Tidy up constants and style in Neon av1_convolve_sr
Move some constants inside the convolution kernels and tidy up the style
to make it consistent across the different specialized paths.
Change-Id: I87ed3406a3aea760aa76dc7911b3cbb25e4eb4fd
diff --git a/av1/common/arm/convolve_neon_dotprod.c b/av1/common/arm/convolve_neon_dotprod.c
index 9c50890..20da298 100644
--- a/av1/common/arm/convolve_neon_dotprod.c
+++ b/av1/common/arm/convolve_neon_dotprod.c
@@ -38,67 +38,75 @@
static INLINE int16x4_t convolve12_4_x(uint8x16_t samples,
const int8x16_t filter,
- const int32x4_t correction,
- const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
- int8x16_t clamped_samples, permuted_samples[3];
- int32x4_t sum;
-
- // Clamp sample range to [-128, 127] for 8-bit signed dot product.
- clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
+ // Transform sample range to [-128, 127] for 8-bit signed dot product.
+ int8x16_t samples_128 =
+ vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128)));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
+ int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[1]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[2]) };
- // Accumulate dot product into 'correction' to account for range clamp.
- // First 4 output values.
- sum = vdotq_laneq_s32(correction, permuted_samples[0], filter, 0);
- sum = vdotq_laneq_s32(sum, permuted_samples[1], filter, 1);
- sum = vdotq_laneq_s32(sum, permuted_samples[2], filter, 2);
+ // Dot product constants:
+ // Accumulate into 128 << FILTER_BITS to account for range transform.
+ // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
+ // right shift by FILTER_BITS - instead of a first rounding right shift by
+ // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
+ // ROUND0_BITS.
+ int32x4_t acc =
+ vdupq_n_s32((128 << FILTER_BITS) + (1 << ((ROUND0_BITS - 1))));
+
+ int32x4_t sum = vdotq_laneq_s32(acc, perm_samples[0], filter, 0);
+ sum = vdotq_laneq_s32(sum, perm_samples[1], filter, 1);
+ sum = vdotq_laneq_s32(sum, perm_samples[2], filter, 2);
return vqrshrn_n_s32(sum, FILTER_BITS);
}
static INLINE uint8x8_t convolve12_8_x(uint8x16_t samples[2],
const int8x16_t filter,
- const int32x4_t correction,
- const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
- int8x16_t clamped_samples[2], permuted_samples[4];
- int32x4_t sum[2];
-
- // Clamp sample range to [-128, 127] for 8-bit signed dot product.
- clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples[0], range_limit));
- clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples[1], range_limit));
+ // Transform sample range to [-128, 127] for 8-bit signed dot product.
+ int8x16_t samples_128[2] = {
+ vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128))),
+ vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128)))
+ };
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]);
// {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 }
- permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]);
+ int8x16_t perm_samples[4] = { vqtbl1q_s8(samples_128[0], permute_tbl.val[0]),
+ vqtbl1q_s8(samples_128[0], permute_tbl.val[1]),
+ vqtbl1q_s8(samples_128[0], permute_tbl.val[2]),
+ vqtbl1q_s8(samples_128[1],
+ permute_tbl.val[2]) };
- // Accumulate dot product into 'correction' to account for range clamp.
- // First 4 output values.
- sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filter, 0);
- sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filter, 1);
- sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filter, 2);
- // Second 4 output values.
- sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filter, 0);
- sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filter, 1);
- sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filter, 2);
+ // Dot product constants:
+ // Accumulate into 128 << FILTER_BITS to account for range transform.
+ // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
+ // right shift by FILTER_BITS - instead of a first rounding right shift by
+ // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
+ // ROUND0_BITS.
