blocks where dc component is dominant or
// the ac component is low.
if (sse > ((var * multiplier) >> 2) || (var < var_thresh))
tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
else
tx_size = TX_8X8;
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && is_high_var)
tx_size = TX_8X8;
else if (tx_size > TX_16X16)
tx_size = TX_16X16;
} else {
tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
}
if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize))
tx_size = TX_SIZE_FOR_BSIZE_GT32;
return AOMMIN(tx_size, TX_16X16);
}
static void block_variance(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int w, int h,
unsigned int *sse, int *sum, int block_size,
uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
int k = 0;
*sse = 0;
*sum = 0;
// This function is called for block sizes >= BLOCK_32x32. As per the design
// the aom_get_var_sse_sum_8x8_quad() processes four 8x8 blocks (in a 8x32)
// per call. Hence the width and height of the block need to be at least 8 and
// 32 samples respectively.
assert(w >= 32);
assert(h >= 8);
for (int row = 0; row < h; row += block_size) {
for (int col = 0; col < w; col += 32) {
aom_get_var_sse_sum_8x8_quad(src + src_stride * row + col, src_stride,
ref + ref_stride * row + col, ref_stride,
&sse8x8[k], &sum8x8[k], sse, sum,
&var8x8[k]);
k += 4;
}
}
}
static void block_variance_16x16_dual(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int w,
int h, unsigned int *sse, int *sum,
int block_size, uint32_t *sse16x16,
uint32_t *var16x16) {
int k = 0;
*sse = 0;
*sum = 0;
// This function is called for block sizes >= BLOCK_32x32. As per the design
// the aom_get_var_sse_sum_16x16_dual() processes four 16x16 blocks (in a
// 16x32) per call. Hence the width and height of the block need to be at
// least 16 and 32 samples respectively.
assert(w >= 32);
assert(h >= 16);
for (int row = 0; row < h; row += block_size) {
for (int col = 0; col < w; col += 32) {
aom_get_var_sse_sum_16x16_dual(src + src_stride * row + col, src_stride,
ref + ref_stride * row + col, ref_stride,
&sse16x16[k], sse, sum, &var16x16[k]);
k += 2;
}
}
}
static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
unsigned int *sse_i, int *sum_i,
unsigned int *var_o, unsigned int *sse_o,
int *sum_o) {
const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
int row, col, k = 0;
for (row = 0; row < nh; row += 2) {
for (col = 0; col < nw; col += 2) {
sse_o[k] = sse_i[row * nw + col] + sse_i[row * nw + col + 1] +
sse_i[(row + 1) * nw + col] + sse_i[(row + 1) * nw + col + 1];
sum_o[k] = sum_i[row * nw + col] + sum_i[row * nw + col + 1] +
sum_i[(row + 1) * nw + col] + sum_i[(row + 1) * nw + col + 1];
var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
(b_width_log2_lookup[unit_size] +
b_height_log2_lookup[unit_size] + 6));
k++;
}
}
}
// Adjust the ac_thr according to speed, width, height and normalized sum
static int ac_thr_factor(int speed, int width, int height, int norm_sum) {
if (speed >= 8 && norm_sum < 5) {
if (width <= 640 && height <= 480)
return 4;
else
return 2;
}
return 1;
}
// Sets early_term flag based on chroma planes prediction
static INLINE void set_early_term_based_on_uv_plane(
AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MACROBLOCKD *xd, int mi_row,
int mi_col, int *early_term, int num_blk, const unsigned int *sse_tx,
const unsigned int *var_tx, int sum, unsigned int var, unsigned int sse) {
AV1_COMMON *const cm = &cpi->common;
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
int64_t dc_thr = dc_quant * dc_quant >> 6;
int64_t ac_thr = ac_quant * ac_quant >> 6;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
int ac_test = 1;
int dc_test = 1;
const int norm_sum = abs(sum) >> (bw + bh);
#if CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
cpi->oxcf.speed > 5)
ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
norm_sum, cpi->svc.temporal_layer_id);
else
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum);
#else
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum);
#endif
if (cpi->sf.rt_sf.increase_source_sad_thresh) {
dc_thr = dc_thr << 1;
ac_thr = ac_thr << 2;
}
for (int k = 0; k < num_blk; k++) {
// Check if all ac coefficients can be quantized to zero.
if (!(var_tx[k] < ac_thr || var == 0)) {
ac_test = 0;
break;
}
// Check if dc coefficient can be quantized to zero.
if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
dc_test = 0;
break;
}
}
// Check if chroma can be skipped based on ac and dc test flags.
if (ac_test && dc_test) {
int skip_uv[2] = { 0 };
unsigned int var_uv[2];
unsigned int sse_uv[2];
// Transform skipping test in UV planes.
for (int plane = AOM_PLANE_U; plane <= AOM_PLANE_V; plane++) {
int j = plane - 1;
skip_uv[j] = 1;
if (x->color_sensitivity[COLOR_SENS_IDX(plane)]) {
skip_uv[j] = 0;
struct macroblock_plane *const puv = &x->plane[plane];
struct macroblockd_plane *const puvd = &xd->plane[plane];
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, puvd->subsampling_x, puvd->subsampling_y);
// Adjust these thresholds for UV.
const int shift_ac = cpi->sf.rt_sf.increase_source_sad_thresh ? 5 : 3;
const int shift_dc = cpi->sf.rt_sf.increase_source_sad_thresh ? 4 : 3;
const int64_t uv_dc_thr =
(puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> shift_dc;
const int64_t uv_ac_thr =
(puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> shift_ac;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
plane, plane);
var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride,
puvd->dst.buf,
puvd->dst.stride, &sse_uv[j]);
if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
(sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
skip_uv[j] = 1;
else
break;
}
}
if (skip_uv[0] & skip_uv[1]) {
*early_term = 1;
}
}
}
static INLINE void calc_rate_dist_block_param(AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats,
int calculate_rd, int *early_term,
BLOCK_SIZE bsize,
unsigned int sse) {
if (calculate_rd) {
if (!*early_term) {
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, rd_stats->sse, bw * bh,
&rd_stats->rate, &rd_stats->dist);
}
if (*early_term) {
rd_stats->rate = 0;
rd_stats->dist = sse << 4;
}
}
}
static void model_skip_for_sb_y_large_64(AV1_COMP *cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col, MACROBLOCK *x,
MACROBLOCKD *xd, RD_STATS *rd_stats,
int *early_term, int calculate_rd,
int64_t best_sse,
unsigned int *var_output,
unsigned int var_prune_threshold) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
int test_skip = 1;
unsigned int var;
int sum;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
unsigned int sse16x16[64] = { 0 };
unsigned int var16x16[64] = { 0 };
assert(xd->mi[0]->tx_size == TX_16X16);
assert(bsize > BLOCK_32X32);
// Calculate variance for whole partition, and also save 16x16 blocks'
// variance to be used in following transform skipping test.
block_variance_16x16_dual(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 16,
sse16x16, var16x16);
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
if (var_output) {
*var_output = var;
if (*var_output > var_prune_threshold) {
return;
}
}
rd_stats->sse = sse;
// Skipping test
*early_term = 0;
set_force_skip_flag(cpi, x, sse, early_term);
// The code below for setting skip flag assumes transform size of at least
// 8x8, so force this lower limit on transform.
MB_MODE_INFO *const mi = xd->mi[0];
if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search &&
early_term_inter_search_with_sse(
cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse,
mi->mode))
test_skip = 0;
if (*early_term) test_skip = 0;
// Evaluate if the partition block is a skippable block in Y plane.
if (test_skip) {
const unsigned int *sse_tx = sse16x16;
const unsigned int *var_tx = var16x16;
const unsigned int num_block = (1 << (bw + bh - 2)) >> 2;
set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col,
early_term, num_block, sse_tx, var_tx, sum,
var, sse);
}
calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize,
sse);
}
static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col, MACROBLOCK *x,
MACROBLOCKD *xd, RD_STATS *rd_stats,
int *early_term, int calculate_rd,
int64_t best_sse,
unsigned int *var_output,
unsigned int var_prune_threshold) {
if (x->force_zeromv_skip_for_blk) {
*early_term = 1;
rd_stats->rate = 0;
rd_stats->dist = 0;
rd_stats->sse = 0;
return;
}
// For block sizes greater than 32x32, the transform size is always 16x16.
// This function avoids calling calculate_variance() for tx_size 16x16 cases
// by directly populating variance at tx_size level from
// block_variance_16x16_dual() function.
