| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <emmintrin.h> // SSE2 |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/txfm_common.h" |
| #include "aom_dsp/x86/fwd_txfm_sse2.h" |
| #include "aom_dsp/x86/txfm_common_sse2.h" |
| #include "aom_ports/mem.h" |
| |
| // TODO(jingning) The high bit-depth functions need rework for performance. |
| // After we properly fix the high bit-depth function implementations, this |
| // file's dependency should be substantially simplified. |
| #if DCT_HIGH_BIT_DEPTH |
| #define ADD_EPI16 _mm_adds_epi16 |
| #define SUB_EPI16 _mm_subs_epi16 |
| |
| #else |
| #define ADD_EPI16 _mm_add_epi16 |
| #define SUB_EPI16 _mm_sub_epi16 |
| #endif |
| |
| #if defined(FDCT4x4_2D_HELPER) |
| static void FDCT4x4_2D_HELPER(const int16_t *input, int stride, __m128i *in0, |
| __m128i *in1) { |
| // Constants |
| // These are the coefficients used for the multiplies. |
| // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64), |
| // where cospi_N_64 = cos(N pi /64) |
| const __m128i k__cospi_A = |
| octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, |
| cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); |
| const __m128i k__cospi_B = |
| octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, |
| cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); |
| const __m128i k__cospi_C = |
| octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, |
| cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64); |
| const __m128i k__cospi_D = |
| octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, |
| cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64); |
| const __m128i k__cospi_E = |
| octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, |
| cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); |
| const __m128i k__cospi_F = |
| octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, |
| cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); |
| const __m128i k__cospi_G = |
| octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, |
| -cospi_8_64, -cospi_24_64, -cospi_8_64, -cospi_24_64); |
| const __m128i k__cospi_H = |
| octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, |
| -cospi_24_64, cospi_8_64, -cospi_24_64, cospi_8_64); |
| |
| const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); |
| // This second rounding constant saves doing some extra adds at the end |
| const __m128i k__DCT_CONST_ROUNDING2 = |
| _mm_set1_epi32(DCT_CONST_ROUNDING + (DCT_CONST_ROUNDING << 1)); |
| const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2; |
| const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); |
| const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); |
| |
| // Load inputs. |
| *in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); |
| *in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); |
| *in1 = _mm_unpacklo_epi64( |
| *in1, _mm_loadl_epi64((const __m128i *)(input + 2 * stride))); |
| *in0 = _mm_unpacklo_epi64( |
| *in0, _mm_loadl_epi64((const __m128i *)(input + 3 * stride))); |
| // in0 = [i0 i1 i2 i3 iC iD iE iF] |
| // in1 = [i4 i5 i6 i7 i8 i9 iA iB] |
| // multiply by 16 to give some extra precision |
| *in0 = _mm_slli_epi16(*in0, 4); |
| *in1 = _mm_slli_epi16(*in1, 4); |
| // if (i == 0 && input[0]) input[0] += 1; |
| // add 1 to the upper left pixel if it is non-zero, which helps reduce |
| // the round-trip error |
| { |
| // The mask will only contain whether the first value is zero, all |
| // other comparison will fail as something shifted by 4 (above << 4) |
| // can never be equal to one. To increment in the non-zero case, we |
| // add the mask and one for the first element: |
| // - if zero, mask = -1, v = v - 1 + 1 = v |
| // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1 |
| __m128i mask = _mm_cmpeq_epi16(*in0, k__nonzero_bias_a); |
| *in0 = _mm_add_epi16(*in0, mask); |
| *in0 = _mm_add_epi16(*in0, k__nonzero_bias_b); |
| } |
| // There are 4 total stages, alternating between an add/subtract stage |
| // followed by an multiply-and-add stage. |
| { |
| // Stage 1: Add/subtract |
| |
| // in0 = [i0 i1 i2 i3 iC iD iE iF] |
| // in1 = [i4 i5 i6 i7 i8 i9 iA iB] |
| const __m128i r0 = _mm_unpacklo_epi16(*in0, *in1); |
| const __m128i r1 = _mm_unpackhi_epi16(*in0, *in1); |
| // r0 = [i0 i4 i1 i5 i2 i6 i3 i7] |
| // r1 = [iC i8 iD i9 iE iA iF iB] |
| const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4); |
| const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4); |
| // r2 = [i0 i4 i1 i5 i3 i7 i2 i6] |
| // r3 = [iC i8 iD i9 iF iB iE iA] |
| |
| const __m128i t0 = _mm_add_epi16(r2, r3); |
| const __m128i t1 = _mm_sub_epi16(r2, r3); |
| // t0 = [a0 a4 a1 a5 a3 a7 a2 a6] |
