blob: e11f69dbd6769941555d2b065ecffaf0579fff1d [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <limits.h>
#include "config/aom_config.h"
#include "av1/common/alloccommon.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/odintrin.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/temporal_filter.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_scale/aom_scale.h"
#define EDGE_THRESHOLD 50
#define SQRT_PI_BY_2 1.25331413732
static void temporal_filter_predictors_mb_c(
MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr,
int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col,
uint8_t *pred, struct scale_factors *scale, int x, int y,
int can_use_previous, int num_planes) {
const MV mv = { mv_row, mv_col };
enum mv_precision mv_precision_uv;
int uv_stride;
// TODO(angiebird): change plane setting accordingly
ConvolveParams conv_params = get_conv_params(0, 0, xd->bd);
const InterpFilters interp_filters =
av1_make_interp_filters(MULTITAP_SHARP, MULTITAP_SHARP);
WarpTypesAllowed warp_types;
memset(&warp_types, 0, sizeof(WarpTypesAllowed));
if (uv_block_width == (BW >> 1)) {
uv_stride = (stride + 1) >> 1;
mv_precision_uv = MV_PRECISION_Q4;
} else {
uv_stride = stride;
mv_precision_uv = MV_PRECISION_Q3;
}
av1_build_inter_predictor(y_mb_ptr, stride, &pred[0], BW, &mv, scale, BW, BH,
&conv_params, interp_filters, &warp_types, x, y, 0,
0, MV_PRECISION_Q3, x, y, xd, can_use_previous);
if (num_planes > 1) {
av1_build_inter_predictor(
u_mb_ptr, uv_stride, &pred[BLK_PELS], uv_block_width, &mv, scale,
uv_block_width, uv_block_height, &conv_params, interp_filters,
&warp_types, x, y, 1, 0, mv_precision_uv, x, y, xd, can_use_previous);
av1_build_inter_predictor(
v_mb_ptr, uv_stride, &pred[(BLK_PELS << 1)], uv_block_width, &mv, scale,
uv_block_width, uv_block_height, &conv_params, interp_filters,
&warp_types, x, y, 2, 0, mv_precision_uv, x, y, xd, can_use_previous);
}
}
static void apply_temporal_filter_self(const uint8_t *pred, int buf_stride,
unsigned int block_width,
unsigned int block_height,
int filter_weight, uint32_t *accumulator,
uint16_t *count) {
const int modifier = filter_weight * 16;
unsigned int i, j, k = 0;
assert(filter_weight == 2);
for (i = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++) {
const int pixel_value = pred[i * buf_stride + j];
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
++k;
}
}
}
static void highbd_apply_temporal_filter_self(
const uint8_t *pred8, int buf_stride, unsigned int block_width,
unsigned int block_height, int filter_weight, uint32_t *accumulator,
uint16_t *count) {
const int modifier = filter_weight * 16;
const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
unsigned int i, j, k = 0;
assert(filter_weight == 2);
for (i = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++) {
const int pixel_value = pred[i * buf_stride + j];
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
++k;
}
}
}
static INLINE int mod_index(int64_t sum_dist, int index, int rounding,
int strength, int filter_weight) {
int mod = (int)(((sum_dist * 3) / index + rounding) >> strength);
mod = AOMMIN(16, mod);
mod = 16 - mod;
mod *= filter_weight;
return mod;
}
static INLINE void calculate_squared_errors(const uint8_t *s, int s_stride,
const uint8_t *p, int p_stride,
uint16_t *diff_sse, unsigned int w,
unsigned int h) {
int idx = 0;
unsigned int i, j;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
const int16_t diff = s[i * s_stride + j] - p[i * p_stride + j];
diff_sse[idx] = diff * diff;
idx++;
}
}
}
static void apply_temporal_filter(
const uint8_t *y_frame1, int y_stride, const uint8_t *y_pred,
int y_buf_stride, const uint8_t *u_frame1, const uint8_t *v_frame1,
int uv_stride, const uint8_t *u_pred, const uint8_t *v_pred,
int uv_buf_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, int filter_weight,
uint32_t *y_accumulator, uint16_t *y_count, uint32_t *u_accumulator,
uint16_t *u_count, uint32_t *v_accumulator, uint16_t *v_count) {
unsigned int i, j, k, m;
int modifier;
const int rounding = (1 << strength) >> 1;
const unsigned int uv_block_width = block_width >> ss_x;
const unsigned int uv_block_height = block_height >> ss_y;
DECLARE_ALIGNED(16, uint16_t, y_diff_sse[BLK_PELS]);
DECLARE_ALIGNED(16, uint16_t, u_diff_sse[BLK_PELS]);
DECLARE_ALIGNED(16, uint16_t, v_diff_sse[BLK_PELS]);
int idx = 0, idy;
assert(filter_weight >= 0);
assert(filter_weight <= 2);
memset(y_diff_sse, 0, BLK_PELS * sizeof(uint16_t));
memset(u_diff_sse, 0, BLK_PELS * sizeof(uint16_t));
memset(v_diff_sse, 0, BLK_PELS * sizeof(uint16_t));
// Calculate diff^2 for each pixel of the block.