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) {
xd->mi[0]->tx_size = TX_SIZE_FOR_BSIZE_GT32;
model_skip_for_sb_y_large_64(cpi, bsize, mi_row, mi_col, x, xd, rd_stats,
early_term, calculate_rd, best_sse, var_output,
var_prune_threshold);
return;
}
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
int test_skip = 1;
unsigned int var;
int sum;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
unsigned int sse8x8[256] = { 0 };
int sum8x8[256] = { 0 };
unsigned int var8x8[256] = { 0 };
TX_SIZE tx_size;
// Calculate variance for whole partition, and also save 8x8 blocks' variance
// to be used in following transform skipping test.
block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
if (var_output) {
*var_output = var;
if (*var_output > var_prune_threshold) {
return;
}
}
rd_stats->sse = sse;
// Skipping test
*early_term = 0;
tx_size = calculate_tx_size(cpi, bsize, x, var, sse, early_term);
assert(tx_size <= TX_16X16);
// The code below for setting skip flag assumes transform size of at least
// 8x8, so force this lower limit on transform.
if (tx_size < TX_8X8) tx_size = TX_8X8;
xd->mi[0]->tx_size = tx_size;
MB_MODE_INFO *const mi = xd->mi[0];
if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search &&
early_term_inter_search_with_sse(
cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse,
mi->mode))
test_skip = 0;
if (*early_term) test_skip = 0;
// Evaluate if the partition block is a skippable block in Y plane.
if (test_skip) {
unsigned int sse16x16[64] = { 0 };
int sum16x16[64] = { 0 };
unsigned int var16x16[64] = { 0 };
const unsigned int *sse_tx = sse8x8;
const unsigned int *var_tx = var8x8;
unsigned int num_blks = 1 << (bw + bh - 2);
if (tx_size >= TX_16X16) {
calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
sum16x16);
sse_tx = sse16x16;
var_tx = var16x16;
num_blks = num_blks >> 2;
}
set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col,
early_term, num_blks, sse_tx, var_tx, sum,
var, sse);
}
calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize,
sse);
}
static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
RD_STATS *rd_stats, unsigned int *var_out,
int calculate_rd, int *early_term) {
if (x->force_zeromv_skip_for_blk && early_term != NULL) {
*early_term = 1;
rd_stats->rate = 0;
rd_stats->dist = 0;
rd_stats->sse = 0;
}
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
const int ref = xd->mi[0]->ref_frame[0];
assert(bsize < BLOCK_SIZES_ALL);
struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
unsigned int sse;
int rate;
int64_t dist;
unsigned int var = cpi->ppi->fn_ptr[bsize].vf(
p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse);
int force_skip = 0;
xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse, &force_skip);
if (var_out) {
*var_out = var;
}
if (calculate_rd && (!force_skip || ref == INTRA_FRAME)) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
&dist);
} else {
rate = INT_MAX; // this will be overwritten later with av1_block_yrd
dist = INT_MAX;
}
rd_stats->sse = sse;
x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
if (force_skip && ref > INTRA_FRAME) {
rate = 0;
dist = (int64_t)sse << 4;
}
assert(rate >= 0);
rd_stats->skip_txfm = (rate == 0);
rate = AOMMIN(rate, INT_MAX);
rd_stats->rate = rate;
rd_stats->dist = dist;
}
static INLINE int get_drl_cost(PREDICTION_MODE this_mode, int ref_mv_idx,
const MB_MODE_INFO_EXT *mbmi_ext,
const int (*const drl_mode_cost0)[2],
int8_t ref_frame_type) {
int cost = 0;
if (this_mode == NEWMV || this_mode == NEW_NEWMV) {
for (int idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
cost += drl_mode_cost0[drl_ctx][ref_mv_idx != idx];
if (ref_mv_idx == idx) return cost;
}
}
return cost;
}
if (have_nearmv_in_inter_mode(this_mode)) {
for (int idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
cost += drl_mode_cost0[drl_ctx][ref_mv_idx != (idx - 1)];
if (ref_mv_idx == (idx - 1)) return cost;
}
}
return cost;
}
return cost;
}
static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
int16_t mode_context) {
if (is_inter_compound_mode(mode)) {
return mode_costs
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
}
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
}
static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
int mv_col, int speed, uint32_t spatial_variance,
CONTENT_STATE_SB content_state_sb) {
// Bias against MVs associated with NEWMV mode that are very different from
// top/left neighbors.
if (this_mode == NEWMV) {
int al_mv_average_row;
int al_mv_average_col;
int row_diff, col_diff;
int above_mv_valid = 0;
int left_mv_valid = 0;
int above_row = INVALID_MV_ROW_COL, above_col = INVALID_MV_ROW_COL;
int left_row = INVALID_MV_ROW_COL, left_col = INVALID_MV_ROW_COL;
if (bsize >= BLOCK_64X64 && content_state_sb.source_sad_nonrd != kHighSad &&
spatial_variance < 300 &&
(mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) {
this_rdc->rdcost = this_rdc->rdcost << 2;
return;
}
if (xd->above_mbmi) {
above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
above_row = xd->above_mbmi->mv[0].as_mv.row;
above_col = xd->above_mbmi->mv[0].as_mv.col;
}
if (xd->left_mbmi) {
left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
left_row = xd->left_mbmi->mv[0].as_mv.row;
left_col = xd->left_mbmi->mv[0].as_mv.col;
}
if (above_mv_valid && left_mv_valid) {
al_mv_average_row = (above_row + left_row + 1) >> 1;
al_mv_average_col = (above_col + left_col + 1) >> 1;
} else if (above_mv_valid) {
al_mv_average_row = above_row;
al_mv_average_col = above_col;
} else if (left_mv_valid) {
al_mv_average_row = left_row;
al_mv_average_col = left_col;
} else {
al_mv_average_row = al_mv_average_col = 0;
}
row_diff = al_mv_average_row - mv_row;
col_diff = al_mv_average_col - mv_col;
if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
if (bsize >= BLOCK_32X32)
this_rdc->rdcost = this_rdc->rdcost << 1;
else
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
} else {
// Bias for speed >= 8 for low spatial variance.
if (speed >= 8 && spatial_variance < 150 &&
(mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64))
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
}
static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
MV_REFERENCE_FRAME ref_frame,
THR_MODES best_mode_idx,
PREDICTION_MODE mode) {
const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4);
const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128);
for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) {
int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx];
if (thr_mode_idx == best_mode_idx) {
*freq_fact -= (*freq_fact >> 4);
} else {
*freq_fact =
AOMMIN(*freq_fact + RD_THRESH_INC,
cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}
}
}
#if CONFIG_AV1_TEMPORAL_DENOISING
static void av1_pickmode_ctx_den_update(
AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
unsigned int ref_frame_cost[REF_FRAMES],
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred,
BEST_PICKMODE *bp) {
ctx_den->zero_last_cost_orig = zero_last_cost_orig;
ctx_den->ref_frame_cost = ref_frame_cost;
ctx_den->frame_mv = frame_mv;
ctx_den->reuse_inter_pred = reuse_inter_pred;
ctx_den->best_tx_size = bp->best_tx_size;
ctx_den->best_mode = bp->best_mode;
ctx_den->best_ref_frame = bp->best_ref_frame;
ctx_den->best_pred_filter = bp->best_pred_filter;
ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm;
}
static void recheck_zeromv_after_denoising(
AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den,
struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc,
BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) {
// If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
// denoised result. Only do this under noise conditions, and if rdcost of
// ZEROMV on original source is not significantly higher than rdcost of best
// mode.
if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
(ctx_den->best_ref_frame == GOLDEN_FRAME &&
cpi->svc.number_spatial_layers == 1 &&
decision == FILTER_ZEROMV_BLOCK))) {
// Check if we should pick ZEROMV on denoised signal.
AV1_COMMON *const cm = &cpi->common;
RD_STATS this_rdc;
const ModeCosts *mode_costs = &x->mode_costs;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
mi->mode = GLOBALMV;
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE_FRAME;
set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
mi->mv[0].as_int = 0;
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
xd->plane[AOM_PLANE_Y].pre[0] = yv12_mb[LAST_FRAME][AOM_PLANE_Y];
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
unsigned int var;
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, &var, 1, NULL);
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx);
this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
txfm_info->skip_txfm = this_rdc.skip_txfm;
// Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
// is higher than best_ref mode (on original source).
if (this_rdc.rdcost > best_rdc->rdcost) {
this_rdc = *best_rdc;
mi->mode = best_pickmode->best_mode;
mi->ref_frame[0] = best_pickmode->best_ref_frame;
set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
mi->interp_filters = best_pickmode->best_pred_filter;
if (best_pickmode->best_ref_frame == INTRA_FRAME) {
mi->mv[0].as_int = INVALID_MV;
} else {
mi->mv[0].as_int = ctx_den
->frame_mv[best_pickmode->best_mode]
[best_pickmode->best_ref_frame]
.as_int;
if (ctx_den->reuse_inter_pred) {
xd->plane[AOM_PLANE_Y].pre[0] = yv12_mb[GOLDEN_FRAME][AOM_PLANE_Y];
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
}
}
mi->tx_size = best_pickmode->best_tx_size;
txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm;
} else {
ctx_den->best_ref_frame = LAST_FRAME;
*best_rdc = this_rdc;
}
}
}
#endif // CONFIG_AV1_TEMPORAL_DENOISING
/*!\brief Searches for the best interpolation filter
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR,
* EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects
* the one that gives lowest RD cost. RD cost is calculated using curvfit model.