| // t1 = [aC a8 aD a9 aF aB aE aA] |
| |
| // Stage 2: multiply by constants (which gets us into 32 bits). |
| // The constants needed here are: |
| // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16] |
| // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16] |
| // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08] |
| // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24] |
| const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A); |
| const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B); |
| const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C); |
| const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D); |
| // Then add and right-shift to get back to 16-bit range |
| const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); |
| const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); |
| const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); |
| const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); |
| const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); |
| const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); |
| const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); |
| const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); |
| // w0 = [b0 b1 b7 b6] |
| // w1 = [b8 b9 bF bE] |
| // w2 = [b4 b5 b3 b2] |
| // w3 = [bC bD bB bA] |
| const __m128i x0 = _mm_packs_epi32(w0, w1); |
| const __m128i x1 = _mm_packs_epi32(w2, w3); |
| |
| // x0 = [b0 b1 b7 b6 b8 b9 bF bE] |
| // x1 = [b4 b5 b3 b2 bC bD bB bA] |
| *in0 = _mm_shuffle_epi32(x0, 0xD8); |
| *in1 = _mm_shuffle_epi32(x1, 0x8D); |
| // in0 = [b0 b1 b8 b9 b7 b6 bF bE] |
| // in1 = [b3 b2 bB bA b4 b5 bC bD] |
| } |
| { |
| // vertical DCTs finished. Now we do the horizontal DCTs. |
| // Stage 3: Add/subtract |
| |
| const __m128i t0 = ADD_EPI16(*in0, *in1); |
| const __m128i t1 = SUB_EPI16(*in0, *in1); |
| |
| // Stage 4: multiply by constants (which gets us into 32 bits). |
| { |
| // The constants needed here are: |
| // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16] |
| // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16] |
| // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24] |
| // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08] |
| const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E); |
| const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F); |
| const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G); |
| const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H); |
| // Then add and right-shift to get back to 16-bit range |
| // but this combines the final right-shift as well to save operations |
| // This unusual rounding operations is to maintain bit-accurate |
| // compatibility with the c version of this function which has two |
| // rounding steps in a row. |
| const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2); |
| const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2); |
| const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2); |
| const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2); |
| const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2); |
| const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2); |
| const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2); |
| const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2); |
| *in0 = _mm_packs_epi32(w0, w2); |
| *in1 = _mm_packs_epi32(w1, w3); |
| } |
| } |
| } |
| #endif // defined(FDCT4x4_2D_HELPER) |
| |
| #if defined(FDCT4x4_2D) |
| void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) { |
| // This 2D transform implements 4 vertical 1D transforms followed |
| // by 4 horizontal 1D transforms. The multiplies and adds are as given |
| // by Chen, Smith and Fralick ('77). The commands for moving the data |
| // around have been minimized by hand. |
| // For the purposes of the comments, the 16 inputs are referred to at i0 |
| // through iF (in raster order), intermediate variables are a0, b0, c0 |
| // through f, and correspond to the in-place computations mapped to input |
| // locations. The outputs, o0 through oF are labeled according to the |
| // output locations. |
| __m128i in0, in1; |
| FDCT4x4_2D_HELPER(input, stride, &in0, &in1); |
| |
| // Post-condition (v + 1) >> 2 is now incorporated into previous |
| // add and right-shift commands. Only 2 store instructions needed |
| // because we are using the fact that 1/3 are stored just after 0/2. |
| storeu_output(&in0, output + 0 * 4); |
| storeu_output(&in1, output + 2 * 4); |
| } |
| #endif // defined(FDCT4x4_2D) |
| |
| #if defined(FDCT4x4_2D_LP) |
| void FDCT4x4_2D_LP(const int16_t *input, int16_t *output, int stride) { |