// TODO(yunqing): the following code needs to be optimized.
calculate_squared_errors(y_frame1, y_stride, y_pred, y_buf_stride, y_diff_sse,
block_width, block_height);
calculate_squared_errors(u_frame1, uv_stride, u_pred, uv_buf_stride,
u_diff_sse, uv_block_width, uv_block_height);
calculate_squared_errors(v_frame1, uv_stride, v_pred, uv_buf_stride,
v_diff_sse, uv_block_width, uv_block_height);
for (i = 0, k = 0, m = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++) {
const int pixel_value = y_pred[i * y_buf_stride + j];
// non-local mean approach
int y_index = 0;
const int uv_r = i >> ss_y;
const int uv_c = j >> ss_x;
modifier = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
const int row = (int)i + idy;
const int col = (int)j + idx;
if (row >= 0 && row < (int)block_height && col >= 0 &&
col < (int)block_width) {
modifier += y_diff_sse[row * (int)block_width + col];
++y_index;
}
}
}
assert(y_index > 0);
modifier += u_diff_sse[uv_r * uv_block_width + uv_c];
modifier += v_diff_sse[uv_r * uv_block_width + uv_c];
y_index += 2;
modifier =
(int)mod_index(modifier, y_index, rounding, strength, filter_weight);
y_count[k] += modifier;
y_accumulator[k] += modifier * pixel_value;
++k;
// Process chroma component
if (!(i & ss_y) && !(j & ss_x)) {
const int u_pixel_value = u_pred[uv_r * uv_buf_stride + uv_c];
const int v_pixel_value = v_pred[uv_r * uv_buf_stride + uv_c];
// non-local mean approach
int cr_index = 0;
int u_mod = 0, v_mod = 0;
int y_diff = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
const int row = uv_r + idy;
const int col = uv_c + idx;
if (row >= 0 && row < (int)uv_block_height && col >= 0 &&
col < (int)uv_block_width) {
u_mod += u_diff_sse[row * uv_block_width + col];
v_mod += v_diff_sse[row * uv_block_width + col];
++cr_index;
}
}
}
assert(cr_index > 0);
for (idy = 0; idy < 1 + ss_y; ++idy) {
for (idx = 0; idx < 1 + ss_x; ++idx) {
const int row = (uv_r << ss_y) + idy;
const int col = (uv_c << ss_x) + idx;
y_diff += y_diff_sse[row * (int)block_width + col];
++cr_index;
}
}
u_mod += y_diff;
v_mod += y_diff;
u_mod =
(int)mod_index(u_mod, cr_index, rounding, strength, filter_weight);
v_mod =
(int)mod_index(v_mod, cr_index, rounding, strength, filter_weight);
u_count[m] += u_mod;
u_accumulator[m] += u_mod * u_pixel_value;
v_count[m] += v_mod;
v_accumulator[m] += v_mod * v_pixel_value;
++m;
} // Complete YUV pixel
}
}
}
static INLINE void highbd_calculate_squared_errors(
const uint16_t *s, int s_stride, const uint16_t *p, int p_stride,
uint32_t *diff_sse, unsigned int w, unsigned int h) {
int idx = 0;
unsigned int i, j;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
const int16_t diff = s[i * s_stride + j] - p[i * p_stride + j];
diff_sse[idx] = diff * diff;
idx++;
}
}
}
static void highbd_apply_temporal_filter(
const uint8_t *yf, int y_stride, const uint8_t *yp, int y_buf_stride,
const uint8_t *uf, const uint8_t *vf, int uv_stride, const uint8_t *up,
const uint8_t *vp, int uv_buf_stride, unsigned int block_width,
unsigned int block_height, int ss_x, int ss_y, int strength,
int filter_weight, uint32_t *y_accumulator, uint16_t *y_count,
uint32_t *u_accumulator, uint16_t *u_count, uint32_t *v_accumulator,
uint16_t *v_count) {
unsigned int i, j, k, m;
int64_t modifier;
const int rounding = (1 << strength) >> 1;
const unsigned int uv_block_width = block_width >> ss_x;
const unsigned int uv_block_height = block_height >> ss_y;
