blob: 0d63db288eed5c5e30b86fb40ea46a60a9dc846d [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include <smmintrin.h>
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/synonyms_avx2.h"
#include "aom_dsp/x86/sum_squares_sse2.h"
#include "config/aom_dsp_rtcd.h"
static uint64_t aom_sum_squares_2d_i16_nxn_avx2(const int16_t *src, int stride,
int width, int height) {
uint64_t result;
__m256i v_acc_q = _mm256_setzero_si256();
const __m256i v_zext_mask_q = yy_set1_64_from_32i(0xffffffff);
for (int col = 0; col < height; col += 4) {
__m256i v_acc_d = _mm256_setzero_si256();
for (int row = 0; row < width; row += 16) {
const int16_t *tempsrc = src + row;
const __m256i v_val_0_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 0 * stride));
const __m256i v_val_1_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 1 * stride));
const __m256i v_val_2_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 2 * stride));
const __m256i v_val_3_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 3 * stride));
const __m256i v_sq_0_d = _mm256_madd_epi16(v_val_0_w, v_val_0_w);
const __m256i v_sq_1_d = _mm256_madd_epi16(v_val_1_w, v_val_1_w);
const __m256i v_sq_2_d = _mm256_madd_epi16(v_val_2_w, v_val_2_w);
const __m256i v_sq_3_d = _mm256_madd_epi16(v_val_3_w, v_val_3_w);
const __m256i v_sum_01_d = _mm256_add_epi32(v_sq_0_d, v_sq_1_d);
const __m256i v_sum_23_d = _mm256_add_epi32(v_sq_2_d, v_sq_3_d);
const __m256i v_sum_0123_d = _mm256_add_epi32(v_sum_01_d, v_sum_23_d);
v_acc_d = _mm256_add_epi32(v_acc_d, v_sum_0123_d);
}
v_acc_q =
_mm256_add_epi64(v_acc_q, _mm256_and_si256(v_acc_d, v_zext_mask_q));
v_acc_q = _mm256_add_epi64(v_acc_q, _mm256_srli_epi64(v_acc_d, 32));
src += 4 * stride;
}
__m128i lower_64_2_Value = _mm256_castsi256_si128(v_acc_q);
__m128i higher_64_2_Value = _mm256_extracti128_si256(v_acc_q, 1);
__m128i result_64_2_int = _mm_add_epi64(lower_64_2_Value, higher_64_2_Value);
result_64_2_int = _mm_add_epi64(
result_64_2_int, _mm_unpackhi_epi64(result_64_2_int, result_64_2_int));
xx_storel_64(&result, result_64_2_int);
return result;
}
uint64_t aom_sum_squares_2d_i16_avx2(const int16_t *src, int stride, int width,
int height) {
if (LIKELY(width == 4 && height == 4)) {
return aom_sum_squares_2d_i16_4x4_sse2(src, stride);
} else if (LIKELY(width == 4 && (height & 3) == 0)) {
return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height);
} else if (LIKELY(width == 8 && (height & 3) == 0)) {
return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height);
} else if (LIKELY(((width & 15) == 0) && ((height & 3) == 0))) {
return aom_sum_squares_2d_i16_nxn_avx2(src, stride, width, height);
} else {
return aom_sum_squares_2d_i16_c(src, stride, width, height);
}
}
static uint64_t aom_sum_sse_2d_i16_nxn_avx2(const int16_t *src, int stride,
int width, int height, int *sum) {
uint64_t result;
const __m256i zero_reg = _mm256_setzero_si256();
const __m256i one_reg = _mm256_set1_epi16(1);
__m256i v_sse_total = zero_reg;
__m256i v_sum_total = zero_reg;
for (int col = 0; col < height; col += 4) {
__m256i v_sse_row = zero_reg;
for (int row = 0; row < width; row += 16) {
const int16_t *tempsrc = src + row;
const __m256i v_val_0_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 0 * stride));
const __m256i v_val_1_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 1 * stride));
const __m256i v_val_2_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 2 * stride));
const __m256i v_val_3_w =
_mm256_loadu_si256((const __m256i *)(tempsrc + 3 * stride));
const __m256i v_sum_01 = _mm256_add_epi16(v_val_0_w, v_val_1_w);
const __m256i v_sum_23 = _mm256_add_epi16(v_val_2_w, v_val_3_w);
