| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <cassert> |
| #include <memory> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/common/interintra_ml.h" |
| #include "av1/common/interintra_ml_model.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "common/tf_lite_includes.h" |
| |
| namespace { |
| |
| void add_resolver_builtins(::tflite::MutableOpResolver *resolver) { |
| resolver->AddBuiltin(::tflite::BuiltinOperator_ADD, |
| ::tflite::ops::builtin::Register_ADD()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_CAST, |
| ::tflite::ops::builtin::Register_CAST()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_CONCATENATION, |
| ::tflite::ops::builtin::Register_CONCATENATION()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_CONV_2D, |
| ::tflite::ops::builtin::Register_CONV_2D()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_EQUAL, |
| ::tflite::ops::builtin::Register_EQUAL()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_FILL, |
| ::tflite::ops::builtin::Register_FILL()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_GATHER, |
| ::tflite::ops::builtin::Register_GATHER()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_IF, |
| ::tflite::ops::builtin::Register_IF()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_LEAKY_RELU, |
| ::tflite::ops::builtin::Register_LEAKY_RELU()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_LESS, |
| ::tflite::ops::builtin::Register_LESS()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_LOGICAL_AND, |
| ::tflite::ops::builtin::Register_LOGICAL_AND()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_RESHAPE, |
| ::tflite::ops::builtin::Register_RESHAPE()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_SHAPE, |
| ::tflite::ops::builtin::Register_SHAPE()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_SLICE, |
| ::tflite::ops::builtin::Register_SLICE()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_STRIDED_SLICE, |
| ::tflite::ops::builtin::Register_STRIDED_SLICE()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_TRANSPOSE, |
| ::tflite::ops::builtin::Register_TRANSPOSE()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_UNPACK, |
| ::tflite::ops::builtin::Register_UNPACK(), 3, 3); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_WHILE, |
| ::tflite::ops::builtin::Register_WHILE()); |
| } |
| |
| // Returns the error reporter (initialized statically). Assumes |
| // entire program is single threaded. |
| tflite::ErrorReporter *get_reporter() { |
| static tflite::ErrorReporter *reporter_ = tflite::DefaultErrorReporter(); |
| return reporter_; |
| } |
| |
| // Initialize the interpreter (only used for static initialization). |
| tflite::Interpreter *init_interpreter_() { |
| auto model = tflite::GetModel(decode_13759197_5_tflite_data); |
| tflite::MutableOpResolver resolver; |
| add_resolver_builtins(&resolver); |
| tflite::InterpreterBuilder builder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| tflite::ErrorReporter *reporter = get_reporter(); |
| if (builder(&interpreter) != kTfLiteOk) { |
| reporter->Report("Builder failed"); |
| return nullptr; |
| } |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| reporter->Report("Allocating tensors failed"); |
| return nullptr; |
| } |
| |
| if (interpreter->inputs().size() != 4) { |
| reporter->Report("Wrong number of inputs"); |
| return nullptr; |
| } |
| |
| if (interpreter->outputs().size() != 1) { |
| reporter->Report("Wrong number of outputs"); |
| return nullptr; |
| } |
| |
| return interpreter.release(); |
| } |
| |
| // Get the interpreter (initialized statically). Assumes entire program |
| // is single threaded. |
| tflite::Interpreter *get_interpreter() { |