* Support for dual filters (different filters in the x & y directions) is
* allowed if sf.interp_sf.disable_dual_filter = 0.
*
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] this_rdc Pointer to calculated RD Cost
* \param[in] inter_pred_params_sr Pointer to structure holding parameters of
inter prediction for single reference
* \param[in] mi_row Row index in 4x4 units
* \param[in] mi_col Column index in 4x4 units
* \param[in] tmp_buffer Pointer to a temporary buffer for
* prediction re-use
* \param[in] bsize Current block size
* \param[in] reuse_inter_pred Flag, indicating prediction re-use
* \param[out] this_mode_pred Pointer to store prediction buffer
* for prediction re-use
* \param[out] this_early_term Flag, indicating that transform can be
* skipped
* \param[out] var The residue variance of the current
* predictor.
* \param[in] use_model_yrd_large Flag, indicating special logic to handle
* large blocks
* \param[in] best_sse Best sse so far.
* \param[in] is_single_pred Flag, indicating single mode.
*
* \remark Nothing is returned. Instead, calculated RD cost is placed to
* \c this_rdc and best filter is placed to \c mi->interp_filters. In case
* \c reuse_inter_pred flag is set, this function also outputs
* \c this_mode_pred. Also \c this_early_temp is set if transform can be
* skipped
*/
static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
InterPredParams *inter_pred_params_sr, int mi_row,
int mi_col, PRED_BUFFER *tmp_buffer,
BLOCK_SIZE bsize, int reuse_inter_pred,
PRED_BUFFER **this_mode_pred,
int *this_early_term, unsigned int *var,
int use_model_yrd_large, int64_t best_sse,
int is_single_pred) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
MB_MODE_INFO *const mi = xd->mi[0];
const int bw = block_size_wide[bsize];
int dim_factor =
(cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1;
RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 };
TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 };
PRED_BUFFER *current_pred = *this_mode_pred;
int best_skip = 0;
int best_early_term = 0;
int64_t best_cost = INT64_MAX;
int best_filter_index = -1;
SubpelParams subpel_params;
// Initialize inter prediction params at mode level for single reference
// mode.
if (is_single_pred)
init_inter_mode_params(&mi->mv[0].as_mv, inter_pred_params_sr,
&subpel_params, xd->block_ref_scale_factors[0],
pd->pre->width, pd->pre->height);
for (int filter_idx = 0; filter_idx < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE;
++filter_idx) {
int64_t cost;
if (cpi->sf.interp_sf.disable_dual_filter &&
filters_ref_set[filter_idx].as_filters.x_filter !=
filters_ref_set[filter_idx].as_filters.y_filter)
continue;
mi->interp_filters.as_int = filters_ref_set[filter_idx].as_int;
if (is_single_pred)
av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr,
&subpel_params);
else
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
unsigned int curr_var = UINT_MAX;
if (use_model_yrd_large)
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
&pf_rd_stats[filter_idx], this_early_term, 1,
best_sse, &curr_var, UINT_MAX);
else
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[filter_idx], &curr_var,
1, NULL);
pf_rd_stats[filter_idx].rate += av1_get_switchable_rate(
x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter);
cost = RDCOST(x->rdmult, pf_rd_stats[filter_idx].rate,
pf_rd_stats[filter_idx].dist);
pf_tx_size[filter_idx] = mi->tx_size;
if (cost < best_cost) {
*var = curr_var;
best_filter_index = filter_idx;
best_cost = cost;
best_skip = pf_rd_stats[filter_idx].skip_txfm;
best_early_term = *this_early_term;
if (reuse_inter_pred) {
if (*this_mode_pred != current_pred) {
free_pred_buffer(*this_mode_pred);
*this_mode_pred = current_pred;
}
current_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
assert(best_filter_index >= 0 &&
best_filter_index < dim_factor * FILTER_SEARCH_SIZE);
if (reuse_inter_pred && *this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mi->interp_filters.as_int = filters_ref_set[best_filter_index].as_int;
mi->tx_size = pf_tx_size[best_filter_index];
this_rdc->rate = pf_rd_stats[best_filter_index].rate;
this_rdc->dist = pf_rd_stats[best_filter_index].dist;
this_rdc->sse = pf_rd_stats[best_filter_index].sse;
this_rdc->skip_txfm = (best_skip || best_early_term);
*this_early_term = best_early_term;
if (reuse_inter_pred) {
pd->dst.buf = (*this_mode_pred)->data;
pd->dst.stride = (*this_mode_pred)->stride;
} else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) {
if (is_single_pred)
av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr,
&subpel_params);
else
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
}
}
#if !CONFIG_REALTIME_ONLY
static AOM_INLINE int is_warped_mode_allowed(const AV1_COMP *cpi,
MACROBLOCK *const x,
const MB_MODE_INFO *mbmi) {
const FeatureFlags *const features = &cpi->common.features;
const MACROBLOCKD *xd = &x->e_mbd;
if (cpi->sf.inter_sf.extra_prune_warped) return 0;
if (has_second_ref(mbmi)) return 0;
MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
if (features->switchable_motion_mode) {
// Determine which motion modes to search if more than SIMPLE_TRANSLATION
// is allowed.
last_motion_mode_allowed = motion_mode_allowed(
xd->global_motion, xd, mbmi, features->allow_warped_motion);
}
if (last_motion_mode_allowed == WARPED_CAUSAL) {
return 1;
}
return 0;
}
static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const FeatureFlags *const features = &cm->features;
mi->num_proj_ref = 1;
WARP_SAMPLE_INFO *const warp_sample_info =
&x->warp_sample_info[mi->ref_frame[0]];
int *pts0 = warp_sample_info->pts;
int *pts_inref0 = warp_sample_info->pts_inref;
MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
if (features->switchable_motion_mode) {
// Determine which motion modes to search if more than SIMPLE_TRANSLATION
// is allowed.
last_motion_mode_allowed = motion_mode_allowed(
xd->global_motion, xd, mi, features->allow_warped_motion);
}
if (last_motion_mode_allowed == WARPED_CAUSAL) {
if (warp_sample_info->num < 0) {
warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
}
mi->num_proj_ref = warp_sample_info->num;
}
}
static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *this_early_term, int use_model_yrd_large,
int *rate_mv, int64_t best_sse) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const FeatureFlags *const features = &cm->features;
MB_MODE_INFO *const mi = xd->mi[0];
RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 };
int best_skip = 0;
int best_early_term = 0;
int64_t best_cost = INT64_MAX;
int best_mode_index = -1;
const int interp_filter = features->interp_filter;
const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = {
SIMPLE_TRANSLATION, WARPED_CAUSAL
};
int mode_search_size = is_warped_mode_allowed(cpi, x, mi) ? 2 : 1;
WARP_SAMPLE_INFO *const warp_sample_info =
&x->warp_sample_info[mi->ref_frame[0]];
int *pts0 = warp_sample_info->pts;
int *pts_inref0 = warp_sample_info->pts_inref;
const int total_samples = mi->num_proj_ref;
if (total_samples == 0) {
// Do not search WARPED_CAUSAL if there are no samples to use to determine
// warped parameters.
mode_search_size = 1;
}
const MB_MODE_INFO base_mbmi = *mi;
MB_MODE_INFO best_mbmi;
for (int mode_index = 0; mode_index < mode_search_size; ++mode_index) {
int64_t cost = INT64_MAX;
MOTION_MODE motion_mode = motion_modes[mode_index];
*mi = base_mbmi;
mi->motion_mode = motion_mode;
if (motion_mode == SIMPLE_TRANSLATION) {
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
if (use_model_yrd_large)
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
&pf_rd_stats[mode_index], this_early_term, 1,
best_sse, NULL, UINT_MAX);
else
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[mode_index], NULL, 1,
NULL);
pf_rd_stats[mode_index].rate +=
av1_get_switchable_rate(x, xd, cm->features.interp_filter,
cm->seq_params->enable_dual_filter);
cost = RDCOST(x->rdmult, pf_rd_stats[mode_index].rate,
pf_rd_stats[mode_index].dist);
} else if (motion_mode == WARPED_CAUSAL) {
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
const ModeCosts *mode_costs = &x->mode_costs;
mi->wm_params.wmtype = DEFAULT_WMTYPE;
mi->interp_filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
// Select the samples according to motion vector difference
if (mi->num_proj_ref > 1) {
mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref,
mi->num_proj_ref, bsize);
}
// Compute the warped motion parameters with a least squares fit
// using the collected samples
if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize,
mi->mv[0].as_mv.row, mi->mv[0].as_mv.col,
&mi->wm_params, mi_row, mi_col)) {
if (mi->mode == NEWMV) {
const int_mv mv0 = mi->mv[0];
const WarpedMotionParams wm_params0 = mi->wm_params;
const int num_proj_ref0 = mi->num_proj_ref;
const int_mv ref_mv = av1_get_ref_mv(x, 0);
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
&ref_mv.as_mv, NULL);
// Refine MV in a small range.