__m256i v_sum_0123 = _mm256_add_epi16(v_sum_01, v_sum_23);
v_sum_0123 = _mm256_madd_epi16(v_sum_0123, one_reg);
v_sum_total = _mm256_add_epi32(v_sum_total, v_sum_0123);
const __m256i v_sq_0_d = _mm256_madd_epi16(v_val_0_w, v_val_0_w);
const __m256i v_sq_1_d = _mm256_madd_epi16(v_val_1_w, v_val_1_w);
const __m256i v_sq_2_d = _mm256_madd_epi16(v_val_2_w, v_val_2_w);
const __m256i v_sq_3_d = _mm256_madd_epi16(v_val_3_w, v_val_3_w);
const __m256i v_sq_01_d = _mm256_add_epi32(v_sq_0_d, v_sq_1_d);
const __m256i v_sq_23_d = _mm256_add_epi32(v_sq_2_d, v_sq_3_d);
const __m256i v_sq_0123_d = _mm256_add_epi32(v_sq_01_d, v_sq_23_d);
v_sse_row = _mm256_add_epi32(v_sse_row, v_sq_0123_d);
}
const __m256i v_sse_row_low = _mm256_unpacklo_epi32(v_sse_row, zero_reg);
const __m256i v_sse_row_hi = _mm256_unpackhi_epi32(v_sse_row, zero_reg);
v_sse_row = _mm256_add_epi64(v_sse_row_low, v_sse_row_hi);
v_sse_total = _mm256_add_epi64(v_sse_total, v_sse_row);
src += 4 * stride;
}
const __m128i v_sum_total_low = _mm256_castsi256_si128(v_sum_total);
const __m128i v_sum_total_hi = _mm256_extracti128_si256(v_sum_total, 1);
__m128i sum_128bit = _mm_add_epi32(v_sum_total_hi, v_sum_total_low);
sum_128bit = _mm_add_epi32(sum_128bit, _mm_srli_si128(sum_128bit, 8));
sum_128bit = _mm_add_epi32(sum_128bit, _mm_srli_si128(sum_128bit, 4));
*sum += _mm_cvtsi128_si32(sum_128bit);
__m128i v_sse_total_lo = _mm256_castsi256_si128(v_sse_total);
__m128i v_sse_total_hi = _mm256_extracti128_si256(v_sse_total, 1);
__m128i sse_128bit = _mm_add_epi64(v_sse_total_lo, v_sse_total_hi);
sse_128bit =
_mm_add_epi64(sse_128bit, _mm_unpackhi_epi64(sse_128bit, sse_128bit));
xx_storel_64(&result, sse_128bit);
return result;
}
uint64_t aom_sum_sse_2d_i16_avx2(const int16_t *src, int src_stride, int width,
int height, int *sum) {
if (LIKELY(width == 4 && height == 4)) {
return aom_sum_sse_2d_i16_4x4_sse2(src, src_stride, sum);
} else if (LIKELY(width == 4 && (height & 3) == 0)) {
return aom_sum_sse_2d_i16_4xn_sse2(src, src_stride, height, sum);
} else if (LIKELY(width == 8 && (height & 3) == 0)) {
return aom_sum_sse_2d_i16_nxn_sse2(src, src_stride, width, height, sum);
} else if (LIKELY(((width & 15) == 0) && ((height & 3) == 0))) {
return aom_sum_sse_2d_i16_nxn_avx2(src, src_stride, width, height, sum);
} else {
return aom_sum_sse_2d_i16_c(src, src_stride, width, height, sum);
}
}
// Accumulate sum of 16-bit elements in the vector
static AOM_INLINE int32_t mm256_accumulate_epi16(__m256i vec_a) {
__m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1);
__m128i vtmp2 = _mm256_castsi256_si128(vec_a);
vtmp1 = _mm_add_epi16(vtmp1, vtmp2);
vtmp2 = _mm_srli_si128(vtmp1, 8);
vtmp1 = _mm_add_epi16(vtmp1, vtmp2);
vtmp2 = _mm_srli_si128(vtmp1, 4);
vtmp1 = _mm_add_epi16(vtmp1, vtmp2);
vtmp2 = _mm_srli_si128(vtmp1, 2);
vtmp1 = _mm_add_epi16(vtmp1, vtmp2);
return _mm_extract_epi16(vtmp1, 0);
}
// Accumulate sum of 32-bit elements in the vector
static AOM_INLINE int32_t mm256_accumulate_epi32(__m256i vec_a) {
__m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1);
__m128i vtmp2 = _mm256_castsi256_si128(vec_a);
vtmp1 = _mm_add_epi32(vtmp1, vtmp2);
vtmp2 = _mm_srli_si128(vtmp1, 8);
vtmp1 = _mm_add_epi32(vtmp1, vtmp2);
vtmp2 = _mm_srli_si128(vtmp1, 4);
vtmp1 = _mm_add_epi32(vtmp1, vtmp2);
return _mm_cvtsi128_si32(vtmp1);
}
uint64_t aom_var_2d_u8_avx2(uint8_t *src, int src_stride, int width,
int height) {
uint8_t *srcp;
uint64_t s = 0, ss = 0;
__m256i vzero = _mm256_setzero_si256();
__m256i v_acc_sum = vzero;
__m256i v_acc_sqs = vzero;
int i, j;
// Process 32 elements in a row
for (i = 0; i < width - 31; i += 32) {
srcp = src + i;
// Process 8 columns at a time
for (j = 0; j < height - 7; j += 8) {