| __m128i in0, in1; |
| FDCT4x4_2D_HELPER(input, stride, &in0, &in1); |
| _mm_storeu_si128((__m128i *)(output + 0 * 4), in0); |
| _mm_storeu_si128((__m128i *)(output + 2 * 4), in1); |
| } |
| #endif // defined(FDCT4x4_2D_LP) |
| |
| #if CONFIG_INTERNAL_STATS |
| void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) { |
| int pass; |
| // Constants |
| // When we use them, in one case, they are all the same. In all others |
| // it's a pair of them that we need to repeat four times. This is done |
| // by constructing the 32 bit constant corresponding to that pair. |
| const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64); |
| const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); |
| const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); |
| const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); |
| const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); |
| const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); |
| const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); |
| const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); |
| const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); |
| #if DCT_HIGH_BIT_DEPTH |
| int overflow; |
| #endif |
| // Load input |
| __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); |
| __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); |
| __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); |
| __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); |
| __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); |
| __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); |
| __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); |
| __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); |
| // Pre-condition input (shift by two) |
| in0 = _mm_slli_epi16(in0, 2); |
| in1 = _mm_slli_epi16(in1, 2); |
| in2 = _mm_slli_epi16(in2, 2); |
| in3 = _mm_slli_epi16(in3, 2); |
| in4 = _mm_slli_epi16(in4, 2); |
| in5 = _mm_slli_epi16(in5, 2); |
| in6 = _mm_slli_epi16(in6, 2); |
| in7 = _mm_slli_epi16(in7, 2); |
| |
| // We do two passes, first the columns, then the rows. The results of the |
| // first pass are transposed so that the same column code can be reused. The |
| // results of the second pass are also transposed so that the rows (processed |
| // as columns) are put back in row positions. |
| for (pass = 0; pass < 2; pass++) { |
| // To store results of each pass before the transpose. |
| __m128i res0, res1, res2, res3, res4, res5, res6, res7; |
| // Add/subtract |
| const __m128i q0 = ADD_EPI16(in0, in7); |
| const __m128i q1 = ADD_EPI16(in1, in6); |
| const __m128i q2 = ADD_EPI16(in2, in5); |
| const __m128i q3 = ADD_EPI16(in3, in4); |
| const __m128i q4 = SUB_EPI16(in3, in4); |
| const __m128i q5 = SUB_EPI16(in2, in5); |
| const __m128i q6 = SUB_EPI16(in1, in6); |
| const __m128i q7 = SUB_EPI16(in0, in7); |
| #if DCT_HIGH_BIT_DEPTH |
| if (pass == 1) { |
| overflow = |
| check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); |
| if (overflow) { |
| aom_highbd_fdct8x8_c(input, output, stride); |
| return; |
| } |
| } |
| #endif // DCT_HIGH_BIT_DEPTH |
| // Work on first four results |
| { |
| // Add/subtract |
| const __m128i r0 = ADD_EPI16(q0, q3); |
| const __m128i r1 = ADD_EPI16(q1, q2); |
| const __m128i r2 = SUB_EPI16(q1, q2); |
| const __m128i r3 = SUB_EPI16(q0, q3); |
| #if DCT_HIGH_BIT_DEPTH |
| overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); |
| if (overflow) { |
| aom_highbd_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif // DCT_HIGH_BIT_DEPTH |
| // Interleave to do the multiply by constants which gets us into 32bits |
| { |
| const __m128i t0 = _mm_unpacklo_epi16(r0, r1); |
| const __m128i t1 = _mm_unpackhi_epi16(r0, r1); |
| const __m128i t2 = _mm_unpacklo_epi16(r2, r3); |
| const __m128i t3 = _mm_unpackhi_epi16(r2, r3); |
| const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); |
| const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); |
| const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); |
| const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); |
| const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); |
| const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); |
| const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); |
| const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); |
| // dct_const_round_shift |
| const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); |
| const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); |
| const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); |
| const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); |