av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
total_samples, cpi->sf.mv_sf.warp_search_method,
cpi->sf.mv_sf.warp_search_iters);
if (mi->mv[0].as_int == ref_mv.as_int) {
continue;
}
if (mv0.as_int != mi->mv[0].as_int) {
// Keep the refined MV and WM parameters.
int tmp_rate_mv = av1_mv_bit_cost(
&mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
*rate_mv = tmp_rate_mv;
} else {
// Restore the old MV and WM parameters.
mi->mv[0] = mv0;
mi->wm_params = wm_params0;
mi->num_proj_ref = num_proj_ref0;
}
}
// Build the warped predictor
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, av1_num_planes(cm) - 1);
if (use_model_yrd_large)
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
&pf_rd_stats[mode_index], this_early_term,
1, best_sse, NULL, UINT_MAX);
else
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[mode_index], NULL,
1, NULL);
pf_rd_stats[mode_index].rate +=
mode_costs->motion_mode_cost[bsize][mi->motion_mode];
cost = RDCOST(x->rdmult, pf_rd_stats[mode_index].rate,
pf_rd_stats[mode_index].dist);
} else {
cost = INT64_MAX;
}
}
if (cost < best_cost) {
best_mode_index = mode_index;
best_cost = cost;
best_skip = pf_rd_stats[mode_index].skip_txfm;
best_early_term = *this_early_term;
best_mbmi = *mi;
}
}
assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE);
*mi = best_mbmi;
this_rdc->rate = pf_rd_stats[best_mode_index].rate;
this_rdc->dist = pf_rd_stats[best_mode_index].dist;
this_rdc->sse = pf_rd_stats[best_mode_index].sse;
this_rdc->skip_txfm = (best_skip || best_early_term);
*this_early_term = best_early_term;
if (best_mode_index < FILTER_SEARCH_SIZE - 1) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
}
}
#endif // !CONFIG_REALTIME_ONLY
#define COLLECT_NON_SQR_STAT 0
#if COLLECT_NONRD_PICK_MODE_STAT
static AOM_INLINE void print_stage_time(const char *stage_name,
int64_t stage_time,
int64_t total_time) {
printf(" %s: %ld (%f%%)\n", stage_name, stage_time,
100 * stage_time / (float)total_time);
}
static void print_time(const mode_search_stat_nonrd *const ms_stat,
BLOCK_SIZE bsize, int mi_rows, int mi_cols, int mi_row,
int mi_col) {
if ((mi_row + mi_size_high[bsize] >= mi_rows) &&
(mi_col + mi_size_wide[bsize] >= mi_cols)) {
int64_t total_time = 0l;
int32_t total_blocks = 0;
for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) {
total_time += ms_stat->total_block_times[bs];
total_blocks += ms_stat->num_blocks[bs];
}
printf("\n");
for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) {
if (ms_stat->num_blocks[bs] == 0) {
continue;
}
if (!COLLECT_NON_SQR_STAT && block_size_wide[bs] != block_size_high[bs]) {
continue;
}
printf("BLOCK_%dX%d Num %d, Time: %ld (%f%%), Avg_time %f:\n",
block_size_wide[bs], block_size_high[bs], ms_stat->num_blocks[bs],
ms_stat->total_block_times[bs],
100 * ms_stat->total_block_times[bs] / (float)total_time,
(float)ms_stat->total_block_times[bs] / ms_stat->num_blocks[bs]);
for (int j = 0; j < MB_MODE_COUNT; j++) {
if (ms_stat->nonskipped_search_times[bs][j] == 0) {
continue;
}
int64_t total_mode_time = ms_stat->nonskipped_search_times[bs][j];
printf(" Mode %d, %d/%d tps %f\n", j,
ms_stat->num_nonskipped_searches[bs][j],
ms_stat->num_searches[bs][j],
ms_stat->num_nonskipped_searches[bs][j] > 0
? (float)ms_stat->nonskipped_search_times[bs][j] /
ms_stat->num_nonskipped_searches[bs][j]
: 0l);
if (j >= INTER_MODE_START) {
total_mode_time = ms_stat->ms_time[bs][j] + ms_stat->ifs_time[bs][j] +
ms_stat->model_rd_time[bs][j] +
ms_stat->txfm_time[bs][j];
print_stage_time("Motion Search Time", ms_stat->ms_time[bs][j],
total_time);
print_stage_time("Filter Search Time", ms_stat->ifs_time[bs][j],
total_time);
print_stage_time("Model RD Time", ms_stat->model_rd_time[bs][j],
total_time);
print_stage_time("Tranfm Search Time", ms_stat->txfm_time[bs][j],
total_time);
}
print_stage_time("Total Mode Time", total_mode_time, total_time);
}
printf("\n");
}
printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
}
}
#endif // COLLECT_NONRD_PICK_MODE_STAT
static bool should_prune_intra_modes_using_neighbors(
const MACROBLOCKD *xd, bool enable_intra_mode_pruning_using_neighbors,
PREDICTION_MODE this_mode, PREDICTION_MODE above_mode,
PREDICTION_MODE left_mode) {
if (!enable_intra_mode_pruning_using_neighbors) return false;
// Avoid pruning of DC_PRED as it is the most probable mode to win as per the
// statistics generated for nonrd intra mode evaluations.
if (this_mode == DC_PRED) return false;
// Enable the pruning for current mode only if it is not the winner mode of
// both the neighboring blocks (left/top).
return xd->up_available && this_mode != above_mode && xd->left_available &&
this_mode != left_mode;
}
void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
RD_STATS this_rdc, best_rdc;
struct estimate_block_intra_args args;
init_estimate_block_intra_args(&args, cpi, x);
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
mi->tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
assert(IMPLIES(xd->lossless[mi->segment_id], mi->tx_size == TX_4X4));
const BLOCK_SIZE tx_bsize = txsize_to_bsize[mi->tx_size];
// If the current block size is the same as the transform block size, enable
// mode pruning based on the best SAD so far.
if (cpi->sf.rt_sf.prune_intra_mode_using_best_sad_so_far && bsize == tx_bsize)
args.prune_mode_based_on_sad = true;
int *bmode_costs;
PREDICTION_MODE best_mode = DC_PRED;
const MB_MODE_INFO *above_mi = xd->above_mbmi;
const MB_MODE_INFO *left_mi = xd->left_mbmi;
const PREDICTION_MODE A = av1_above_block_mode(above_mi);
const PREDICTION_MODE L = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[A];
const int left_ctx = intra_mode_context[L];
const unsigned int source_variance = x->source_variance;
bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx];
av1_invalid_rd_stats(&best_rdc);
av1_invalid_rd_stats(&this_rdc);
init_mbmi_nonrd(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm);
mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV;
// Change the limit of this loop to add other intra prediction
// mode tests.
for (int mode_index = 0; mode_index < RTC_INTRA_MODES; ++mode_index) {
PREDICTION_MODE this_mode = intra_mode_list[mode_index];
// As per the statistics generated for intra mode evaluation in the nonrd
// path, it is found that the probability of H_PRED mode being the winner is
// very low when the best mode so far is V_PRED (out of DC_PRED and V_PRED).