DECLARE_ALIGNED(16, uint32_t, y_diff_sse[BLK_PELS]);
DECLARE_ALIGNED(16, uint32_t, u_diff_sse[BLK_PELS]);
DECLARE_ALIGNED(16, uint32_t, v_diff_sse[BLK_PELS]);
const uint16_t *y_frame1 = CONVERT_TO_SHORTPTR(yf);
const uint16_t *u_frame1 = CONVERT_TO_SHORTPTR(uf);
const uint16_t *v_frame1 = CONVERT_TO_SHORTPTR(vf);
const uint16_t *y_pred = CONVERT_TO_SHORTPTR(yp);
const uint16_t *u_pred = CONVERT_TO_SHORTPTR(up);
const uint16_t *v_pred = CONVERT_TO_SHORTPTR(vp);
int idx = 0, idy;
assert(filter_weight >= 0);
assert(filter_weight <= 2);
memset(y_diff_sse, 0, BLK_PELS * sizeof(uint32_t));
memset(u_diff_sse, 0, BLK_PELS * sizeof(uint32_t));
memset(v_diff_sse, 0, BLK_PELS * sizeof(uint32_t));
// Calculate diff^2 for each pixel of the block.
// TODO(yunqing): the following code needs to be optimized.
highbd_calculate_squared_errors(y_frame1, y_stride, y_pred, y_buf_stride,
y_diff_sse, block_width, block_height);
highbd_calculate_squared_errors(u_frame1, uv_stride, u_pred, uv_buf_stride,
u_diff_sse, uv_block_width, uv_block_height);
highbd_calculate_squared_errors(v_frame1, uv_stride, v_pred, uv_buf_stride,
v_diff_sse, uv_block_width, uv_block_height);
for (i = 0, k = 0, m = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++) {
const int pixel_value = y_pred[i * y_buf_stride + j];
// non-local mean approach
int y_index = 0;
const int uv_r = i >> ss_y;
const int uv_c = j >> ss_x;
modifier = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
const int row = (int)i + idy;
const int col = (int)j + idx;
if (row >= 0 && row < (int)block_height && col >= 0 &&
col < (int)block_width) {
modifier += y_diff_sse[row * (int)block_width + col];
++y_index;
}
}
}
assert(y_index > 0);
modifier += u_diff_sse[uv_r * uv_block_width + uv_c];
modifier += v_diff_sse[uv_r * uv_block_width + uv_c];
y_index += 2;
const int final_y_mod =
mod_index(modifier, y_index, rounding, strength, filter_weight);
y_count[k] += final_y_mod;
y_accumulator[k] += final_y_mod * pixel_value;
++k;
// Process chroma component
if (!(i & ss_y) && !(j & ss_x)) {
const int u_pixel_value = u_pred[uv_r * uv_buf_stride + uv_c];
const int v_pixel_value = v_pred[uv_r * uv_buf_stride + uv_c];
// non-local mean approach
int cr_index = 0;
int64_t u_mod = 0, v_mod = 0;
int y_diff = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
const int row = uv_r + idy;
const int col = uv_c + idx;
if (row >= 0 && row < (int)uv_block_height && col >= 0 &&
col < (int)uv_block_width) {
u_mod += u_diff_sse[row * uv_block_width + col];
v_mod += v_diff_sse[row * uv_block_width + col];
++cr_index;
}
}
}
assert(cr_index > 0);
for (idy = 0; idy < 1 + ss_y; ++idy) {
for (idx = 0; idx < 1 + ss_x; ++idx) {
const int row = (uv_r << ss_y) + idy;
const int col = (uv_c << ss_x) + idx;
y_diff += y_diff_sse[row * (int)block_width + col];
++cr_index;
}
}
u_mod += y_diff;
v_mod += y_diff;
const int final_u_mod =
mod_index(u_mod, cr_index, rounding, strength, filter_weight);
const int final_v_mod =
mod_index(v_mod, cr_index, rounding, strength, filter_weight);
u_count[m] += final_u_mod;
u_accumulator[m] += final_u_mod * u_pixel_value;
v_count[m] += final_v_mod;
v_accumulator[m] += final_v_mod * v_pixel_value;
++m;
} // Complete YUV pixel
}
}
}
// Only used in single plane case
void av1_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride,
uint8_t *frame2, unsigned int block_width,
unsigned int block_height, int strength,
int filter_weight, unsigned int *accumulator,
