| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <emmintrin.h> |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/quantize.h" |
| #include "aom_dsp/x86/quantize_x86.h" |
| |
| static inline __m128i highbd_invert_sign_64bit_sse2(__m128i a, __m128i sign) { |
| a = _mm_xor_si128(a, sign); |
| return _mm_sub_epi64(a, sign); |
| } |
| |
| static inline void highbd_mul_shift_sse2(const __m128i *x, const __m128i *y, |
| __m128i *p, const int shift) { |
| __m128i sign = _mm_srai_epi32(*y, 31); |
| __m128i sign_lo = _mm_unpacklo_epi32(sign, sign); |
| __m128i sign_hi = _mm_unpackhi_epi32(sign, sign); |
| __m128i abs_y = invert_sign_32_sse2(*y, sign); |
| __m128i prod_lo = _mm_mul_epu32(*x, abs_y); |
| __m128i prod_hi = _mm_srli_epi64(*x, 32); |
| const __m128i mult_hi = _mm_srli_epi64(abs_y, 32); |
| prod_hi = _mm_mul_epu32(prod_hi, mult_hi); |
| prod_lo = highbd_invert_sign_64bit_sse2(prod_lo, sign_lo); |
| prod_hi = highbd_invert_sign_64bit_sse2(prod_hi, sign_hi); |
| |
| prod_lo = _mm_srli_epi64(prod_lo, shift); |
| const __m128i mask = _mm_set_epi32(0, -1, 0, -1); |
| prod_lo = _mm_and_si128(prod_lo, mask); |
| prod_hi = _mm_srli_epi64(prod_hi, shift); |
| |
| prod_hi = _mm_slli_epi64(prod_hi, 32); |
| *p = _mm_or_si128(prod_lo, prod_hi); |
| } |
| |
| static inline void highbd_calculate_qcoeff(__m128i *coeff, const __m128i *round, |
| const __m128i *quant, |
| const __m128i *shift, |
| const int *log_scale) { |
| __m128i tmp, qcoeff; |
| qcoeff = _mm_add_epi32(*coeff, *round); |
| highbd_mul_shift_sse2(&qcoeff, quant, &tmp, 16); |
| qcoeff = _mm_add_epi32(tmp, qcoeff); |
| highbd_mul_shift_sse2(&qcoeff, shift, coeff, 16 - *log_scale); |
| } |
| |
| static inline void highbd_update_mask1(__m128i *cmp_mask0, |
| const int16_t *iscan_ptr, int *is_found, |
| __m128i *mask) { |
| __m128i temp_mask = _mm_setzero_si128(); |
| if (_mm_movemask_epi8(*cmp_mask0)) { |
| __m128i iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr)); |
| __m128i mask0 = _mm_and_si128(*cmp_mask0, iscan0); |
| temp_mask = mask0; |
| *is_found = 1; |
| } |
| *mask = _mm_max_epi16(temp_mask, *mask); |
| } |
| |
| static inline void highbd_update_mask0(__m128i *qcoeff0, __m128i *qcoeff1, |
| __m128i *threshold, |
| const int16_t *iscan_ptr, int *is_found, |
| __m128i *mask) { |
| __m128i coeff[2], cmp_mask0, cmp_mask1; |
| |
| coeff[0] = _mm_slli_epi32(*qcoeff0, AOM_QM_BITS); |
| cmp_mask0 = _mm_cmpgt_epi32(coeff[0], threshold[0]); |
| coeff[1] = _mm_slli_epi32(*qcoeff1, AOM_QM_BITS); |
| cmp_mask1 = _mm_cmpgt_epi32(coeff[1], threshold[1]); |
| |
| cmp_mask0 = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| |
| highbd_update_mask1(&cmp_mask0, iscan_ptr, is_found, mask); |
| } |
| |
| static inline __m128i highbd_calculate_dqcoeff(__m128i qcoeff, __m128i dequant, |
| const int log_scale) { |
| __m128i coeff_sign = _mm_srai_epi32(qcoeff, 31); |
| __m128i abs_coeff = invert_sign_32_sse2(qcoeff, coeff_sign); |
| highbd_mul_shift_sse2(&abs_coeff, &dequant, &abs_coeff, log_scale); |
| return invert_sign_32_sse2(abs_coeff, coeff_sign); |
| } |
| |
| void aom_highbd_quantize_b_adaptive_sse2( |
| const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, |
| const int16_t *round_ptr, const int16_t *quant_ptr, |