// If V_PRED is the winner mode out of DC_PRED and V_PRED, it could imply
// the presence of a vertically dominant pattern. Hence, H_PRED mode is not
// evaluated.
if (cpi->sf.rt_sf.prune_h_pred_using_best_mode_so_far &&
this_mode == H_PRED && best_mode == V_PRED)
continue;
if (should_prune_intra_modes_using_neighbors(
xd, cpi->sf.rt_sf.enable_intra_mode_pruning_using_neighbors,
this_mode, A, L)) {
// Prune V_PRED and H_PRED if source variance of the block is less than
// or equal to 50. The source variance threshold is obtained empirically.
if ((this_mode == V_PRED || this_mode == H_PRED) && source_variance <= 50)
continue;
// As per the statistics, probability of SMOOTH_PRED being the winner is
// low when best mode so far is DC_PRED (out of DC_PRED, V_PRED and
// H_PRED). Hence, SMOOTH_PRED mode is not evaluated.
if (best_mode == DC_PRED && this_mode == SMOOTH_PRED) continue;
}
this_rdc.dist = this_rdc.rate = 0;
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->mode = this_mode;
av1_foreach_transformed_block_in_plane(xd, bsize, AOM_PLANE_Y,
av1_estimate_block_intra, &args);
if (this_rdc.rate == INT_MAX) continue;
const int skip_ctx = av1_get_skip_txfm_context(xd);
if (args.skippable) {
this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
} else {
this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0];
}
this_rdc.rate += bmode_costs[this_mode];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_mode = this_mode;
if (!this_rdc.skip_txfm) {
memset(ctx->blk_skip, 0,
sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
}
}
}
mi->mode = best_mode;
// Keep DC for UV since mode test is based on Y channel only.
mi->uv_mode = UV_DC_PRED;
*rd_cost = best_rdc;
// For lossless: always force the skip flags off.
// Even though the blk_skip is set to 0 above in the rdcost comparison,
// do it here again in case the above logic changes.
if (is_lossless_requested(&cpi->oxcf.rc_cfg)) {
x->txfm_search_info.skip_txfm = 0;
memset(ctx->blk_skip, 0,
sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
}
#if CONFIG_INTERNAL_STATS
store_coding_context_nonrd(x, ctx, mi->mode);
#else
store_coding_context_nonrd(x, ctx);
#endif // CONFIG_INTERNAL_STATS
}
static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) {
struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
struct scale_factors *const sf_golden =
get_ref_scale_factors(cm, GOLDEN_FRAME);
return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) &&
(sf_last->y_scale_fp == sf_golden->y_scale_fp));
}
static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x,
MB_MODE_INFO *mi, int mi_row,
int mi_col, BLOCK_SIZE bsize,
int gf_temporal_ref,
int use_ref_frame[],
int *force_skip_low_temp_var) {
AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64);
// When the ref_frame_config is used to set the reference frame structure
// then the usage of alt_ref is determined by the ref_frame_flags
// (and not the speed feature use_nonrd_altref_frame).
int use_alt_ref_frame = cpi->ppi->rtc_ref.set_ref_frame_config ||
cpi->sf.rt_sf.use_nonrd_altref_frame;
int use_golden_ref_frame = 1;
int use_last_ref_frame = 1;
// When the ref_frame_config is used to set the reference frame structure:
// check if LAST is used as a reference. And only remove golden and altref
// references below if last is used as a reference.
if (cpi->ppi->rtc_ref.set_ref_frame_config)
use_last_ref_frame =
cpi->ref_frame_flags & AOM_LAST_FLAG ? use_last_ref_frame : 0;
// frame_since_golden is not used when user sets the referene structure.
if (!cpi->ppi->rtc_ref.set_ref_frame_config && use_last_ref_frame &&
cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
use_golden_ref_frame = 0;
}
if (use_last_ref_frame && cpi->sf.rt_sf.short_circuit_low_temp_var &&
x->nonrd_prune_ref_frame_search) {
if (is_small_sb)
*force_skip_low_temp_var = av1_get_force_skip_low_temp_var_small_sb(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
else
*force_skip_low_temp_var = av1_get_force_skip_low_temp_var(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
// If force_skip_low_temp_var is set, skip golden reference.
if (*force_skip_low_temp_var) {
use_golden_ref_frame = 0;
use_alt_ref_frame = 0;
}
}
if (use_last_ref_frame &&
(x->nonrd_prune_ref_frame_search > 2 || x->force_zeromv_skip_for_blk ||
(x->nonrd_prune_ref_frame_search > 1 && bsize > BLOCK_64X64))) {
use_golden_ref_frame = 0;
use_alt_ref_frame = 0;
}
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
use_golden_ref_frame = 1;
use_alt_ref_frame = 0;
}
// Skip golden/altref reference if color is set, on flat blocks with motion.
// For screen: always skip golden/alt (if color_sensitivity_sb_g/alt is set)
// except when x->nonrd_prune_ref_frame_search = 0. This latter flag
// may be set in the variance partition when golden is a much better
// reference than last, in which case it may not be worth skipping
// golden/altref completely.
// Condition on use_last_ref to make sure there remains at least one
// reference.
if (use_last_ref_frame &&
((cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
x->nonrd_prune_ref_frame_search != 0) ||
(x->source_variance < 200 &&
x->content_state_sb.source_sad_nonrd >= kLowSad))) {
if (x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)
use_golden_ref_frame = 0;
if (x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)
use_alt_ref_frame = 0;
}
// For non-screen: if golden and altref are not being selected as references
// (use_golden_ref_frame/use_alt_ref_frame = 0) check to allow golden back
// based on the sad of nearest/nearmv of LAST ref. If this block sad is large,
// keep golden as reference. Only do this for the agrressive pruning mode and
// avoid it when color is set for golden reference.
if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN &&
(cpi->ref_frame_flags & AOM_LAST_FLAG) && !use_golden_ref_frame &&
!use_alt_ref_frame && x->pred_mv_sad[LAST_FRAME] != INT_MAX &&
x->nonrd_prune_ref_frame_search > 2 &&
x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) {
int thr = (cm->width * cm->height > RESOLUTION_288P) ? 100 : 150;
int pred = x->pred_mv_sad[LAST_FRAME] >>
(b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
if (pred > thr) use_golden_ref_frame = 1;
}
use_alt_ref_frame =
cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0;
use_golden_ref_frame =
cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0;
// For spatial layers: enable golden ref if it is set by user and
// corresponds to the lower spatial layer.
if (cpi->svc.spatial_layer_id > 0 && (cpi->ref_frame_flags & AOM_GOLD_FLAG) &&
x->content_state_sb.source_sad_nonrd < kHighSad) {
const int buffslot_golden =
cpi->ppi->rtc_ref.ref_idx[GOLDEN_FRAME - LAST_FRAME];
if (cpi->ppi->rtc_ref.buffer_time_index[buffslot_golden] ==
cpi->svc.current_superframe)
use_golden_ref_frame = 1;
}
use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame;
use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame;
use_ref_frame[LAST_FRAME] = use_last_ref_frame;
// Keep this assert on, as only 3 references are used in nonrd_pickmode
// (LAST, GOLDEN, ALTREF), and if all 3 are not set by user then this
// frame must be an intra-only frame and hence should never enter the
// pickmode here for inter frames.
assert(use_last_ref_frame || use_golden_ref_frame || use_alt_ref_frame);
}
static AOM_INLINE int is_filter_search_enabled_blk(
AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize,
int segment_id, int cb_pred_filter_search, InterpFilter *filt_select) {
const AV1_COMMON *const cm = &cpi->common;
// filt search disabled
if (!cpi->sf.rt_sf.use_nonrd_filter_search) return 0;
// filt search purely based on mode properties
if (!cb_pred_filter_search) return 1;
MACROBLOCKD *const xd = &x->e_mbd;
int enable_interp_search = 0;
if (!(xd->left_mbmi && xd->above_mbmi)) {
// neighbors info unavailable
enable_interp_search = 2;
} else if (!(is_inter_block(xd->left_mbmi) &&
is_inter_block(xd->above_mbmi))) {
// neighbor is INTRA
enable_interp_search = 2;
} else if (xd->left_mbmi->interp_filters.as_int !=
xd->above_mbmi->interp_filters.as_int) {
// filters are different
enable_interp_search = 2;
} else if ((cb_pred_filter_search == 1) &&
(xd->left_mbmi->interp_filters.as_filters.x_filter !=
EIGHTTAP_REGULAR)) {
// not regular
enable_interp_search = 2;
} else {
// enable prediction based on chessboard pattern
if (xd->left_mbmi->interp_filters.as_filters.x_filter == EIGHTTAP_SMOOTH)
*filt_select = EIGHTTAP_SMOOTH;
const int bsl = mi_size_wide_log2[bsize];
enable_interp_search =
(bool)((((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_frame.frame_number)) &
0x1);
if (cyclic_refresh_segment_id_boosted(segment_id)) enable_interp_search = 1;
}
return enable_interp_search;
}
static AOM_INLINE int skip_mode_by_threshold(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv,
int frames_since_golden, const int *const rd_threshes,
const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip,
int extra_shift) {
int skip_this_mode = 0;
const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)];
int64_t mode_rd_thresh =
best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1)
: ((int64_t)rd_threshes[mode_index]) << extra_shift;
// Increase mode_rd_thresh value for non-LAST for improved encoding
// speed
if (ref_frame != LAST_FRAME) {
mode_rd_thresh = mode_rd_thresh << 1;
if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4)
mode_rd_thresh = mode_rd_thresh << (extra_shift + 1);
}
if (rd_less_than_thresh(best_cost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
if (mv.as_int != 0) skip_this_mode = 1;
return skip_this_mode;
}
static AOM_INLINE int skip_mode_by_low_temp(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) {
// Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var
// is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
// later.