| const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); |
| const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); |
| const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); |
| const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); |
| const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); |
| const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); |
| const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); |
| const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); |
| const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); |
| const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); |
| const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); |
| const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); |
| // Combine |
| res0 = _mm_packs_epi32(w0, w1); |
| res4 = _mm_packs_epi32(w2, w3); |
| res2 = _mm_packs_epi32(w4, w5); |
| res6 = _mm_packs_epi32(w6, w7); |
| #if DCT_HIGH_BIT_DEPTH |
| overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6); |
| if (overflow) { |
| aom_highbd_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif // DCT_HIGH_BIT_DEPTH |
| } |
| } |
| // Work on next four results |
| { |
| // Interleave to do the multiply by constants which gets us into 32bits |
| const __m128i d0 = _mm_unpacklo_epi16(q6, q5); |
| const __m128i d1 = _mm_unpackhi_epi16(q6, q5); |
| const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); |
| const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); |
| const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); |
| const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); |
| // dct_const_round_shift |
| const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); |
| const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); |
| const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); |
| const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); |
| const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); |
| const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); |
| const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); |
| const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); |
| // Combine |
| const __m128i r0 = _mm_packs_epi32(s0, s1); |
| const __m128i r1 = _mm_packs_epi32(s2, s3); |
| #if DCT_HIGH_BIT_DEPTH |
| overflow = check_epi16_overflow_x2(&r0, &r1); |
| if (overflow) { |
| aom_highbd_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif // DCT_HIGH_BIT_DEPTH |
| { |
| // Add/subtract |
| const __m128i x0 = ADD_EPI16(q4, r0); |
| const __m128i x1 = SUB_EPI16(q4, r0); |
| const __m128i x2 = SUB_EPI16(q7, r1); |
| const __m128i x3 = ADD_EPI16(q7, r1); |
| #if DCT_HIGH_BIT_DEPTH |
| overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); |
| if (overflow) { |
| aom_highbd_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif // DCT_HIGH_BIT_DEPTH |
| // Interleave to do the multiply by constants which gets us into 32bits |
| { |
| const __m128i t0 = _mm_unpacklo_epi16(x0, x3); |
| const __m128i t1 = _mm_unpackhi_epi16(x0, x3); |
| const __m128i t2 = _mm_unpacklo_epi16(x1, x2); |
| const __m128i t3 = _mm_unpackhi_epi16(x1, x2); |
| const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); |
| const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); |
| const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); |
| const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); |
| const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); |
| const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); |
| const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); |
| const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); |
| // dct_const_round_shift |
| const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); |
| const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); |
| const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); |
| const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); |
| const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); |
| const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); |
| const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); |
| const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); |
| const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); |
| const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); |
| const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); |
| const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); |
| const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); |
| const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); |
| const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); |