+ int32x4_t acc =
+ vdupq_n_s32((128 << FILTER_BITS) + (1 << ((ROUND0_BITS - 1))));
+
+ int32x4_t sum0123 = vdotq_laneq_s32(acc, perm_samples[0], filter, 0);
+ sum0123 = vdotq_laneq_s32(sum0123, perm_samples[1], filter, 1);
+ sum0123 = vdotq_laneq_s32(sum0123, perm_samples[2], filter, 2);
+
+ int32x4_t sum4567 = vdotq_laneq_s32(acc, perm_samples[1], filter, 0);
+ sum4567 = vdotq_laneq_s32(sum4567, perm_samples[2], filter, 1);
+ sum4567 = vdotq_laneq_s32(sum4567, perm_samples[3], filter, 2);
// Narrow and re-pack.
- int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS),
- vqrshrn_n_s32(sum[1], FILTER_BITS));
+ int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum0123, FILTER_BITS),
+ vqrshrn_n_s32(sum4567, FILTER_BITS));
return vqmovun_s16(sum_s16);
}
@@ -114,13 +122,6 @@
const int8x16_t filter =
vcombine_s8(vmovn_s16(filter_0_7), vmovn_s16(filter_8_15));
- // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
- // right shift by FILTER_BITS - instead of a first rounding right shift by
- // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
- // ROUND0_BITS.
- int32x4_t correction =
- vdupq_n_s32((128 << FILTER_BITS) + (1 << (ROUND0_BITS - 1)));
- const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
if (w <= 4) {
@@ -128,14 +129,10 @@
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
- int16x4_t d0 =
- convolve12_4_x(s0, filter, correction, range_limit, permute_tbl);
- int16x4_t d1 =
- convolve12_4_x(s1, filter, correction, range_limit, permute_tbl);
- int16x4_t d2 =
- convolve12_4_x(s2, filter, correction, range_limit, permute_tbl);
- int16x4_t d3 =
- convolve12_4_x(s3, filter, correction, range_limit, permute_tbl);
+ int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl);
+ int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl);
+ int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl);
+ int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl);
uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1));
uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3));
@@ -158,14 +155,10 @@
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
- uint8x8_t d0 =
- convolve12_8_x(s0, filter, correction, range_limit, permute_tbl);
- uint8x8_t d1 =
- convolve12_8_x(s1, filter, correction, range_limit, permute_tbl);
- uint8x8_t d2 =
- convolve12_8_x(s2, filter, correction, range_limit, permute_tbl);
- uint8x8_t d3 =
- convolve12_8_x(s3, filter, correction, range_limit, permute_tbl);
+ uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl);
+ uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl);
+ uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl);
+ uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl);
store_u8_8x4(d + 0 * dst_stride, dst_stride, d0, d1, d2, d3);
@@ -196,7 +189,7 @@
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
// right shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
- // ROUND0_BITS. Halve the total because we will halve the filter values.
+ // ROUND0_BITS. Halve the total because we halved the filter values.
int32x4_t acc =
vdupq_n_s32(((128 << FILTER_BITS) + (1 << ((ROUND0_BITS - 1)))) / 2);
int32x4_t sum = vdotq_lane_s32(acc, perm_samples, filters, 0);
@@ -223,16 +216,15 @@
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
// right shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
- // ROUND0_BITS. Halve the total because we will halve the filter values.
+ // ROUND0_BITS. Halve the total because we halved the filter values.
int32x4_t acc =
vdupq_n_s32(((128 << FILTER_BITS) + (1 << ((ROUND0_BITS - 1)))) / 2);
- // First 4 output values.
- int32x4_t sum0 = vdotq_lane_s32(acc, perm_samples[0], filters, 0);
- // Second 4 output values.
- int32x4_t sum1 = vdotq_lane_s32(acc, perm_samples[1], filters, 0);
+
+ int32x4_t sum0123 = vdotq_lane_s32(acc, perm_samples[0], filters, 0);
+ int32x4_t sum4567 = vdotq_lane_s32(acc, perm_samples[1], filters, 0);
// Narrow and re-pack.