if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) {
return 1;
}
if (content_state_sb.source_sad_nonrd != kHighSad && bsize >= BLOCK_64X64 &&
force_skip_low_temp_var && mode == NEWMV) {
return 1;
}
return 0;
}
static AOM_INLINE int skip_mode_by_bsize_and_ref_frame(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
int extra_prune, unsigned int sse_zeromv_norm, int more_prune) {
const unsigned int thresh_skip_golden = 500;
if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden &&
mode == NEWMV)
return 1;
if (bsize == BLOCK_128X128 && mode == NEWMV) return 1;
// Skip testing non-LAST if this flag is set.
if (extra_prune) {
if (extra_prune > 1 && ref_frame != LAST_FRAME &&
(bsize > BLOCK_16X16 && mode == NEWMV))
return 1;
if (ref_frame != LAST_FRAME && mode == NEARMV) return 1;
if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1;
}
return 0;
}
static void set_block_source_sad(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
struct buf_2d *yv12_mb) {
struct macroblock_plane *const p = &x->plane[0];
const int y_sad = cpi->ppi->fn_ptr[bsize].sdf(p->src.buf, p->src.stride,
yv12_mb->buf, yv12_mb->stride);
if (y_sad == 0) x->block_is_zero_sad = 1;
}
static void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int y_sad,
unsigned int source_variance,
struct buf_2d yv12_mb[MAX_MB_PLANE]) {
const int subsampling_x = cpi->common.seq_params->subsampling_x;
const int subsampling_y = cpi->common.seq_params->subsampling_y;
const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
const int high_res = cpi->common.width * cpi->common.height >= 640 * 360;
if (bsize == cpi->common.seq_params->sb_size) {
// At superblock level color_sensitivity is already set to 0, 1, or 2.
// 2 is middle/uncertain level. To avoid additional sad
// computations when bsize = sb_size force level 2 to 1 (certain color)
// for motion areas.
if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 2) {
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] =
source_sad_nonrd >= kMedSad ? 1 : 0;
}
if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 2) {
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] =
source_sad_nonrd >= kMedSad ? 1 : 0;
}
return;
}
int shift = 3;
unsigned int source_var_thr = 50;
int uv_sad_thr = 100;
if (source_sad_nonrd >= kMedSad && x->source_variance > 0 && high_res)
shift = 4;
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
if (cpi->rc.high_source_sad) shift = 6;
if (source_sad_nonrd > kMedSad) {
source_var_thr = 1200;
uv_sad_thr = 10;
}
}
NOISE_LEVEL noise_level = kLow;
int norm_sad =
y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
unsigned int thresh_spatial = (cpi->common.width > 1920) ? 5000 : 1000;
// If the spatial source variance is high and the normalized y_sad
// is low, then y-channel is likely good for mode estimation, so keep
// color_sensitivity off. For low noise content for now, since there is
// some bdrate regression for noisy color clip.
if (cpi->noise_estimate.enabled)
noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);
if (noise_level == kLow && source_variance > thresh_spatial &&
cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && norm_sad < 50) {
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] = 0;
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] = 0;
return;
}
const int num_planes = av1_num_planes(&cpi->common);
for (int plane = AOM_PLANE_U; plane < num_planes; ++plane) {
// Always check if level = 2. If level = 0 check again for
// motion areas for higher resolns, where color artifacts
// are more noticeable.
if (x->color_sensitivity[COLOR_SENS_IDX(plane)] == 2 ||
(x->color_sensitivity[COLOR_SENS_IDX(plane)] == 0 &&
source_sad_nonrd >= kMedSad && high_res)) {
struct macroblock_plane *const p = &x->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(bsize, subsampling_x, subsampling_y);
const int uv_sad = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride);
const int norm_uv_sad =
uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]);
x->color_sensitivity[COLOR_SENS_IDX(plane)] =
uv_sad > (y_sad >> shift) && norm_uv_sad > 40;
if (source_variance < source_var_thr && norm_uv_sad > uv_sad_thr)
x->color_sensitivity[COLOR_SENS_IDX(plane)] = 1;
}
}
}
static void setup_compound_prediction(const AV1_COMMON *cm, MACROBLOCK *x,
struct buf_2d yv12_mb[8][MAX_MB_PLANE],
const int *use_ref_frame_mask,
const MV_REFERENCE_FRAME *rf,
int *ref_mv_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
MV_REFERENCE_FRAME ref_frame_comp;
if (!use_ref_frame_mask[rf[1]]) {
// Need to setup pred_block, if it hasn't been done in find_predictors.
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]);
const int num_planes = av1_num_planes(cm);
if (yv12 != NULL) {
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, rf[1]);
av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes);
}
}
ref_frame_comp = av1_ref_frame_type(rf);
mbmi_ext->mode_context[ref_frame_comp] = 0;
mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX;
av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp);
*ref_mv_idx = mbmi->ref_mv_idx + 1;
}
static void set_compound_mode(MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
MV_REFERENCE_FRAME ref_frame2, int ref_mv_idx,
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
PREDICTION_MODE this_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
mi->ref_frame[0] = ref_frame;
mi->ref_frame[1] = ref_frame2;
mi->compound_idx = 1;
mi->comp_group_idx = 0;
mi->interinter_comp.type = COMPOUND_AVERAGE;
MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame);
if (this_mode == GLOBAL_GLOBALMV) {
frame_mv[this_mode][ref_frame].as_int = 0;
frame_mv[this_mode][ref_frame2].as_int = 0;
} else if (this_mode == NEAREST_NEARESTMV) {
frame_mv[this_mode][ref_frame].as_int =
xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int;
frame_mv[this_mode][ref_frame2].as_int =
xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int;
} else if (this_mode == NEAR_NEARMV) {
frame_mv[this_mode][ref_frame].as_int =
xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int;
frame_mv[this_mode][ref_frame2].as_int =
xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int;
}
}
// Prune compound mode if the single mode variance is lower than a fixed
// percentage of the median value.
static bool skip_comp_based_on_var(
const unsigned int (*single_vars)[REF_FRAMES], BLOCK_SIZE bsize) {
unsigned int best_var = UINT_MAX;
for (int cur_mode_idx = 0; cur_mode_idx < RTC_INTER_MODES; cur_mode_idx++) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
best_var = AOMMIN(best_var, single_vars[cur_mode_idx][ref_idx]);
}
}
const unsigned int thresh_64 = (unsigned int)(0.57356805f * 8659);
const unsigned int thresh_32 = (unsigned int)(0.23964763f * 4281);
// Currently, the thresh for 128 and 16 are not well-tuned. We are using the
// results from 64 and 32 as an heuristic.
switch (bsize) {
case BLOCK_128X128: return best_var < 4 * thresh_64;
case BLOCK_64X64: return best_var < thresh_64;
case BLOCK_32X32: return best_var < thresh_32;
case BLOCK_16X16: return best_var < thresh_32 / 4;
default: return false;
}
}
static AOM_FORCE_INLINE void fill_single_inter_mode_costs(
int (*single_inter_mode_costs)[REF_FRAMES], int num_inter_modes,
const REF_MODE *reference_mode_set, const ModeCosts *mode_costs,
const int16_t *mode_context) {
bool ref_frame_used[REF_FRAMES] = { false };
for (int idx = 0; idx < num_inter_modes; idx++) {
ref_frame_used[reference_mode_set[idx].ref_frame] = true;
}
for (int this_ref_frame = LAST_FRAME; this_ref_frame < REF_FRAMES;
this_ref_frame++) {
if (!ref_frame_used[this_ref_frame]) {
continue;
}
const MV_REFERENCE_FRAME rf[2] = { this_ref_frame, NONE_FRAME };
const int16_t mode_ctx = av1_mode_context_analyzer(mode_context, rf);
for (PREDICTION_MODE this_mode = NEARESTMV; this_mode <= NEWMV;
this_mode++) {
single_inter_mode_costs[INTER_OFFSET(this_mode)][this_ref_frame] =
cost_mv_ref(mode_costs, this_mode, mode_ctx);
}
}
}
static AOM_INLINE bool is_globalmv_better(
PREDICTION_MODE this_mode, MV_REFERENCE_FRAME ref_frame, int rate_mv,
const ModeCosts *mode_costs,
const int (*single_inter_mode_costs)[REF_FRAMES],
const MB_MODE_INFO_EXT *mbmi_ext) {
const int globalmv_mode_cost =
single_inter_mode_costs[INTER_OFFSET(GLOBALMV)][ref_frame];
int this_mode_cost =
rate_mv + single_inter_mode_costs[INTER_OFFSET(this_mode)][ref_frame];
if (this_mode == NEWMV || this_mode == NEARMV) {
const MV_REFERENCE_FRAME rf[2] = { ref_frame, NONE_FRAME };
this_mode_cost += get_drl_cost(
NEWMV, 0, mbmi_ext, mode_costs->drl_mode_cost0, av1_ref_frame_type(rf));
}
return this_mode_cost > globalmv_mode_cost;
}
// Set up the mv/ref_frames etc based on the comp_index. Returns 1 if it
// succeeds, 0 if it fails.