| const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); |
| // Combine |
| res1 = _mm_packs_epi32(w0, w1); |
| res7 = _mm_packs_epi32(w2, w3); |
| res5 = _mm_packs_epi32(w4, w5); |
| res3 = _mm_packs_epi32(w6, w7); |
| #if DCT_HIGH_BIT_DEPTH |
| overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3); |
| if (overflow) { |
| aom_highbd_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif // DCT_HIGH_BIT_DEPTH |
| } |
| } |
| } |
| // Transpose the 8x8. |
| { |
| // 00 01 02 03 04 05 06 07 |
| // 10 11 12 13 14 15 16 17 |
| // 20 21 22 23 24 25 26 27 |
| // 30 31 32 33 34 35 36 37 |
| // 40 41 42 43 44 45 46 47 |
| // 50 51 52 53 54 55 56 57 |
| // 60 61 62 63 64 65 66 67 |
| // 70 71 72 73 74 75 76 77 |
| const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); |
| const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); |
| const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); |
| const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); |
| const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); |
| const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); |
| const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); |
| const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); |
| // 00 10 01 11 02 12 03 13 |
| // 20 30 21 31 22 32 23 33 |
| // 04 14 05 15 06 16 07 17 |
| // 24 34 25 35 26 36 27 37 |
| // 40 50 41 51 42 52 43 53 |
| // 60 70 61 71 62 72 63 73 |
| // 54 54 55 55 56 56 57 57 |
| // 64 74 65 75 66 76 67 77 |
| const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); |
| const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); |
| const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); |
| const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); |
| const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); |
| const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); |
| const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); |
| const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); |
| // 00 10 20 30 01 11 21 31 |
| // 40 50 60 70 41 51 61 71 |
| // 02 12 22 32 03 13 23 33 |
| // 42 52 62 72 43 53 63 73 |
| // 04 14 24 34 05 15 21 36 |
| // 44 54 64 74 45 55 61 76 |
| // 06 16 26 36 07 17 27 37 |
| // 46 56 66 76 47 57 67 77 |
| in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); |
| in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); |
| in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); |
| in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); |
| in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); |
| in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); |
| in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); |
| in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); |
| // 00 10 20 30 40 50 60 70 |
| // 01 11 21 31 41 51 61 71 |
| // 02 12 22 32 42 52 62 72 |
| // 03 13 23 33 43 53 63 73 |
| // 04 14 24 34 44 54 64 74 |
| // 05 15 25 35 45 55 65 75 |
| // 06 16 26 36 46 56 66 76 |
| // 07 17 27 37 47 57 67 77 |
| } |
| } |
| // Post-condition output and store it |
| { |
| // Post-condition (division by two) |
| // division of two 16 bits signed numbers using shifts |
| // n / 2 = (n - (n >> 15)) >> 1 |
| const __m128i sign_in0 = _mm_srai_epi16(in0, 15); |
| const __m128i sign_in1 = _mm_srai_epi16(in1, 15); |
| const __m128i sign_in2 = _mm_srai_epi16(in2, 15); |
| const __m128i sign_in3 = _mm_srai_epi16(in3, 15); |
| const __m128i sign_in4 = _mm_srai_epi16(in4, 15); |
| const __m128i sign_in5 = _mm_srai_epi16(in5, 15); |
| const __m128i sign_in6 = _mm_srai_epi16(in6, 15); |
| const __m128i sign_in7 = _mm_srai_epi16(in7, 15); |
| in0 = _mm_sub_epi16(in0, sign_in0); |
| in1 = _mm_sub_epi16(in1, sign_in1); |
| in2 = _mm_sub_epi16(in2, sign_in2); |
| in3 = _mm_sub_epi16(in3, sign_in3); |
| in4 = _mm_sub_epi16(in4, sign_in4); |
| in5 = _mm_sub_epi16(in5, sign_in5); |
| in6 = _mm_sub_epi16(in6, sign_in6); |
| in7 = _mm_sub_epi16(in7, sign_in7); |
| in0 = _mm_srai_epi16(in0, 1); |
| in1 = _mm_srai_epi16(in1, 1); |
| in2 = _mm_srai_epi16(in2, 1); |
| in3 = _mm_srai_epi16(in3, 1); |
| in4 = _mm_srai_epi16(in4, 1); |
| in5 = _mm_srai_epi16(in5, 1); |
| in6 = _mm_srai_epi16(in6, 1); |
| in7 = _mm_srai_epi16(in7, 1); |
| // store results |
| store_output(&in0, (output + 0 * 8)); |
| store_output(&in1, (output + 1 * 8)); |
| store_output(&in2, (output + 2 * 8)); |
| store_output(&in3, (output + 3 * 8)); |
| store_output(&in4, (output + 4 * 8)); |
| store_output(&in5, (output + 5 * 8)); |
| store_output(&in6, (output + 6 * 8)); |
| store_output(&in7, (output + 7 * 8)); |
| } |
| } |
| #endif // CONFIG_INTERNAL_STATS |
| |
| #undef ADD_EPI16 |
| #undef SUB_EPI16 |