- int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1));
+ int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the filter values so -1 from right shift.
return vqrshrun_n_s16(sum, FILTER_BITS - 1);
}
@@ -298,33 +290,36 @@
}
static INLINE uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter,
- const int32x4_t correction,
- const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
- int8x16_t clamped_samples, permuted_samples[3];
- int32x4_t sum[2];
-
- // Clamp sample range to [-128, 127] for 8-bit signed dot product.
- clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
+ // Transform sample range to [-128, 127] for 8-bit signed dot product.
+ int8x16_t samples_128 =
+ vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128)));
// Permute samples ready for dot product. */
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
+ int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[1]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[2]) };
- // Accumulate dot product into 'correction' to account for range clamp.
- // First 4 output values.
- sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filter, 0);
- sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filter, 1);
- // Second 4 output values.
- sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filter, 0);
- sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filter, 1);
+ // Dot product constants:
+ // Accumulate into 128 << FILTER_BITS to account for range transform.
+ // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
+ // right shift by FILTER_BITS - instead of a first rounding right shift by
+ // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
+ // ROUND0_BITS. Halve the total because we halved the filter values.
+ int32x4_t acc =
+ vdupq_n_s32(((128 << FILTER_BITS) + (1 << ((ROUND0_BITS - 1)))) / 2);
+
+ int32x4_t sum0123 = vdotq_lane_s32(acc, perm_samples[0], filter, 0);
+ sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filter, 1);
+
+ int32x4_t sum4567 = vdotq_lane_s32(acc, perm_samples[1], filter, 0);
+ sum4567 = vdotq_lane_s32(sum4567, perm_samples[2], filter, 1);
// Narrow and re-pack.
- int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1]));
+ int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1);
}
@@ -361,14 +356,6 @@
}
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
- // Dot product constants:
- // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
- // right shift by FILTER_BITS - instead of a first rounding right shift by
- // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
- // ROUND0_BITS. Halve the total because we will halve the filter values.
- const int32x4_t correction =
- vdupq_n_s32(((128 << FILTER_BITS) + (1 << ((ROUND0_BITS - 1)))) / 2);
- const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
@@ -383,14 +370,10 @@
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
- uint8x8_t d0 =
- convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl);
- uint8x8_t d1 =
- convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl);
- uint8x8_t d2 =
- convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl);
- uint8x8_t d3 =
- convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl);
+ uint8x8_t d0 = convolve8_8_x(s0, x_filter, permute_tbl);
+ uint8x8_t d1 = convolve8_8_x(s1, x_filter, permute_tbl);
+ uint8x8_t d2 = convolve8_8_x(s2, x_filter, permute_tbl);
+ uint8x8_t d3 = convolve8_8_x(s3, x_filter, permute_tbl);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
@@ -906,28 +889,24 @@
static INLINE int16x4_t convolve12_4_2d_h(uint8x16_t samples,
const int8x16_t filters,
- const int32x4_t correction,
- const uint8x16_t range_limit,
+ const int32x4_t horiz_const,
const uint8x16x3_t permute_tbl) {
- int8x16_t clamped_samples, permuted_samples[3];
- int32x4_t sum;
-
- // Clamp sample range to [-128, 127] for 8-bit signed dot product.
- clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
+ // Transform sample range to [-128, 127] for 8-bit signed dot product.
+ int8x16_t samples_128 =
+ vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128)));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
+ int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[1]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[2]) };
- // Accumulate dot product into 'correction' to account for range clamp.
- // First 4 output values.
- sum = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
- sum = vdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
- sum = vdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
+ // Accumulate dot product into 'correction' to account for range transform.