uint16_t *count) {
unsigned int i, j, k;
int modifier;
int byte = 0;
const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++, k++) {
int pixel_value = *frame2;
// non-local mean approach
int diff_sse[9] = { 0 };
int idx, idy, index = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
int row = (int)i + idy;
int col = (int)j + idx;
if (row >= 0 && row < (int)block_height && col >= 0 &&
col < (int)block_width) {
int diff = frame1[byte + idy * (int)stride + idx] -
frame2[idy * (int)block_width + idx];
diff_sse[index] = diff * diff;
++index;
}
}
}
assert(index > 0);
modifier = 0;
for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx];
modifier *= 3;
modifier /= index;
++frame2;
modifier += rounding;
modifier >>= strength;
if (modifier > 16) modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_width;
}
}
// Only used in single plane case
void av1_highbd_temporal_filter_apply_c(
uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8,
unsigned int block_width, unsigned int block_height, int strength,
int filter_weight, unsigned int *accumulator, uint16_t *count) {
uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8);
uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8);
unsigned int i, j, k;
int modifier;
int byte = 0;
const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_height; i++) {
for (j = 0; j < block_width; j++, k++) {
int pixel_value = *frame2;
// non-local mean approach
int diff_sse[9] = { 0 };
int idx, idy, index = 0;
for (idy = -1; idy <= 1; ++idy) {
for (idx = -1; idx <= 1; ++idx) {
int row = (int)i + idy;
int col = (int)j + idx;
if (row >= 0 && row < (int)block_height && col >= 0 &&
col < (int)block_width) {
int diff = frame1[byte + idy * (int)stride + idx] -
frame2[idy * (int)block_width + idx];
diff_sse[index] = diff * diff;
++index;
}
}
}
assert(index > 0);
modifier = 0;
for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx];
modifier *= 3;
modifier /= index;
++frame2;
modifier += rounding;
modifier >>= strength;
if (modifier > 16) modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_width;
}
}
static int temporal_filter_find_matching_mb_c(AV1_COMP *cpi,
uint8_t *arf_frame_buf,
uint8_t *frame_ptr_buf,
int stride, int x_pos,
int y_pos) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
int step_param;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
int distortion;
unsigned int sse;
int cost_list[5];
MvLimits tmp_mv_limits = x->mv_limits;
MV best_ref_mv1 = kZeroMv;
MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
// Save input state
struct buf_2d src = x->plane[0].src;
struct buf_2d pre = xd->plane[0].pre[0];
best_ref_mv1_full.col = best_ref_mv1.col >> 3;
best_ref_mv1_full.row = best_ref_mv1.row >> 3;
// Setup frame pointers
x->plane[0].src.buf = arf_frame_buf;
x->plane[0].src.stride = stride;
xd->plane[0].pre[0].buf = frame_ptr_buf;
xd->plane[0].pre[0].stride = stride;
step_param = mv_sf->reduce_first_step_size;
step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1);
av1_full_pixel_search(cpi, x, TF_BLOCK, &best_ref_mv1_full, step_param, NSTEP,
1, sadpb, cond_cost_list(cpi, cost_list), &best_ref_mv1,
0, 0, x_pos, y_pos, 0);
x->mv_limits = tmp_mv_limits;
// Ignore mv costing by sending NULL pointer instead of cost array
if (cpi->common.cur_frame_force_integer_mv == 1) {
const uint8_t *const src_address = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const uint8_t *const y = xd->plane[0].pre[0].buf;