| // Assumes entire program is single-threaded. |
| static tflite::Interpreter *interpreter_ = init_interpreter_(); |
| return interpreter_; |
| } |
| |
| // Copy a blank square into the region. Needed as default behavior if |
| // the interintra ML model does not support a particular use case. |
| void copy_blank_square(uint8_t *dst, int stride, BLOCK_SIZE bsize, |
| bool is_hbd) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| for (int j = 0; j < bh; ++j) { |
| av1_bd_memset(dst + j * stride, 0, bw, is_hbd); |
| } |
| } |
| |
| void superscale_pred(uint8_t dst[400], const uint8_t *pred, int stride) { |
| const int dst_stride = 20; |
| for (int j = 0; j < 20; j += 2) { |
| for (int i = 0; i < 20; i += 2) { |
| int scaled_i = i / 2; |
| int scaled_j = j / 2; |
| dst[i + j * dst_stride] = pred[scaled_i + scaled_j * stride]; |
| dst[i + j * dst_stride + 1] = pred[scaled_i + scaled_j * stride]; |
| dst[i + (j + 1) * dst_stride] = pred[scaled_i + scaled_j * stride]; |
| dst[i + (j + 1) * dst_stride + 1] = pred[scaled_i + scaled_j * stride]; |
| } |
| } |
| } |
| |
| // Load the inputs (inter-predictor + border, intra-predictor border) |
| // into the interpreter. |
| void load_inputs(tflite::Interpreter *interpreter, INTERINTRA_MODE mode, |
| BLOCK_SIZE bsize, const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| |
| // Load the inter-predictor and border. |
| float *inter_input = interpreter->typed_input_tensor<float>(0); |
| // Border region starts at a negative offset. |
| inter_pred -= INTERINTRA_ML_BORDER * (1 + inter_stride); |
| for (int j = 0; j < bh + INTERINTRA_ML_BORDER; ++j) { |
| std::copy_n(inter_pred + j * inter_stride, bw + INTERINTRA_ML_BORDER, |
| inter_input + j * (bw + INTERINTRA_ML_BORDER)); |
| } |
| |
| // Load the top-part of the intra-predictor border. |
| float *intra_top_input = interpreter->typed_input_tensor<float>(1); |
| intra_pred -= INTERINTRA_ML_BORDER * (1 + intra_stride); |
| for (int j = 0; j < INTERINTRA_ML_BORDER; ++j) { |
| std::copy_n(intra_pred + j * intra_stride, bw + INTERINTRA_ML_BORDER, |
| intra_top_input + j * (bw + INTERINTRA_ML_BORDER)); |
| } |
| |
| // Load the left columns of the intra-predictor border. |
| float *intra_left_input = interpreter->typed_input_tensor<float>(2); |
| for (int j = 0; j < bh; ++j) { |
| std::copy_n(intra_pred + (j + INTERINTRA_ML_BORDER) * intra_stride, |
| INTERINTRA_ML_BORDER, |
| intra_left_input + j * INTERINTRA_ML_BORDER); |
| } |
| |
| int *mode_input = interpreter->typed_input_tensor<int>(3); |
| *mode_input = mode - II_ML_PRED0 + 1; // Normalize so 1 is the first mode. |
| } |
| |
| // Copy the output of the interpreter into the destination buffer. If |
| // subsample == true, takes a weighted average of 2x2 blocks for each point |
| // (creating an 8x8 block). |
| void copy_to_output(tflite::Interpreter *interpreter, BLOCK_SIZE bsize, |
| uint8_t *comp_pred, int comp_stride, bool subsample) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| float *output = interpreter->typed_output_tensor<float>(0); |
| |
| for (int j = 0; j < bh; ++j) { |
| for (int i = 0; i < bw; ++i) { |
| if (!subsample) { |
| comp_pred[i + j * comp_stride] = |
| // + 0.5 to round to nearest integer when casting to uint8. |
| static_cast<uint8_t>(fclamp(output[i + j * bw] + 0.5f, 0, 255)); |
| continue; |
| } |
| // Weighted average. |
| const int scaled_i = 2 * i; |
| const int scaled_j = 2 * j; |
| const int output_stride = 16; |
| float total = output[scaled_i + output_stride * scaled_j] + |
| output[scaled_i + output_stride * scaled_j + 1] + |
| output[scaled_i + output_stride * (scaled_j + 1)] + |
| output[scaled_i + output_stride * (scaled_j + 1) + 1] + |