+ int32x4_t sum = vdotq_laneq_s32(horiz_const, perm_samples[0], filters, 0);
+ sum = vdotq_laneq_s32(sum, perm_samples[1], filters, 1);
+ sum = vdotq_laneq_s32(sum, perm_samples[2], filters, 2);
// Narrow and re-pack.
return vshrn_n_s32(sum, ROUND0_BITS);
@@ -936,38 +915,36 @@
static INLINE int16x8_t convolve12_8_2d_h(uint8x16_t samples[2],
const int8x16_t filters,
const int32x4_t correction,
- const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
- int8x16_t clamped_samples[2], permuted_samples[4];
- int32x4_t sum[2];
-
- // Clamp sample range to [-128, 127] for 8-bit signed dot product.
- clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples[0], range_limit));
- clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples[1], range_limit));
+ // Transform sample range to [-128, 127] for 8-bit signed dot product.
+ int8x16_t samples_128[2] = {
+ vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128))),
+ vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128)))
+ };
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]);
// {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 }
- permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]);
+ int8x16_t perm_samples[4] = { vqtbl1q_s8(samples_128[0], permute_tbl.val[0]),
+ vqtbl1q_s8(samples_128[0], permute_tbl.val[1]),
+ vqtbl1q_s8(samples_128[0], permute_tbl.val[2]),
+ vqtbl1q_s8(samples_128[1],
+ permute_tbl.val[2]) };
- // Accumulate dot product into 'correction' to account for range clamp.
- // First 4 output values.
- sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
- sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
- sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
- // Second 4 output values.
- sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filters, 0);
- sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
- sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
+ // Accumulate dot product into 'correction' to account for range transform.
+ int32x4_t sum0123 = vdotq_laneq_s32(correction, perm_samples[0], filters, 0);
+ sum0123 = vdotq_laneq_s32(sum0123, perm_samples[1], filters, 1);
+ sum0123 = vdotq_laneq_s32(sum0123, perm_samples[2], filters, 2);
+
+ int32x4_t sum4567 = vdotq_laneq_s32(correction, perm_samples[1], filters, 0);
+ sum4567 = vdotq_laneq_s32(sum4567, perm_samples[2], filters, 1);
+ sum4567 = vdotq_laneq_s32(sum4567, perm_samples[3], filters, 2);
// Narrow and re-pack.
- return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS),
- vshrn_n_s32(sum[1], ROUND0_BITS));
+ return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS),
+ vshrn_n_s32(sum4567, ROUND0_BITS));
}
static INLINE void convolve_2d_sr_horiz_12tap_neon_dotprod(
@@ -992,7 +969,6 @@
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
// Dot product constants.
const int32x4_t correction = vdupq_n_s32((128 << FILTER_BITS) + horiz_const);
- const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
if (w <= 4) {
@@ -1000,14 +976,10 @@
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
- int16x4_t d0 =
- convolve12_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
- int16x4_t d1 =
- convolve12_4_2d_h(s1, x_filter, correction, range_limit, permute_tbl);
- int16x4_t d2 =
- convolve12_4_2d_h(s2, x_filter, correction, range_limit, permute_tbl);
- int16x4_t d3 =
- convolve12_4_2d_h(s3, x_filter, correction, range_limit, permute_tbl);
+ int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, correction, permute_tbl);
+ int16x4_t d1 = convolve12_4_2d_h(s1, x_filter, correction, permute_tbl);
+ int16x4_t d2 = convolve12_4_2d_h(s2, x_filter, correction, permute_tbl);
+ int16x4_t d3 = convolve12_4_2d_h(s3, x_filter, correction, permute_tbl);
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
@@ -1018,8 +990,7 @@
do {
uint8x16_t s0 = vld1q_u8(src_ptr);
- int16x4_t d0 =
- convolve12_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
+ int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, correction, permute_tbl);
vst1_s16(dst_ptr, d0);
src_ptr += src_stride;
@@ -1037,14 +1008,10 @@
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
- int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction, range_limit,
- permute_tbl);
- int16x8_t d1 = convolve12_8_2d_h(s1, x_filter, correction, range_limit,
- permute_tbl);
- int16x8_t d2 = convolve12_8_2d_h(s2, x_filter, correction, range_limit,
- permute_tbl);
- int16x8_t d3 = convolve12_8_2d_h(s3, x_filter, correction, range_limit,
- permute_tbl);
+ int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction, permute_tbl);
+ int16x8_t d1 = convolve12_8_2d_h(s1, x_filter, correction, permute_tbl);
+ int16x8_t d2 = convolve12_8_2d_h(s2, x_filter, correction, permute_tbl);
+ int16x8_t d3 = convolve12_8_2d_h(s3, x_filter, correction, permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
@@ -1066,8 +1033,7 @@
uint8x16_t s0[2];
s0[0] = vld1q_u8(s);
s0[1] = vld1q_u8(s + 4);
- int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction, range_limit,
- permute_tbl);
+ int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction, permute_tbl);
vst1q_s16(d, d0);
s += 8;
@@ -1137,7 +1103,7 @@
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
// Accumulate into 128 << FILTER_BITS to account for range transform.
