| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/x86/convolve.h" |
| #include "aom_dsp/x86/convolve_avx2.h" |
| #include "aom_dsp/x86/synonyms_avx2.h" |
| #include "aom_ports/mem.h" |
| |
| #if defined(__clang__) |
| #if (__clang_major__ > 0 && __clang_major__ < 3) || \ |
| (__clang_major__ == 3 && __clang_minor__ <= 3) || \ |
| (defined(__APPLE__) && defined(__apple_build_version__) && \ |
| ((__clang_major__ == 4 && __clang_minor__ <= 2) || \ |
| (__clang_major__ == 5 && __clang_minor__ == 0))) |
| #define MM256_BROADCASTSI128_SI256(x) \ |
| _mm_broadcastsi128_si256((__m128i const *)&(x)) |
| #else // clang > 3.3, and not 5.0 on macosx. |
| #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) |
| #endif // clang <= 3.3 |
| #elif defined(__GNUC__) |
| #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) |
| #define MM256_BROADCASTSI128_SI256(x) \ |
| _mm_broadcastsi128_si256((__m128i const *)&(x)) |
| #elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 |
| #define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) |
| #else // gcc > 4.7 |
| #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) |
| #endif // gcc <= 4.6 |
| #else // !(gcc || clang) |
| #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) |
| #endif // __clang__ |
| |
| static inline void xx_storeu2_epi32(const uint8_t *output_ptr, |
| const ptrdiff_t stride, const __m256i *a) { |
| *((int *)(output_ptr)) = _mm_cvtsi128_si32(_mm256_castsi256_si128(*a)); |
| *((int *)(output_ptr + stride)) = |
| _mm_cvtsi128_si32(_mm256_extracti128_si256(*a, 1)); |
| } |
| |
| static inline __m256i xx_loadu2_epi64(const void *hi, const void *lo) { |
| __m256i a = _mm256_castsi128_si256(_mm_loadl_epi64((const __m128i *)(lo))); |
| a = _mm256_inserti128_si256(a, _mm_loadl_epi64((const __m128i *)(hi)), 1); |
| return a; |
| } |
| |
| static inline void xx_storeu2_epi64(const uint8_t *output_ptr, |
| const ptrdiff_t stride, const __m256i *a) { |
| _mm_storel_epi64((__m128i *)output_ptr, _mm256_castsi256_si128(*a)); |
| _mm_storel_epi64((__m128i *)(output_ptr + stride), |
| _mm256_extractf128_si256(*a, 1)); |
| } |
| |
| static inline void xx_store2_mi128(const uint8_t *output_ptr, |
| const ptrdiff_t stride, const __m256i *a) { |
| _mm_store_si128((__m128i *)output_ptr, _mm256_castsi256_si128(*a)); |
| _mm_store_si128((__m128i *)(output_ptr + stride), |
| _mm256_extractf128_si256(*a, 1)); |
| } |
| |
| static void aom_filter_block1d4_h4_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| src_ptr -= 3; |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| firstFilters = |
| _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u)); |
| filt1Reg = _mm256_load_si256((__m256i const *)(filt4_d4_global_avx2)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i -= 2) { |
| // load the 2 strides of source |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); |
| |
| srcRegFilt32b1_1 = |
| _mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = |
| _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1); |
| output_ptr += dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 4 bytes |
| if (i > 0) { |
| __m128i srcReg1, srcRegFilt1_1; |
| |
| srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); |
| |
| // filter the source buffer |
| srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt1_1 = |
| _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); |
| |
| srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128()); |
| // shift by 6 bit each 16 bit |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); |
| |
| // save 4 bytes |
| *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1); |
| } |
| } |
| |
| static void aom_filter_block1d4_h8_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32, filt1Reg, filt2Reg; |
| __m256i firstFilters, secondFilters; |
| __m256i srcRegFilt32b1_1, srcRegFilt32b2; |
| __m256i srcReg32b1; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| src_ptr -= 3; |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 32 bits |
| firstFilters = _mm256_shuffle_epi32(filtersReg32, 0); |
| // duplicate only the second 32 bits |
| secondFilters = _mm256_shuffle_epi32(filtersReg32, 0x55); |
| |
| filt1Reg = _mm256_load_si256((__m256i const *)filt_d4_global_avx2); |
| filt2Reg = _mm256_load_si256((__m256i const *)(filt_d4_global_avx2 + 32)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i -= 2) { |
| // load the 2 strides of source |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); |
| |
| // filter the source buffer |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters); |
| |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); |
| |
| srcRegFilt32b1_1 = |
| _mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = |
| _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1); |
| output_ptr += dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 4 bytes |
| if (i > 0) { |
| __m128i srcReg1, srcRegFilt1_1; |
| __m128i srcRegFilt2; |
| |
| srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); |
| |
| // filter the source buffer |
| srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt1_1 = |
| _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); |
| |
| // filter the source buffer |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); |
| |
| // multiply 4 adjacent elements with the filter and add the result |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters)); |
| |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); |
| srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128()); |
| // shift by 6 bit each 16 bit |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); |
| |
| // save 4 bytes |
| *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1); |
| } |
| } |
| |
| static void aom_filter_block1d8_h4_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32, filt2Reg, filt3Reg; |
| __m256i secondFilters, thirdFilters; |
| __m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m256i srcReg32b1, filtersReg32; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| src_ptr -= 3; |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| |
| filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); |
| filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); |