static AOM_INLINE int setup_compound_params_from_comp_idx(
const AV1_COMP *cpi, MACROBLOCK *x, struct buf_2d yv12_mb[8][MAX_MB_PLANE],
PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *ref_frame,
MV_REFERENCE_FRAME *ref_frame2, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
const int *use_ref_frame_mask, int comp_index,
bool comp_use_zero_zeromv_only, MV_REFERENCE_FRAME *last_comp_ref_frame,
BLOCK_SIZE bsize) {
const MV_REFERENCE_FRAME *rf = comp_ref_mode_set[comp_index].ref_frame;
int skip_gf = 0;
int skip_alt = 0;
*this_mode = comp_ref_mode_set[comp_index].pred_mode;
*ref_frame = rf[0];
*ref_frame2 = rf[1];
assert(*ref_frame == LAST_FRAME);
assert(*this_mode == GLOBAL_GLOBALMV || *this_mode == NEAREST_NEARESTMV);
if (x->source_variance < 50 && bsize > BLOCK_16X16) {
if (x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)
skip_gf = 1;
if (x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)
skip_alt = 1;
}
if (comp_use_zero_zeromv_only && *this_mode != GLOBAL_GLOBALMV) {
return 0;
}
if (*ref_frame2 == GOLDEN_FRAME &&
(cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 || skip_gf ||
!(cpi->ref_frame_flags & AOM_GOLD_FLAG))) {
return 0;
} else if (*ref_frame2 == LAST2_FRAME &&
(cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 ||
!(cpi->ref_frame_flags & AOM_LAST2_FLAG))) {
return 0;
} else if (*ref_frame2 == ALTREF_FRAME &&
(cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 || skip_alt ||
!(cpi->ref_frame_flags & AOM_ALT_FLAG))) {
return 0;
}
int ref_mv_idx = 0;
if (*last_comp_ref_frame != rf[1]) {
// Only needs to be done once per reference pair.
setup_compound_prediction(&cpi->common, x, yv12_mb, use_ref_frame_mask, rf,
&ref_mv_idx);
*last_comp_ref_frame = rf[1];
}
set_compound_mode(x, *ref_frame, *ref_frame2, ref_mv_idx, frame_mv,
*this_mode);
if (*this_mode != GLOBAL_GLOBALMV &&
frame_mv[*this_mode][*ref_frame].as_int == 0 &&
frame_mv[*this_mode][*ref_frame2].as_int == 0) {
return 0;
}
return 1;
}
static AOM_INLINE bool previous_mode_performed_poorly(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame,
const unsigned int (*vars)[REF_FRAMES],
const int64_t (*uv_dist)[REF_FRAMES]) {
unsigned int best_var = UINT_MAX;
int64_t best_uv_dist = INT64_MAX;
for (int midx = 0; midx < RTC_INTER_MODES; midx++) {
best_var = AOMMIN(best_var, vars[midx][ref_frame]);
best_uv_dist = AOMMIN(best_uv_dist, uv_dist[midx][ref_frame]);
}
assert(best_var != UINT_MAX && "Invalid variance data.");
const float mult = 1.125f;
bool var_bad = mult * best_var < vars[INTER_OFFSET(mode)][ref_frame];
if (uv_dist[INTER_OFFSET(mode)][ref_frame] < INT64_MAX &&
best_uv_dist != uv_dist[INTER_OFFSET(mode)][ref_frame]) {
// If we have chroma info, then take it into account
var_bad &= mult * best_uv_dist < uv_dist[INTER_OFFSET(mode)][ref_frame];
}
return var_bad;
}
static AOM_INLINE bool prune_compoundmode_with_singlemode_var(
PREDICTION_MODE compound_mode, MV_REFERENCE_FRAME ref_frame,
MV_REFERENCE_FRAME ref_frame2, const int_mv (*frame_mv)[REF_FRAMES],
const uint8_t (*mode_checked)[REF_FRAMES],
const unsigned int (*vars)[REF_FRAMES],
const int64_t (*uv_dist)[REF_FRAMES]) {
const PREDICTION_MODE single_mode0 = compound_ref0_mode(compound_mode);
const PREDICTION_MODE single_mode1 = compound_ref1_mode(compound_mode);
bool first_ref_valid = false, second_ref_valid = false;
bool first_ref_bad = false, second_ref_bad = false;
if (mode_checked[single_mode0][ref_frame] &&
frame_mv[single_mode0][ref_frame].as_int ==
frame_mv[compound_mode][ref_frame].as_int &&
vars[INTER_OFFSET(single_mode0)][ref_frame] < UINT_MAX) {
first_ref_valid = true;
first_ref_bad =
previous_mode_performed_poorly(single_mode0, ref_frame, vars, uv_dist);
}
if (mode_checked[single_mode1][ref_frame2] &&
frame_mv[single_mode1][ref_frame2].as_int ==
frame_mv[compound_mode][ref_frame2].as_int &&
vars[INTER_OFFSET(single_mode1)][ref_frame2] < UINT_MAX) {
second_ref_valid = true;
second_ref_bad =
previous_mode_performed_poorly(single_mode1, ref_frame2, vars, uv_dist);
}
if (first_ref_valid && second_ref_valid) {
return first_ref_bad && second_ref_bad;
} else if (first_ref_valid || second_ref_valid) {
return first_ref_bad || second_ref_bad;
}
return false;
}
// Function to setup parameters used for inter mode evaluation in non-rd.
static AOM_FORCE_INLINE void set_params_nonrd_pick_inter_mode(
AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state,
RD_STATS *rd_cost, int *force_skip_low_temp_var, int mi_row, int mi_col,
int gf_temporal_ref, unsigned char segment_id, BLOCK_SIZE bsize
#if CONFIG_AV1_TEMPORAL_DENOISING
,
PICK_MODE_CONTEXT *ctx, int denoise_svc_pickmode
#endif
) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
MB_MODE_INFO *const mi = xd->mi[0];
const ModeCosts *mode_costs = &x->mode_costs;
int skip_pred_mv = 0;
// Initialize variance and distortion (chroma) for all modes and reference
// frames
for (int idx = 0; idx < RTC_INTER_MODES; idx++) {
for (int ref = 0; ref < REF_FRAMES; ref++) {
search_state->vars[idx][ref] = UINT_MAX;
search_state->uv_dist[idx][ref] = INT64_MAX;
}
}
// Initialize values of color sensitivity with sb level color sensitivity
av1_copy(x->color_sensitivity, x->color_sensitivity_sb);
init_best_pickmode(&search_state->best_pickmode);
// Estimate cost for single reference frames
estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id, bsize,
search_state->ref_costs_single);
// Reset flag to indicate modes evaluated
av1_zero(search_state->mode_checked);
txfm_info->skip_txfm = 0;
// Initialize mode decisions
av1_invalid_rd_stats(&search_state->best_rdc);
av1_invalid_rd_stats(&search_state->this_rdc);
av1_invalid_rd_stats(rd_cost);
for (int ref_idx = 0; ref_idx < REF_FRAMES; ++ref_idx) {
x->warp_sample_info[ref_idx].num = -1;
}
mi->bsize = bsize;
mi->ref_frame[0] = NONE_FRAME;
mi->ref_frame[1] = NONE_FRAME;
#if CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
// if (cpi->ppi->use_svc) denoise_svc_pickmode =
// av1_denoise_svc_non_key(cpi);
if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
av1_denoiser_reset_frame_stats(ctx);
}
#endif
// Populate predicated motion vectors for LAST_FRAME
if (cpi->ref_frame_flags & AOM_LAST_FLAG) {
find_predictors(cpi, x, LAST_FRAME, search_state->frame_mv,
search_state->yv12_mb, bsize, *force_skip_low_temp_var,
x->force_zeromv_skip_for_blk,
&search_state->use_scaled_ref_frame[LAST_FRAME]);
}
// Update mask to use all reference frame
get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref,
search_state->use_ref_frame_mask,
force_skip_low_temp_var);
skip_pred_mv = x->force_zeromv_skip_for_blk ||
(x->nonrd_prune_ref_frame_search > 2 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2);
// Populate predicated motion vectors for other single reference frame
// Start at LAST_FRAME + 1.