- // Halve the total because we will halve the filter values.
+ // Halve the total because we halved the filter values.
const int32x4_t correction =
vdupq_n_s32(((128 << FILTER_BITS) + horiz_const) / 2);
@@ -1218,50 +1184,47 @@
static INLINE int16x8_t convolve8_8_2d_h(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
- const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
- int8x16_t clamped_samples, permuted_samples[3];
- int32x4_t sum[2];
-
- // Clamp sample range to [-128, 127] for 8-bit signed dot product.
- clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
+ // Transform sample range to [-128, 127] for 8-bit signed dot product.
+ int8x16_t samples_128 =
+ vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128)));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
+ int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[1]),
+ vqtbl1q_s8(samples_128, permute_tbl.val[2]) };
- // Accumulate dot product into 'correction' to account for range clamp.
- // First 4 output values.
- sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filters, 0);
- sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
- // Second 4 output values.
- sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filters, 0);
- sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
+ // Accumulate dot product into 'correction' to account for range transform.
+ int32x4_t sum0123 = vdotq_lane_s32(correction, perm_samples[0], filters, 0);
+ sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
+
+ int32x4_t sum4567 = vdotq_lane_s32(correction, perm_samples[1], filters, 0);
+ sum4567 = vdotq_lane_s32(sum4567, perm_samples[2], filters, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
- return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
- vshrn_n_s32(sum[1], ROUND0_BITS - 1));
+ return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
+ vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static INLINE void convolve_2d_sr_horiz_8tap_neon_dotprod(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16_t *x_filter_ptr) {
- const int bd = 8;
- // Dot product constants.
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
+ // Filter values are even, so halve to reduce intermediate precision reqs.
+ const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
+
+ const int bd = 8;
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
- // Halve the total because we will halve the filter values.
+ // Halve the total because we halved the filter values.
const int32x4_t correction =
vdupq_n_s32(((128 << FILTER_BITS) + horiz_const) / 2);
- const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
@@ -1269,9 +1232,6 @@
int height = im_h;
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
- // Filter values are even, so halve to reduce intermediate precision reqs.
- const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
-
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
@@ -1281,14 +1241,10 @@
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
- int16x8_t d0 =
- convolve8_8_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
- int16x8_t d1 =
- convolve8_8_2d_h(s1, x_filter, correction, range_limit, permute_tbl);
- int16x8_t d2 =
- convolve8_8_2d_h(s2, x_filter, correction, range_limit, permute_tbl);
- int16x8_t d3 =
- convolve8_8_2d_h(s3, x_filter, correction, range_limit, permute_tbl);
+ int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, permute_tbl);
+ int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, correction, permute_tbl);
+ int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, correction, permute_tbl);
+ int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, correction, permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
@@ -1308,8 +1264,7 @@
do {
uint8x16_t s0 = vld1q_u8(s);
- int16x8_t d0 =
- convolve8_8_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
+ int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, permute_tbl);
vst1q_s16(d, d0);
s += 8;
diff --git a/av1/common/arm/convolve_neon_i8mm.c b/av1/common/arm/convolve_neon_i8mm.c
index 60cdfdf..c3d4c94 100644
--- a/av1/common/arm/convolve_neon_i8mm.c
+++ b/av1/common/arm/convolve_neon_i8mm.c
@@ -35,21 +35,17 @@
const int8x16_t filter,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
- uint8x16_t permuted_samples[3];
- int32x4_t sum;
-
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
+ uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
+ vqtbl1q_u8(samples, permute_tbl.val[1]),
+ vqtbl1q_u8(samples, permute_tbl.val[2]) };
- // First 4 output values.