| |
| // multiply the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i -= 2) { |
| // load the 2 strides of source |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); |
| |
| // shrink to 8 bit each 16 bits |
| srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b1_1); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1); |
| output_ptr += dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 8 bytes |
| if (i > 0) { |
| __m128i srcReg1, srcRegFilt1_1; |
| __m128i srcRegFilt2, srcRegFilt3; |
| |
| srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); |
| |
| // filter the source buffer |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); |
| srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt3 = |
| _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt2, srcRegFilt3); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); |
| |
| // shrink to 8 bit each 16 bits |
| srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); |
| |
| // save 8 bytes |
| _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1); |
| } |
| } |
| |
| static void aom_filter_block1d8_h8_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg; |
| __m256i firstFilters, secondFilters, thirdFilters, forthFilters; |
| __m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m256i srcReg32b1; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| src_ptr -= 3; |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 256 bit register |
| firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 256 bit register |
| forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); |
| |
| filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2); |
| filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); |
| filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); |
| filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i -= 2) { |
| // load the 2 strides of source |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| __m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = |
| _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256()); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1); |
| output_ptr += dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 8 bytes |
| if (i > 0) { |
| __m128i srcReg1, srcRegFilt1_1; |
| __m128i srcRegFilt2, srcRegFilt3; |
| |
| srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); |
| |
| // filter the source buffer |
| srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1_1 = |
| _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); |
| |
| // filter the source buffer |
| srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt3 = |
| _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2)); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128()); |
| |
| // save 8 bytes |
| _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1); |
| } |
| } |
| |
| static void aom_filter_block1d16_h4_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32, filt2Reg, filt3Reg; |
| __m256i secondFilters, thirdFilters; |
| __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m256i srcReg32b1, srcReg32b2, filtersReg32; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| src_ptr -= 3; |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| |
| filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); |
| filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); |
| |
| // multiply the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i -= 2) { |
| // load the 2 strides of source |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| |
| // reading 2 strides of the next 16 bytes |
| // (part of it was being read by earlier read) |
| srcReg32b2 = yy_loadu2_128(src_ptr + src_pixels_per_line + 8, src_ptr + 8); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); |
| srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); |
| |
| src_ptr += src_stride; |
| |
| xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1); |
| output_ptr += dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 16 bytes |
| if (i > 0) { |
| __m256i srcReg1, srcReg12; |
| __m256i srcRegFilt2, srcRegFilt3, srcRegFilt1_1; |
| |
| srcReg1 = _mm256_loadu_si256((const __m256i *)(src_ptr)); |
| srcReg12 = _mm256_permute4x64_epi64(srcReg1, 0x94); |
| |
| // filter the source buffer |
| srcRegFilt2 = _mm256_shuffle_epi8(srcReg12, filt2Reg); |
| srcRegFilt3 = _mm256_shuffle_epi8(srcReg12, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt2 = _mm256_maddubs_epi16(srcRegFilt2, secondFilters); |
| srcRegFilt3 = _mm256_maddubs_epi16(srcRegFilt3, thirdFilters); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt2, srcRegFilt3); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt1_1, addFilterReg32); |
| srcRegFilt1_1 = _mm256_srai_epi16(srcRegFilt1_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt1_1 = _mm256_packus_epi16(srcRegFilt1_1, srcRegFilt1_1); |
| srcRegFilt1_1 = _mm256_permute4x64_epi64(srcRegFilt1_1, 0x8); |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i *)output_ptr, |
| _mm256_castsi256_si128(srcRegFilt1_1)); |
| } |
| } |
| |
| static void aom_filter_block1d16_h8_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg; |
| __m256i firstFilters, secondFilters, thirdFilters, forthFilters; |
| __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m256i srcReg32b1, srcReg32b2, filtersReg32; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| src_ptr -= 3; |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 256 bit register |
| firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 256 bit register |
| forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); |
| |
| filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2); |
| filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32)); |
| filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2)); |
| filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i -= 2) { |
| // load the 2 strides of source |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr); |
| |
| // filter the source buffer |
| srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| __m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23); |
| |
| // reading 2 strides of the next 16 bytes |
| // (part of it was being read by earlier read) |