| 2.0f; // +2 to round to nearest int when dividing by 4. |
| comp_pred[j * comp_stride + i] = |
| static_cast<uint8_t>(fclamp(total / 4.0f, 0, 255)); |
| } |
| } |
| } |
| |
| void scale_load_inputs(tflite::Interpreter *interpreter, INTERINTRA_MODE mode, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride) { |
| uint8_t scaled_inter_pred[400]; |
| const int scaled_inter_stride = 20; |
| assert(INTERINTRA_ML_BORDER % 2 == 0); |
| superscale_pred(scaled_inter_pred, |
| inter_pred - INTERINTRA_ML_BORDER * inter_stride / 2 - |
| INTERINTRA_ML_BORDER / 2, |
| inter_stride); |
| |
| uint8_t scaled_intra_pred[400]; |
| const int scaled_intra_stride = 20; |
| superscale_pred(scaled_intra_pred, |
| intra_pred - INTERINTRA_ML_BORDER * intra_stride / 2 - |
| INTERINTRA_ML_BORDER / 2, |
| intra_stride); |
| load_inputs(interpreter, mode, BLOCK_16X16, |
| scaled_inter_pred + INTERINTRA_ML_BORDER * scaled_inter_stride + |
| INTERINTRA_ML_BORDER, |
| scaled_inter_stride, |
| scaled_intra_pred + INTERINTRA_ML_BORDER * scaled_intra_stride + |
| INTERINTRA_ML_BORDER, |
| scaled_intra_stride); |
| } |
| |
| } // namespace |
| |
| bool is_interintra_ml_supported(const MACROBLOCKD *xd, bool wedge) { |
| // Not supported in wedge mode. |
| if (wedge) { |
| return false; |
| } |
| // Only supported for block-sizes of 16x16. |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| if (bsize != BLOCK_16X16) { |
| return false; |
| } |
| // build-for-obmc is just used to check whether this is a sub-8x8 block or |
| // not. Any value will do for it, since block size must be 16x16. |
| const bool build_for_obmc = true; |
| int border = av1_calc_border(xd, AOM_PLANE_Y, build_for_obmc); |
| border = AOMMIN(border, av1_calc_border(xd, AOM_PLANE_U, build_for_obmc)); |
| border = AOMMIN(border, av1_calc_border(xd, AOM_PLANE_V, build_for_obmc)); |
| return border >= INTERINTRA_ML_BORDER; |
| } |
| |
| void av1_combine_interintra_ml(INTERINTRA_MODE mode, BLOCK_SIZE plane_bsize, |
| uint8_t *comp_pred, int comp_stride, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride, |
| int border) { |
| (void)border; |
| assert(border >= INTERINTRA_ML_BORDER); |
| if (plane_bsize != BLOCK_16X16 && plane_bsize != BLOCK_8X8) { |
| // Not yet implemented. Just copy a blank square into the predictor. |
| copy_blank_square(comp_pred, comp_stride, plane_bsize, false); |
| return; |
| } |
| tflite::Interpreter *interpreter = get_interpreter(); |
| if (plane_bsize == BLOCK_16X16) { |
| load_inputs(interpreter, mode, plane_bsize, inter_pred, inter_stride, |
| intra_pred, intra_stride); |
| } else { |
| assert(plane_bsize == BLOCK_8X8); |
| scale_load_inputs(interpreter, mode, inter_pred, inter_stride, intra_pred, |
| intra_stride); |
| } |
| auto status = interpreter->Invoke(); |
| if (status != kTfLiteOk) { |
| tflite::ErrorReporter *reporter = get_reporter(); |
| reporter->Report("Failed to run inference"); |
| assert(false); |
| } |
| |
| const bool subsample = plane_bsize == BLOCK_8X8; |
| copy_to_output(interpreter, plane_bsize, comp_pred, comp_stride, subsample); |
| } |
| |
| void av1_combine_interintra_ml_highbd( |
| INTERINTRA_MODE mode, BLOCK_SIZE plane_bsize, uint8_t *comp_pred8, |
| int comp_stride, const uint8_t *inter_pred8, int inter_stride, |
| const uint8_t *intra_pred8, int intra_stride, int bd, int border) { |
| (void)mode; |
| (void)inter_pred8; |
| (void)inter_stride; |
| (void)intra_pred8; |
| (void)intra_stride; |
| (void)bd; |
| (void)border; |
| assert(border >= INTERINTRA_ML_BORDER); |
| // Not yet implemented. Just copy a blank square into the predictor. |
| copy_blank_square(comp_pred8, comp_stride, plane_bsize, true); |
| } |