- sum = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filter, 0);
- sum = vusdotq_laneq_s32(sum, permuted_samples[1], filter, 1);
- sum = vusdotq_laneq_s32(sum, permuted_samples[2], filter, 2);
+ int32x4_t sum = vusdotq_laneq_s32(horiz_const, perm_samples[0], filter, 0);
+ sum = vusdotq_laneq_s32(sum, perm_samples[1], filter, 1);
+ sum = vusdotq_laneq_s32(sum, perm_samples[2], filter, 2);
return vqrshrn_n_s32(sum, FILTER_BITS);
}
@@ -58,31 +54,29 @@
const int8x16_t filter,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
- uint8x16_t permuted_samples[4];
- int32x4_t sum[2];
-
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_u8(samples[0], permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_u8(samples[0], permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_u8(samples[0], permute_tbl.val[2]);
// {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 }
- permuted_samples[3] = vqtbl1q_u8(samples[1], permute_tbl.val[2]);
+ uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]),
+ vqtbl1q_u8(samples[0], permute_tbl.val[1]),
+ vqtbl1q_u8(samples[0], permute_tbl.val[2]),
+ vqtbl1q_u8(samples[1], permute_tbl.val[2]) };
- // First 4 output values.
- sum[0] = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filter, 0);
- sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[1], filter, 1);
- sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[2], filter, 2);
- // Second 4 output values.
- sum[1] = vusdotq_laneq_s32(horiz_const, permuted_samples[1], filter, 0);
- sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[2], filter, 1);
- sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[3], filter, 2);
+ int32x4_t sum0123 =
+ vusdotq_laneq_s32(horiz_const, perm_samples[0], filter, 0);
+ sum0123 = vusdotq_laneq_s32(sum0123, perm_samples[1], filter, 1);
+ sum0123 = vusdotq_laneq_s32(sum0123, perm_samples[2], filter, 2);
+
+ int32x4_t sum4567 =
+ vusdotq_laneq_s32(horiz_const, perm_samples[1], filter, 0);
+ sum4567 = vusdotq_laneq_s32(sum4567, perm_samples[2], filter, 1);
+ sum4567 = vusdotq_laneq_s32(sum4567, perm_samples[3], filter, 2);
// Narrow and re-pack.
- int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS),
- vqrshrn_n_s32(sum[1], FILTER_BITS));
+ int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum0123, FILTER_BITS),
+ vqrshrn_n_s32(sum4567, FILTER_BITS));
return vqmovun_s16(sum_s16);
}
@@ -160,15 +154,15 @@
const uint8x16_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl);
+ uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
// Dot product constants:
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
// right shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
- // ROUND0_BITS. Halve the total because we will halve the filter values.
+ // ROUND0_BITS. Halve the total because we halved the filter values.
int32x4_t acc = vdupq_n_s32((1 << (ROUND0_BITS - 1)) / 2);
- int32x4_t sum = vusdotq_lane_s32(acc, permuted_samples, filters, 0);
+ int32x4_t sum = vusdotq_lane_s32(acc, perm_samples, filters, 0);
// Further narrowing and packing is performed by the caller.
return vmovn_s32(sum);
@@ -180,23 +174,21 @@
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
- vqtbl1q_u8(samples, permute_tbl.val[1]) };
+ uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
+ vqtbl1q_u8(samples, permute_tbl.val[1]) };
// Dot product constants:
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
// right shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
- // ROUND0_BITS. Halve the total because we will halve the filter values.