| srcReg32b2 = yy_loadu2_128(src_ptr + src_pixels_per_line + 8, src_ptr + 8); |
| |
| // filter the source buffer |
| srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2); |
| |
| // filter the source buffer |
| srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b2_1 = _mm256_adds_epi16( |
| srcRegFilt32b2_1, _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2)); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32); |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32); |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6); |
| srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); |
| |
| src_ptr += src_stride; |
| |
| xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1); |
| output_ptr += dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 16 bytes |
| if (i > 0) { |
| __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1; |
| __m128i srcRegFilt2, srcRegFilt3; |
| |
| srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr)); |
| |
| // filter the source buffer |
| srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1_1 = |
| _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); |
| |
| // filter the source buffer |
| srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt3 = |
| _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2)); |
| |
| // reading the next 16 bytes |
| // (part of it was being read by earlier read) |
| srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); |
| |
| // filter the source buffer |
| srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt2_1 = |
| _mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); |
| |
| // filter the source buffer |
| srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt3 = |
| _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt2 = |
| _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt2_1 = |
| _mm_adds_epi16(srcRegFilt2_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2)); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt1_1 = |
| _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6); |
| |
| srcRegFilt2_1 = |
| _mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i *)output_ptr, srcRegFilt1_1); |
| } |
| } |
| |
| static void aom_filter_block1d8_v4_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i filtersReg32, addFilterReg32; |
| __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56; |
| __m256i srcReg23_34_lo, srcReg45_56_lo; |
| __m256i resReg23_34_lo, resReg45_56_lo; |
| __m256i resReglo, resReg; |
| __m256i secondFilters, thirdFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); |
| srcReg4x = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4))); |
| |
| // have consecutive loads on the same 256 register |
| srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21); |
| |
| srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| // load the last 2 loads of 16 bytes and have every two |
| // consecutive loads in the same 256 bit register |
| srcReg5x = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5))); |
| srcReg45 = |
| _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1); |
| |
| srcReg6x = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6))); |
| srcReg56 = |
| _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1); |
| |
| // merge every two consecutive registers |
| srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters); |
| resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters); |
| |
| // add and saturate the results together |
| resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo); |
| |
| // shift by 6 bit each 16 bit |
| resReglo = _mm256_adds_epi16(resReglo, addFilterReg32); |
| resReglo = _mm256_srai_epi16(resReglo, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| resReg = _mm256_packus_epi16(resReglo, resReglo); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi64(output_ptr, out_pitch, &resReg); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg23_34_lo = srcReg45_56_lo; |
| srcReg4x = srcReg6x; |
| } |
| } |
| |
| static void aom_filter_block1d8_v8_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32; |
| __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; |
| __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; |
| __m256i srcReg32b11, srcReg32b12, filtersReg32; |
| __m256i firstFilters, secondFilters, thirdFilters, forthFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 256 bit register |
| firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 256 bit register |
| forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| // load 16 bytes 7 times in stride of src_pitch |
| srcReg32b1 = xx_loadu2_epi64(src_ptr + src_pitch, src_ptr); |
| srcReg32b3 = |
| xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); |
| srcReg32b5 = |
| xx_loadu2_epi64(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4); |
| srcReg32b7 = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6))); |
| |
| // have each consecutive loads on the same 256 register |
| srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21); |
| srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21); |
| srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21); |
| // merge every two consecutive registers except the last one |
| srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); |
| srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); |
| srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| // load the last 2 loads of 16 bytes and have every two |
| // consecutive loads in the same 256 bit register |
| srcReg32b8 = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7))); |
| srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, |
| _mm256_castsi256_si128(srcReg32b8), 1); |
| srcReg32b9 = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 8))); |
| srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, |
| _mm256_castsi256_si128(srcReg32b9), 1); |
| |
| // merge every two consecutive registers |
| // save |
| srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); |
| srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); |
| |
| // add and saturate the results together |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); |
| srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, |
| _mm256_adds_epi16(srcReg32b8, srcReg32b12)); |
| |
| // shift by 6 bit each 16 bit |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32); |
| srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcReg32b1 = _mm256_packus_epi16(srcReg32b10, _mm256_setzero_si256()); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi64(output_ptr, out_pitch, &srcReg32b1); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg32b10 = srcReg32b11; |
| srcReg32b11 = srcReg32b2; |
| srcReg32b2 = srcReg32b4; |
| srcReg32b7 = srcReg32b9; |
| } |
| if (i > 0) { |
| __m128i srcRegFilt1, srcRegFilt4, srcRegFilt6, srcRegFilt8; |
| // load the last 16 bytes |
| srcRegFilt8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); |
| |
| // merge the last 2 results together |
| srcRegFilt4 = |
| _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt4 = |
| _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), |
| _mm256_castsi256_si128(secondFilters)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), |
| _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = |
| _mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6)); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt1 = |
| _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve result |
| srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, _mm_setzero_si128()); |
| |
| // save 8 bytes |
| _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1); |
| } |
| } |
| |
| static void aom_filter_block1d16_v4_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i filtersReg32, addFilterReg32; |
| __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56; |
| __m256i srcReg23_34_lo, srcReg23_34_hi, srcReg45_56_lo, srcReg45_56_hi; |
| __m256i resReg23_34_lo, resReg23_34_hi, resReg45_56_lo, resReg45_56_hi; |
| __m256i resReglo, resReghi, resReg; |
| __m256i secondFilters, thirdFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| srcReg23 = yy_loadu2_128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); |
| srcReg4x = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4))); |
| |
| // have consecutive loads on the same 256 register |
| srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21); |
| |
| srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34); |
| srcReg23_34_hi = _mm256_unpackhi_epi8(srcReg23, srcReg34); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| // load the last 2 loads of 16 bytes and have every two |
| // consecutive loads in the same 256 bit register |
| srcReg5x = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5))); |
| srcReg45 = |
| _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1); |
| |
| srcReg6x = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); |
| srcReg56 = |
| _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1); |
| |
| // merge every two consecutive registers |
| srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56); |
| srcReg45_56_hi = _mm256_unpackhi_epi8(srcReg45, srcReg56); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters); |
| resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters); |
| |
| // add and saturate the results together |
| resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReg23_34_hi = _mm256_maddubs_epi16(srcReg23_34_hi, secondFilters); |
| resReg45_56_hi = _mm256_maddubs_epi16(srcReg45_56_hi, thirdFilters); |
| |
| // add and saturate the results together |
| resReghi = _mm256_adds_epi16(resReg23_34_hi, resReg45_56_hi); |
| |
| // shift by 6 bit each 16 bit |
| resReglo = _mm256_adds_epi16(resReglo, addFilterReg32); |
| resReghi = _mm256_adds_epi16(resReghi, addFilterReg32); |
| resReglo = _mm256_srai_epi16(resReglo, 6); |
| resReghi = _mm256_srai_epi16(resReghi, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| resReg = _mm256_packus_epi16(resReglo, resReghi); |
| |
| src_ptr += src_stride; |
| |
| xx_store2_mi128(output_ptr, out_pitch, &resReg); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg23_34_lo = srcReg45_56_lo; |
| srcReg23_34_hi = srcReg45_56_hi; |
| srcReg4x = srcReg6x; |
| } |
| } |
| |
| static void aom_filter_block1d16_v8_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg32; |
| __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; |
| __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; |
| __m256i srcReg32b11, srcReg32b12, filtersReg32; |
| __m256i firstFilters, secondFilters, thirdFilters, forthFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 256 bit register |
| firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 256 bit register |
| forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| // load 16 bytes 7 times in stride of src_pitch |
| srcReg32b1 = yy_loadu2_128(src_ptr + src_pitch, src_ptr); |
| srcReg32b3 = yy_loadu2_128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); |
| srcReg32b5 = yy_loadu2_128(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4); |
| srcReg32b7 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); |
| |
| // have each consecutive loads on the same 256 register |
| srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21); |
| srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21); |
| srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21); |
| // merge every two consecutive registers except the last one |
| srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); |
| srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2); |
| |
| // save |
| srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); |
| srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4); |
| srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); |
| srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| // load the last 2 loads of 16 bytes and have every two |
| // consecutive loads in the same 256 bit register |
| srcReg32b8 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7))); |
| srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, |
| _mm256_castsi256_si128(srcReg32b8), 1); |
| srcReg32b9 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8))); |
| srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, |
| _mm256_castsi256_si128(srcReg32b9), 1); |
| |
| // merge every two consecutive registers |
| // save |
| srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); |
| srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); |
| srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); |
| |
| // add and saturate the results together |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); |
| srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, |
| _mm256_adds_epi16(srcReg32b8, srcReg32b12)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters); |
| srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters); |
| |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters); |
| srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters); |
| |
| // add and saturate the results together |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, |
| _mm256_adds_epi16(srcReg32b8, srcReg32b12)); |
| |
| // shift by 6 bit each 16 bit |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32); |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg32); |
| srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6); |
| srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1); |
| |
| src_ptr += src_stride; |
| |
| xx_store2_mi128(output_ptr, out_pitch, &srcReg32b1); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg32b10 = srcReg32b11; |
| srcReg32b1 = srcReg32b3; |
| srcReg32b11 = srcReg32b2; |
| srcReg32b3 = srcReg32b5; |
| srcReg32b2 = srcReg32b4; |
| srcReg32b5 = srcReg32b7; |
| srcReg32b7 = srcReg32b9; |
| } |
| if (i > 0) { |
| __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5; |
| __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8; |
| // load the last 16 bytes |
| srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); |
| |
| // merge the last 2 results together |
| srcRegFilt4 = |
| _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); |
| srcRegFilt7 = |
| _mm_unpackhi_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt4 = |
| _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); |
| srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1), |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt7 = |
| _mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); |
| srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), |
| _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3), |
| _mm256_castsi256_si128(secondFilters)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), |
| _mm256_castsi256_si128(thirdFilters)); |
| srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5), |
| _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = |
| _mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6)); |
| srcRegFilt3 = |
| _mm_adds_epi16(srcRegFilt3, _mm_adds_epi16(srcRegFilt5, srcRegFilt7)); |
| |
| // shift by 6 bit each 16 bit |
| srcRegFilt1 = |
| _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt3 = |
| _mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg32)); |
| srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6); |
| srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3); |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i *)output_ptr, srcRegFilt1); |
| } |
| } |
| |
| static void aom_filter_block1d4_v4_avx2( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i filtersReg32, addFilterReg32; |
| __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56; |
| __m256i srcReg23_34_lo, srcReg45_56_lo; |
| __m256i srcReg2345_3456_lo; |
| __m256i resReglo, resReg; |
| __m256i firstFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| addFilterReg32 = _mm256_set1_epi16(32); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg = _mm_srai_epi16(filtersReg, 1); |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| firstFilters = |
| _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2); |
| srcReg4x = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4))); |
| |
| // have consecutive loads on the same 256 register |
| srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21); |
| |
| srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34); |
| |
| for (i = output_height; i > 1; i -= 2) { |
| // load the last 2 loads of 16 bytes and have every two |
| // consecutive loads in the same 256 bit register |
| srcReg5x = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5))); |
| srcReg45 = |
| _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1); |
| |
| srcReg6x = _mm256_castsi128_si256( |
| _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6))); |
| srcReg56 = |
| _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1); |
| |
| // merge every two consecutive registers |
| srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56); |
| |
| srcReg2345_3456_lo = _mm256_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| resReglo = _mm256_maddubs_epi16(srcReg2345_3456_lo, firstFilters); |
| |
| resReglo = _mm256_hadds_epi16(resReglo, _mm256_setzero_si256()); |
| |
| // shift by 6 bit each 16 bit |
| resReglo = _mm256_adds_epi16(resReglo, addFilterReg32); |
| resReglo = _mm256_srai_epi16(resReglo, 6); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| resReg = _mm256_packus_epi16(resReglo, resReglo); |
| |
| src_ptr += src_stride; |
| |
| xx_storeu2_epi32(output_ptr, out_pitch, &resReg); |
| |
| output_ptr += dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg23_34_lo = srcReg45_56_lo; |
| srcReg4x = srcReg6x; |
| } |
| } |
| |
| #if HAVE_AVX2 && HAVE_SSSE3 |
| filter8_1dfunction aom_filter_block1d4_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d16_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h2_ssse3; |
| #define aom_filter_block1d4_v8_avx2 aom_filter_block1d4_v8_ssse3 |
| #define aom_filter_block1d16_v2_avx2 aom_filter_block1d16_v2_ssse3 |
| #define aom_filter_block1d16_h2_avx2 aom_filter_block1d16_h2_ssse3 |
| #define aom_filter_block1d8_v2_avx2 aom_filter_block1d8_v2_ssse3 |
| #define aom_filter_block1d8_h2_avx2 aom_filter_block1d8_h2_ssse3 |
| #define aom_filter_block1d4_v2_avx2 aom_filter_block1d4_v2_ssse3 |
| #define aom_filter_block1d4_h2_avx2 aom_filter_block1d4_h2_ssse3 |
| // void aom_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void aom_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2) |
| FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2) |
| |
| #endif // HAVE_AX2 && HAVE_SSSE3 |