const int y_stride = xd->plane[0].pre[0].stride;
const int offset = x->best_mv.as_mv.row * y_stride + x->best_mv.as_mv.col;
x->best_mv.as_mv.row *= 8;
x->best_mv.as_mv.col *= 8;
bestsme = cpi->fn_ptr[TF_BLOCK].vf(y + offset, y_stride, src_address,
src_stride, &sse);
} else {
bestsme = cpi->find_fractional_mv_step(
x, &cpi->common, 0, 0, &best_ref_mv1,
cpi->common.allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[TF_BLOCK], 0, mv_sf->subpel_iters_per_step,
cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL,
NULL, 0, 0, 16, 16, USE_8_TAPS, 1);
}
x->e_mbd.mi[0]->mv[0] = x->best_mv;
// Restore input state
x->plane[0].src = src;
xd->plane[0].pre[0] = pre;
return bestsme;
}
static void temporal_filter_iterate_c(AV1_COMP *cpi,
YV12_BUFFER_CONFIG **frames,
int frame_count, int alt_ref_index,
int strength,
struct scale_factors *ref_scale_factors) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
int byte;
int frame;
int mb_col, mb_row;
unsigned int filter_weight;
int mb_cols = (frames[alt_ref_index]->y_crop_width + BW - 1) >> BW_LOG2;
int mb_rows = (frames[alt_ref_index]->y_crop_height + BH - 1) >> BH_LOG2;
int mb_y_offset = 0;
int mb_uv_offset = 0;
DECLARE_ALIGNED(16, unsigned int, accumulator[BLK_PELS * 3]);
DECLARE_ALIGNED(16, uint16_t, count[BLK_PELS * 3]);
MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
uint8_t *dst1, *dst2;
DECLARE_ALIGNED(32, uint16_t, predictor16[BLK_PELS * 3]);
DECLARE_ALIGNED(32, uint8_t, predictor8[BLK_PELS * 3]);
uint8_t *predictor;
const int mb_uv_height = BH >> mbd->plane[1].subsampling_y;
const int mb_uv_width = BW >> mbd->plane[1].subsampling_x;
// Save input state
uint8_t *input_buffer[MAX_MB_PLANE];
int i;
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
predictor = CONVERT_TO_BYTEPTR(predictor16);
} else {
predictor = predictor8;
}
mbd->block_ref_scale_factors[0] = ref_scale_factors;
mbd->block_ref_scale_factors[1] = ref_scale_factors;
for (i = 0; i < num_planes; i++) input_buffer[i] = mbd->plane[i].pre[0].buf;
for (mb_row = 0; mb_row < mb_rows; mb_row++) {
// Source frames are extended to 16 pixels. This is different than
// L/A/G reference frames that have a border of 32 (AV1ENCBORDERINPIXELS)
// A 6/8 tap filter is used for motion search. This requires 2 pixels
// before and 3 pixels after. So the largest Y mv on a border would
// then be 16 - AOM_INTERP_EXTEND. The UV blocks are half the size of the
// Y and therefore only extended by 8. The largest mv that a UV block
// can support is 8 - AOM_INTERP_EXTEND. A UV mv is half of a Y mv.
// (16 - AOM_INTERP_EXTEND) >> 1 which is greater than
// 8 - AOM_INTERP_EXTEND.
// To keep the mv in play for both Y and UV planes the max that it
// can be on a border is therefore 16 - (2*AOM_INTERP_EXTEND+1).
cpi->td.mb.mv_limits.row_min =
-((mb_row * BH) + (17 - 2 * AOM_INTERP_EXTEND));
cpi->td.mb.mv_limits.row_max =
((mb_rows - 1 - mb_row) * BH) + (17 - 2 * AOM_INTERP_EXTEND);
for (mb_col = 0; mb_col < mb_cols; mb_col++) {
int j, k;
int stride;
memset(accumulator, 0, BLK_PELS * 3 * sizeof(accumulator[0]));
memset(count, 0, BLK_PELS * 3 * sizeof(count[0]));
cpi->td.mb.mv_limits.col_min =
-((mb_col * BW) + (17 - 2 * AOM_INTERP_EXTEND));
cpi->td.mb.mv_limits.col_max =
((mb_cols - 1 - mb_col) * BW) + (17 - 2 * AOM_INTERP_EXTEND);
for (frame = 0; frame < frame_count; frame++) {
// These thresholds need to be modified based on block size.