+ // ROUND0_BITS. Halve the total because we halved the filter values.
int32x4_t acc = vdupq_n_s32((1 << (ROUND0_BITS - 1)) / 2);
- // First 4 output values.
- int32x4_t sum0 = vusdotq_lane_s32(acc, permuted_samples[0], filters, 0);
- // Second 4 output values.
- int32x4_t sum1 = vusdotq_lane_s32(acc, permuted_samples[1], filters, 0);
+ int32x4_t sum0123 = vusdotq_lane_s32(acc, perm_samples[0], filters, 0);
+ int32x4_t sum4567 = vusdotq_lane_s32(acc, perm_samples[1], filters, 0);
// Narrow and re-pack.
- int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1));
+ int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the filter values so -1 from right shift.
return vqrshrun_n_s16(sum, FILTER_BITS - 1);
}
@@ -262,25 +254,21 @@
static INLINE uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
- uint8x16_t permuted_samples[3];
- int32x4_t sum[2];
-
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
+ uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
+ vqtbl1q_u8(samples, permute_tbl.val[1]),
+ vqtbl1q_u8(samples, permute_tbl.val[2]) };
- // First 4 output values.
- sum[0] = vusdotq_lane_s32(horiz_const, permuted_samples[0], filter, 0);
- sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], filter, 1);
- // Second 4 output values.
- sum[1] = vusdotq_lane_s32(horiz_const, permuted_samples[1], filter, 0);
- sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], filter, 1);
+ int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filter, 0);
+ sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filter, 1);
- int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1]));
+ int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filter, 0);
+ sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filter, 1);
+
+ int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1);
}
@@ -316,17 +304,17 @@
return;
}
+ // Filter values are even, so halve to reduce intermediate precision reqs.
+ const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
+
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
- // The outermost -1 is needed because we will halve the filter values.
+ // The outermost -1 is needed because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32(1 << ((ROUND0_BITS - 1) - 1));
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
- // Filter values are even, so halve to reduce intermediate precision reqs.
- const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
-
do {
const uint8_t *s = src;
uint8_t *d = dst;
@@ -787,33 +775,34 @@
const int8x8_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
- uint8x16_t permuted_samples[3];
- int32x4_t sum[2];
-
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
+ uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
+ vqtbl1q_u8(samples, permute_tbl.val[1]),
+ vqtbl1q_u8(samples, permute_tbl.val[2]) };
- // First 4 output values.
- sum[0] = vusdotq_lane_s32(horiz_const, permuted_samples[0], filters, 0);
- sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
- // Second 4 output values.
- sum[1] = vusdotq_lane_s32(horiz_const, permuted_samples[1], filters, 0);
- sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
+ int32x4_t sum0123 =
+ vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
+ sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
+
+ int32x4_t sum4567 =
+ vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0);
+ sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filters, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
- return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
- vshrn_n_s32(sum[1], ROUND0_BITS - 1));
+ return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
+ vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static INLINE void convolve_2d_sr_horiz_8tap_neon_i8mm(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16_t *x_filter_ptr) {
+ // Filter values are even, so halve to reduce intermediate precision reqs.
+ const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
+
const int bd = 8;
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
@@ -827,9 +816,6 @@
int height = im_h;
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
- // Filter values are even, so halve to reduce intermediate precision reqs.