for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME + 1;
ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) {
if (search_state->use_ref_frame_mask[ref_frame_iter]) {
find_predictors(cpi, x, ref_frame_iter, search_state->frame_mv,
search_state->yv12_mb, bsize, *force_skip_low_temp_var,
skip_pred_mv,
&search_state->use_scaled_ref_frame[ref_frame_iter]);
}
}
}
// Function to check the inter mode can be skipped based on mode statistics and
// speed features settings.
static AOM_FORCE_INLINE bool skip_inter_mode_nonrd(
AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state,
int64_t *thresh_sad_pred, int *force_mv_inter_layer, int *is_single_pred,
PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *last_comp_ref_frame,
MV_REFERENCE_FRAME *ref_frame, MV_REFERENCE_FRAME *ref_frame2, int idx,
int_mv svc_mv, int force_skip_low_temp_var, unsigned int sse_zeromv_norm,
int num_inter_modes, unsigned char segment_id, BLOCK_SIZE bsize,
bool comp_use_zero_zeromv_only, bool check_globalmv) {
AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
const SVC *const svc = &cpi->svc;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
// Skip compound mode based on reference frame mask and type of the mode and
// for allowed compound modes, setup ref mv stack and reference frame.
if (idx >= num_inter_modes) {
const int comp_index = idx - num_inter_modes;
if (!setup_compound_params_from_comp_idx(
cpi, x, search_state->yv12_mb, this_mode, ref_frame, ref_frame2,
search_state->frame_mv, search_state->use_ref_frame_mask,
comp_index, comp_use_zero_zeromv_only, last_comp_ref_frame,
bsize)) {
return true;
}
*is_single_pred = 0;
} else {
*this_mode = ref_mode_set[idx].pred_mode;
*ref_frame = ref_mode_set[idx].ref_frame;
*ref_frame2 = NONE_FRAME;
}
if (x->sb_me_block && *ref_frame == LAST_FRAME) {
// We want to make sure to test the superblock MV:
// so don't skip (return false) for NEAREST_LAST or NEAR_LAST if they
// have this sb MV. And don't skip NEWMV_LAST: this will be set to
// sb MV in handle_inter_mode_nonrd(), in case NEAREST or NEAR don't
// have it.
if (*this_mode == NEARESTMV &&
search_state->frame_mv[NEARESTMV][LAST_FRAME].as_int ==
x->sb_me_mv.as_int) {
return false;
}
if (*this_mode == NEARMV &&
search_state->frame_mv[NEARMV][LAST_FRAME].as_int ==
x->sb_me_mv.as_int) {
return false;
}
if (*this_mode == NEWMV) {
return false;
}
}
// Skip the single reference mode for which mode check flag is set.
if (*is_single_pred && search_state->mode_checked[*this_mode][*ref_frame]) {
return true;
}
// Skip GLOBALMV mode if check_globalmv flag is not enabled.
if (!check_globalmv && *this_mode == GLOBALMV) {
return true;
}
#if COLLECT_NONRD_PICK_MODE_STAT
aom_usec_timer_start(&x->ms_stat_nonrd.timer1);
x->ms_stat_nonrd.num_searches[bsize][*this_mode]++;
#endif
mi->mode = *this_mode;
mi->ref_frame[0] = *ref_frame;
mi->ref_frame[1] = *ref_frame2;
// Skip the mode if use reference frame mask flag is not set.
if (!search_state->use_ref_frame_mask[*ref_frame]) return true;
// Skip mode for some modes and reference frames when
// force_zeromv_skip_for_blk flag is true.
if (x->force_zeromv_skip_for_blk &&
((!(*this_mode == NEARESTMV &&
search_state->frame_mv[*this_mode][*ref_frame].as_int == 0) &&
*this_mode != GLOBALMV) ||
*ref_frame != LAST_FRAME))
return true;
// Skip compound mode based on variance of previously evaluated single
// reference modes.
if (rt_sf->prune_compoundmode_with_singlemode_var && !*is_single_pred &&
prune_compoundmode_with_singlemode_var(
*this_mode, *ref_frame, *ref_frame2, search_state->frame_mv,
search_state->mode_checked, search_state->vars,
search_state->uv_dist)) {
return true;
}
*force_mv_inter_layer = 0;
if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 &&
((*ref_frame == LAST_FRAME && svc->skip_mvsearch_last) ||
(*ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf) ||
(*ref_frame == ALTREF_FRAME && svc->skip_mvsearch_altref))) {
// Only test mode if NEARESTMV/NEARMV is (svc_mv.mv.col, svc_mv.mv.row),
// otherwise set NEWMV to (svc_mv.mv.col, svc_mv.mv.row).
// Skip newmv and filter search.
*force_mv_inter_layer = 1;
if (*this_mode == NEWMV) {
search_state->frame_mv[*this_mode][*ref_frame] = svc_mv;
} else if (search_state->frame_mv[*this_mode][*ref_frame].as_int !=
svc_mv.as_int) {
return true;
}
}
// If the segment reference frame feature is enabled then do nothing if the
// current ref frame is not allowed.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)(*ref_frame))
return true;
// For screen content: skip mode testing based on source_sad.
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
// If source_sad is computed: skip non-zero motion
// check for stationary (super)blocks. Otherwise if superblock
// has motion skip the modes with zero motion on last reference
// for flat blocks, and color is not set.
// For the latter condition: the same condition should apply
// to newmv if (0, 0), so this latter condition is repeated
// below after search_new_mv.
if (rt_sf->source_metrics_sb_nonrd) {
if ((search_state->frame_mv[*this_mode][*ref_frame].as_int != 0 &&
x->content_state_sb.source_sad_nonrd == kZeroSad) ||
(search_state->frame_mv[*this_mode][*ref_frame].as_int == 0 &&
x->block_is_zero_sad == 0 && *ref_frame == LAST_FRAME &&
((x->color_sensitivity_sb[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 &&
x->color_sensitivity_sb[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) ||
cpi->rc.high_source_sad) &&
x->source_variance == 0))
return true;
}
// Skip NEWMV search for flat blocks.
if (*this_mode == NEWMV && x->source_variance < 100) return true;
// Skip non-LAST for color on flat blocks.
if (*ref_frame > LAST_FRAME && x->source_variance == 0 &&
(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 ||
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1))
return true;
}
// Skip mode based on block size, reference frame mode and other block
// properties.
if (skip_mode_by_bsize_and_ref_frame(
*this_mode, *ref_frame, bsize, x->nonrd_prune_ref_frame_search,
sse_zeromv_norm, rt_sf->nonrd_aggressive_skip))
return true;
// Skip mode based on low temporal variance and souce sad.
if (skip_mode_by_low_temp(*this_mode, *ref_frame, bsize, x->content_state_sb,
search_state->frame_mv[*this_mode][*ref_frame],
force_skip_low_temp_var))
return true;
// Disable this drop out case if the ref frame segment level feature is
// enabled for this segment. This is to prevent the possibility that we
// end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Check for skipping GOLDEN and ALTREF based pred_mv_sad.
if (rt_sf->nonrd_prune_ref_frame_search > 0 &&
x->pred_mv_sad[*ref_frame] != INT_MAX && *ref_frame != LAST_FRAME) {
if ((int64_t)(x->pred_mv_sad[*ref_frame]) > *thresh_sad_pred) return true;
}
}
// Check for skipping NEARMV based on pred_mv_sad.
if (*this_mode == NEARMV && x->pred_mv1_sad[*ref_frame] != INT_MAX &&
x->pred_mv1_sad[*ref_frame] > (x->pred_mv0_sad[*ref_frame] << 1))
return true;
// Skip single reference mode based on rd threshold.
if (*is_single_pred) {
if (skip_mode_by_threshold(
*this_mode, *ref_frame,
search_state->frame_mv[*this_mode][*ref_frame],
cpi->rc.frames_since_golden, cpi->rd.threshes[segment_id][bsize],
x->thresh_freq_fact[bsize], search_state->best_rdc.rdcost,
search_state->best_pickmode.best_mode_skip_txfm,
(rt_sf->nonrd_aggressive_skip ? 1 : 0)))
return true;
}
return false;
}
// Function to perform inter mode evaluation for non-rd
static AOM_FORCE_INLINE bool handle_inter_mode_nonrd(
AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state,
PICK_MODE_CONTEXT *ctx, PRED_BUFFER **this_mode_pred,
PRED_BUFFER *tmp_buffer, InterPredParams inter_pred_params_sr,
int