int thresh_low = 10000 << THR_SHIFT;
int thresh_high = 20000 << THR_SHIFT;
if (frames[frame] == NULL) continue;
mbd->mi[0]->mv[0].as_mv.row = 0;
mbd->mi[0]->mv[0].as_mv.col = 0;
mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
// Find best match in this frame by MC
int err = temporal_filter_find_matching_mb_c(
cpi, frames[alt_ref_index]->y_buffer + mb_y_offset,
frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride,
mb_col * BW, mb_row * BH);
// Assign higher weight to matching MB if it's error
// score is lower. If not applying MC default behavior
// is to weight all MBs equal.
filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0;
}
if (filter_weight != 0) {
// Construct the predictors
temporal_filter_predictors_mb_c(
mbd, frames[frame]->y_buffer + mb_y_offset,
frames[frame]->u_buffer + mb_uv_offset,
frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride,
mb_uv_width, mb_uv_height, mbd->mi[0]->mv[0].as_mv.row,
mbd->mi[0]->mv[0].as_mv.col, predictor, ref_scale_factors,
mb_col * BW, mb_row * BH, cm->allow_warped_motion, num_planes);
// Apply the filter (YUV)
if (frame == alt_ref_index) {
uint8_t *pred = predictor;
uint32_t *accum = accumulator;
uint16_t *cnt = count;
int plane;
for (plane = 0; plane < num_planes; ++plane) {
const int pred_stride = plane ? mb_uv_width : BW;
const unsigned int w = plane ? mb_uv_width : BW;
const unsigned int h = plane ? mb_uv_height : BH;
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_apply_temporal_filter_self(pred, pred_stride, w, h,
filter_weight, accum, cnt);
else
apply_temporal_filter_self(pred, pred_stride, w, h,
filter_weight, accum, cnt);
pred += BLK_PELS;
accum += BLK_PELS;
cnt += BLK_PELS;
}
} else {
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int adj_strength = strength + 2 * (mbd->bd - 8);
if (num_planes <= 1) {
// Single plane case
av1_highbd_temporal_filter_apply_c(
f->y_buffer + mb_y_offset, f->y_stride, predictor, BW, BH,
adj_strength, filter_weight, accumulator, count);
} else {
// Process 3 planes together.
highbd_apply_temporal_filter(
f->y_buffer + mb_y_offset, f->y_stride, predictor, BW,
f->u_buffer + mb_uv_offset, f->v_buffer + mb_uv_offset,
f->uv_stride, predictor + BLK_PELS,
predictor + (BLK_PELS << 1), mb_uv_width, BW, BH,
mbd->plane[1].subsampling_x, mbd->plane[1].subsampling_y,
adj_strength, filter_weight, accumulator, count,
accumulator + BLK_PELS, count + BLK_PELS,
accumulator + (BLK_PELS << 1), count + (BLK_PELS << 1));
}
} else {
if (num_planes <= 1) {
// Single plane case
av1_temporal_filter_apply_c(
f->y_buffer + mb_y_offset, f->y_stride, predictor, BW, BH,
strength, filter_weight, accumulator, count);
} else {
// Process 3 planes together.
apply_temporal_filter(
f->y_buffer + mb_y_offset, f->y_stride, predictor, BW,
f->u_buffer + mb_uv_offset, f->v_buffer + mb_uv_offset,
f->uv_stride, predictor + BLK_PELS,
predictor + (BLK_PELS << 1), mb_uv_width, BW, BH,
mbd->plane[1].subsampling_x, mbd->plane[1].subsampling_y,
strength, filter_weight, accumulator, count,
accumulator + BLK_PELS, count + BLK_PELS,
accumulator + (BLK_PELS << 1), count + (BLK_PELS << 1));
}
}
}
}
}
// Normalize filter output to produce AltRef frame
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst1_16;
uint16_t *dst2_16;
dst1 = cpi->alt_ref_buffer.y_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < BH; i++) {
for (j = 0; j < BW; j++, k++) {
dst1_16[byte] =
(uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// move to next pixel
byte++;
}
byte += stride - BW;
}
if (num_planes > 1) {
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
dst2_16 = CONVERT_TO_SHORTPTR(dst2);
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = BLK_PELS; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + BLK_PELS;
// U
dst1_16[byte] =
(uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// V
dst2_16[byte] =
(uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
// move to next pixel
byte++;
}
byte += stride - mb_uv_width;
}
}
} else {
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < BH; i++) {
for (j = 0; j < BW; j++, k++) {
dst1[byte] =
(uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// move to next pixel
byte++;
}
byte += stride - BW;
}
if (num_planes > 1) {
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = BLK_PELS; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + BLK_PELS;
// U
dst1[byte] =
(uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]);
// V
dst2[byte] =
(uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]);
// move to next pixel
byte++;
}
byte += stride - mb_uv_width;
}
}
}
mb_y_offset += BW;
mb_uv_offset += mb_uv_width;
}
mb_y_offset += BH * f->y_stride - BW * mb_cols;
mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols;
}
// Restore input state
for (i = 0; i < num_planes; i++) mbd->plane[i].pre[0].buf = input_buffer[i];
}
// This is an adaptation of the mehtod in the following paper:
// Shen-Chuan Tai, Shih-Ming Yang, "A fast method for image noise
// estimation using Laplacian operator and adaptive edge detection,"
// Proc. 3rd International Symposium on Communications, Control and
// Signal Processing, 2008, St Julians, Malta.