- const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
-
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
@@ -880,9 +866,9 @@
const int32x4_t horiz_const) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl);
+ uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
- int32x4_t sum = vusdotq_lane_s32(horiz_const, permuted_samples, filters, 0);
+ int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples, filters, 0);
// We halved the convolution filter values so -1 from the right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
@@ -895,13 +881,13 @@
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
- vqtbl1q_u8(samples, permute_tbl.val[1]) };
+ uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
+ vqtbl1q_u8(samples, permute_tbl.val[1]) };
int32x4_t sum0123 =
- vusdotq_lane_s32(horiz_const, permuted_samples[0], filters, 0);
+ vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
int32x4_t sum4567 =
- vusdotq_lane_s32(horiz_const, permuted_samples[1], filters, 0);
+ vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0);
// Narrow and re-pack.
// We halved the filter values so -1 from right shift.
@@ -920,7 +906,7 @@
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
- // Halve the total because we will halve the filter values.
+ // Halve the total because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32(
(((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2));
diff --git a/av1/common/arm/convolve_neon_i8mm.h b/av1/common/arm/convolve_neon_i8mm.h
index da55a2e..15a8a4e 100644
--- a/av1/common/arm/convolve_neon_i8mm.h
+++ b/av1/common/arm/convolve_neon_i8mm.h
@@ -33,21 +33,17 @@
const int8x16_t filters,
const uint8x16x3_t permute_tbl,
int32x4_t horiz_const) {
- uint8x16_t permuted_samples[3];
- int32x4_t sum;
-
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
+ uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
+ vqtbl1q_u8(samples, permute_tbl.val[1]),
+ vqtbl1q_u8(samples, permute_tbl.val[2]) };
- // First 4 output values.
- sum = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0);
- sum = vusdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
- sum = vusdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
+ int32x4_t sum = vusdotq_laneq_s32(horiz_const, perm_samples[0], filters, 0);
+ sum = vusdotq_laneq_s32(sum, perm_samples[1], filters, 1);
+ sum = vusdotq_laneq_s32(sum, perm_samples[2], filters, 2);
// Narrow and re-pack.
return vshrn_n_s32(sum, ROUND0_BITS);
@@ -57,31 +53,29 @@
const int8x16_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
- uint8x16_t permuted_samples[4];
- int32x4_t sum[2];
-
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
- permuted_samples[0] = vqtbl1q_u8(samples[0], permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
- permuted_samples[1] = vqtbl1q_u8(samples[0], permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
- permuted_samples[2] = vqtbl1q_u8(samples[0], permute_tbl.val[2]);
// {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 }
- permuted_samples[3] = vqtbl1q_u8(samples[1], permute_tbl.val[2]);
+ uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]),
+ vqtbl1q_u8(samples[0], permute_tbl.val[1]),
+ vqtbl1q_u8(samples[0], permute_tbl.val[2]),
+ vqtbl1q_u8(samples[1], permute_tbl.val[2]) };
- // First 4 output values.
- sum[0] = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0);
- sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
- sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
- // Second 4 output values.
- sum[1] = vusdotq_laneq_s32(horiz_const, permuted_samples[1], filters, 0);
- sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
- sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
+ int32x4_t sum0123 =
+ vusdotq_laneq_s32(horiz_const, perm_samples[0], filters, 0);
+ sum0123 = vusdotq_laneq_s32(sum0123, perm_samples[1], filters, 1);
+ sum0123 = vusdotq_laneq_s32(sum0123, perm_samples[2], filters, 2);
+
+ int32x4_t sum4567 =
+ vusdotq_laneq_s32(horiz_const, perm_samples[1], filters, 0);
+ sum4567 = vusdotq_laneq_s32(sum4567, perm_samples[2], filters, 1);
+ sum4567 = vusdotq_laneq_s32(sum4567, perm_samples[3], filters, 2);
// Narrow and re-pack.
- return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS),
- vshrn_n_s32(sum[1], ROUND0_BITS));
+ return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS),
+ vshrn_n_s32(sum4567, ROUND0_BITS));
}
static INLINE void convolve_2d_sr_horiz_12tap_neon_i8mm(