__m256i vsrc[8];
for (int k = 0; k < 8; k++) {
vsrc[k] = _mm256_loadu_si256((__m256i *)srcp);
srcp += src_stride;
}
for (int k = 0; k < 8; k++) {
__m256i vsrc0 = _mm256_unpacklo_epi8(vsrc[k], vzero);
__m256i vsrc1 = _mm256_unpackhi_epi8(vsrc[k], vzero);
v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0);
v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1);
__m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0);
__m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1);
v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0);
v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1);
}
// Update total sum and clear the vectors
s += mm256_accumulate_epi16(v_acc_sum);
ss += mm256_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process remaining rows (height not a multiple of 8)
for (; j < height; j++) {
__m256i vsrc = _mm256_loadu_si256((__m256i *)srcp);
__m256i vsrc0 = _mm256_unpacklo_epi8(vsrc, vzero);
__m256i vsrc1 = _mm256_unpackhi_epi8(vsrc, vzero);
v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0);
v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1);
__m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0);
__m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1);
v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0);
v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1);
srcp += src_stride;
}
// Update total sum and clear the vectors
s += mm256_accumulate_epi16(v_acc_sum);
ss += mm256_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process the remaining area using C
srcp = src;
for (int k = 0; k < height; k++) {
for (int m = i; m < width; m++) {
uint8_t val = srcp[m];
s += val;
ss += val * val;
}
srcp += src_stride;
}
return (ss - s * s / (width * height));
}
uint64_t aom_var_2d_u16_avx2(uint8_t *src, int src_stride, int width,
int height) {
uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp;
uint64_t s = 0, ss = 0;
__m256i vzero = _mm256_setzero_si256();
__m256i v_acc_sum = vzero;
__m256i v_acc_sqs = vzero;
int i, j;
// Process 16 elements in a row
for (i = 0; i < width - 15; i += 16) {
srcp = srcp1 + i;
// Process 8 columns at a time
for (j = 0; j < height - 8; j += 8) {
__m256i vsrc[8];
for (int k = 0; k < 8; k++) {
vsrc[k] = _mm256_loadu_si256((__m256i *)srcp);
srcp += src_stride;
}
for (int k = 0; k < 8; k++) {
__m256i vsrc0 = _mm256_unpacklo_epi16(vsrc[k], vzero);
__m256i vsrc1 = _mm256_unpackhi_epi16(vsrc[k], vzero);
v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum);
v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum);
__m256i vsqs0 = _mm256_madd_epi16(vsrc[k], vsrc[k]);
v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0);
}
// Update total sum and clear the vectors
s += mm256_accumulate_epi32(v_acc_sum);
ss += mm256_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process remaining rows (height not a multiple of 8)
for (; j < height; j++) {
__m256i vsrc = _mm256_loadu_si256((__m256i *)srcp);
__m256i vsrc0 = _mm256_unpacklo_epi16(vsrc, vzero);
__m256i vsrc1 = _mm256_unpackhi_epi16(vsrc, vzero);
v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum);
v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum);
__m256i vsqs0 = _mm256_madd_epi16(vsrc, vsrc);
v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0);
srcp += src_stride;
}
// Update total sum and clear the vectors
s += mm256_accumulate_epi32(v_acc_sum);
ss += mm256_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process the remaining area using C
srcp = srcp1;
for (int k = 0; k < height; k++) {
for (int m = i; m < width; m++) {
uint16_t val = srcp[m];
s += val;
ss += val * val;
}
srcp += src_stride;
}
return (ss - s * s / (width * height));
}