//
// Return noise estimate, or -1.0 if there was a failure
static double estimate_noise(const uint8_t *src, int width, int height,
int stride, int edge_thresh) {
int64_t sum = 0;
int64_t num = 0;
for (int i = 1; i < height - 1; ++i) {
for (int j = 1; j < width - 1; ++j) {
const int k = i * stride + j;
// Sobel gradients
const int Gx = (src[k - stride - 1] - src[k - stride + 1]) +
(src[k + stride - 1] - src[k + stride + 1]) +
2 * (src[k - 1] - src[k + 1]);
const int Gy = (src[k - stride - 1] - src[k + stride - 1]) +
(src[k - stride + 1] - src[k + stride + 1]) +
2 * (src[k - stride] - src[k + stride]);
const int Ga = abs(Gx) + abs(Gy);
if (Ga < edge_thresh) { // Smooth pixels
// Find Laplacian
const int v =
4 * src[k] -
2 * (src[k - 1] + src[k + 1] + src[k - stride] + src[k + stride]) +
(src[k - stride - 1] + src[k - stride + 1] + src[k + stride - 1] +
src[k + stride + 1]);
sum += abs(v);
++num;
}
}
}
// If very few smooth pels, return -1 since the estimate is unreliable
if (num < 16) return -1.0;
const double sigma = (double)sum / (6 * num) * SQRT_PI_BY_2;
return sigma;
}
// Return noise estimate, or -1.0 if there was a failure
static double highbd_estimate_noise(const uint8_t *src8, int width, int height,
int stride, int bd, int edge_thresh) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
int64_t sum = 0;
int64_t num = 0;
for (int i = 1; i < height - 1; ++i) {
for (int j = 1; j < width - 1; ++j) {
const int k = i * stride + j;
// Sobel gradients
const int Gx = (src[k - stride - 1] - src[k - stride + 1]) +
(src[k + stride - 1] - src[k + stride + 1]) +
2 * (src[k - 1] - src[k + 1]);
const int Gy = (src[k - stride - 1] - src[k + stride - 1]) +
(src[k - stride + 1] - src[k + stride + 1]) +
2 * (src[k - stride] - src[k + stride]);
const int Ga = ROUND_POWER_OF_TWO(abs(Gx) + abs(Gy), bd - 8);
if (Ga < edge_thresh) { // Smooth pixels
// Find Laplacian
const int v =
4 * src[k] -
2 * (src[k - 1] + src[k + 1] + src[k - stride] + src[k + stride]) +
(src[k - stride - 1] + src[k - stride + 1] + src[k + stride - 1] +
src[k + stride + 1]);
sum += ROUND_POWER_OF_TWO(abs(v), bd - 8);
++num;
}
}
}
// If very few smooth pels, return -1 since the estimate is unreliable
if (num < 16) return -1.0;
const double sigma = (double)sum / (6 * num) * SQRT_PI_BY_2;
return sigma;
}
// Apply buffer limits and context specific adjustments to arnr filter.
static void adjust_arnr_filter(AV1_COMP *cpi, int distance, int group_boost,
int *arnr_frames, int *arnr_strength) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int frames_after_arf =
av1_lookahead_depth(cpi->lookahead) - distance - 1;
int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
int frames_bwd;
int q, frames, strength;
// Define the forward and backwards filter limits for this arnr group.
if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
if (frames_fwd > distance) frames_fwd = distance;
frames_bwd = frames_fwd;
// For even length filter there is one more frame backward
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1;
// Set the baseline active filter size.
frames = frames_bwd + 1 + frames_fwd;
// Adjust the strength based on active max q.
if (cpi->common.current_frame.frame_number > 1)
q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
cpi->common.seq_params.bit_depth));
else
q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME],
cpi->common.seq_params.bit_depth));
MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
struct lookahead_entry *buf = av1_lookahead_peek(cpi->lookahead, distance);
double noiselevel;
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
noiselevel = highbd_estimate_noise(
buf->img.y_buffer, buf->img.y_crop_width, buf->img.y_crop_height,
buf->img.y_stride, mbd->bd, EDGE_THRESHOLD);
} else {
noiselevel = estimate_noise(buf->img.y_buffer, buf->img.y_crop_width,
buf->img.y_crop_height, buf->img.y_stride,
EDGE_THRESHOLD);
}
int adj_strength = oxcf->arnr_strength;
if (noiselevel > 0) {
// Get 4 integer adjustment levels in [-2, 1]
int noiselevel_adj;
if (noiselevel < 0.75)
noiselevel_adj = -2;
else if (noiselevel < 1.75)
noiselevel_adj = -1;
else if (noiselevel < 4.0)
noiselevel_adj = 0;
else
noiselevel_adj = 1;
adj_strength += noiselevel_adj;
}
// printf("[noise level: %g, strength = %d]\n", noiselevel, adj_strength);
if (q > 16) {
strength = adj_strength;
} else {
strength = adj_strength - ((16 - q) / 2);
if (strength < 0) strength = 0;
}
// Adjust number of frames in filter and strength based on gf boost level.
if (frames > group_boost / 150) {
frames = group_boost / 150;
frames += !(frames & 1);
}
if (strength > group_boost / 300) {
strength = group_boost / 300;
}
*arnr_frames = frames;
*arnr_strength = strength;
}
void av1_temporal_filter(AV1_COMP *cpi, int distance) {
RATE_CONTROL *const rc = &cpi->rc;
int frame;
int frames_to_blur;
int start_frame;
int strength;
int frames_to_blur_backward;
int frames_to_blur_forward;
struct scale_factors sf;
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int rdmult = 0;
// Apply context specific adjustments to the arnr filter parameters.
if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
// TODO(weitinglin): Currently, we enforce the filtering strength on
// extra ARFs' to be zeros. We should investigate in which
// case it is more beneficial to use non-zero strength
// filtering.
strength = 0;
frames_to_blur = 1;
} else {
adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur,
&strength);
}
int which_arf = gf_group->arf_update_idx[gf_group->index];
// Set the temporal filtering status for the corresponding OVERLAY frame
if (strength == 0 && frames_to_blur == 1)
cpi->is_arf_filter_off[which_arf] = 1;
else
cpi->is_arf_filter_off[which_arf] = 0;
cpi->common.showable_frame = cpi->is_arf_filter_off[which_arf];
frames_to_blur_backward = (frames_to_blur / 2);
frames_to_blur_forward = ((frames_to_blur - 1) / 2);
start_frame = distance + frames_to_blur_forward;
// Setup frame pointers, NULL indicates frame not included in filter.
for (frame = 0; frame < frames_to_blur; ++frame) {
const int which_buffer = start_frame - frame;
struct lookahead_entry *buf =
av1_lookahead_peek(cpi->lookahead, which_buffer);
frames[frames_to_blur - 1 - frame] = &buf->img;
}
if (frames_to_blur > 0) {
// Setup scaling factors. Scaling on each of the arnr frames is not
// supported.
// ARF is produced at the native frame size and resized when coded.
av1_setup_scale_factors_for_frame(
&sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
frames[0]->y_crop_width, frames[0]->y_crop_height);
}
// Initialize errorperbit, sadperbit16 and sadperbit4.
rdmult = av1_compute_rd_mult_based_on_qindex(cpi, ARNR_FILT_QINDEX);
set_error_per_bit(&cpi->td.mb, rdmult);
av1_initialize_me_consts(cpi, &cpi->td.mb, ARNR_FILT_QINDEX);
av1_initialize_cost_tables(&cpi->common, &cpi->td.mb);
temporal_filter_iterate_c(cpi, frames, frames_to_blur,
frames_to_blur_backward, strength, &sf);
}