| const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, |
| tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, |
| const int16_t *scan, const int16_t *iscan) { |
| int index = 8; |
| const int log_scale = 0; |
| int non_zero_count = 0; |
| int non_zero_count_prescan_add_zero = 0; |
| int is_found0 = 0, is_found1 = 0; |
| int eob = -1; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i one = _mm_set1_epi32(1); |
| __m128i zbin, round, quant, dequant, shift; |
| __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; |
| __m128i qcoeff0, qcoeff1; |
| __m128i cmp_mask0, cmp_mask1, cmp_mask; |
| __m128i all_zero; |
| __m128i mask0 = zero, mask1 = zero; |
| |
| int prescan_add[2]; |
| int thresh[4]; |
| const qm_val_t wt = (1 << AOM_QM_BITS); |
| for (int i = 0; i < 2; ++i) { |
| prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); |
| thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1; |
| } |
| thresh[2] = thresh[3] = thresh[1]; |
| __m128i threshold[2]; |
| threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); |
| threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); |
| |
| #if SKIP_EOB_FACTOR_ADJUST |
| int first = -1; |
| #endif |
| // Setup global values. |
| zbin = _mm_load_si128((const __m128i *)zbin_ptr); |
| round = _mm_load_si128((const __m128i *)round_ptr); |
| quant = _mm_load_si128((const __m128i *)quant_ptr); |
| dequant = _mm_load_si128((const __m128i *)dequant_ptr); |
| shift = _mm_load_si128((const __m128i *)quant_shift_ptr); |
| |
| __m128i zbin_sign = _mm_srai_epi16(zbin, 15); |
| __m128i round_sign = _mm_srai_epi16(round, 15); |
| __m128i quant_sign = _mm_srai_epi16(quant, 15); |
| __m128i dequant_sign = _mm_srai_epi16(dequant, 15); |
| __m128i shift_sign = _mm_srai_epi16(shift, 15); |
| |
| zbin = _mm_unpacklo_epi16(zbin, zbin_sign); |
| round = _mm_unpacklo_epi16(round, round_sign); |
| quant = _mm_unpacklo_epi16(quant, quant_sign); |
| dequant = _mm_unpacklo_epi16(dequant, dequant_sign); |
| shift = _mm_unpacklo_epi16(shift, shift_sign); |
| zbin = _mm_sub_epi32(zbin, one); |
| |
| // Do DC and first 15 AC. |
| coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); |
| coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); |
| |
| coeff0_sign = _mm_srai_epi32(coeff0, 31); |
| coeff1_sign = _mm_srai_epi32(coeff1, 31); |
| qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); |
| |
| highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); |
| |
| cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); |
| zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC |
| cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); |
| cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); |
| |
| threshold[0] = threshold[1]; |
| all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); |
| if (_mm_movemask_epi8(all_zero) == 0) { |
| _mm_store_si128((__m128i *)(qcoeff_ptr), zero); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); |
| |
| round = _mm_unpackhi_epi64(round, round); |
| quant = _mm_unpackhi_epi64(quant, quant); |
| shift = _mm_unpackhi_epi64(shift, shift); |
| dequant = _mm_unpackhi_epi64(dequant, dequant); |
| } else { |
| highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); |
| |
| round = _mm_unpackhi_epi64(round, round); |
| quant = _mm_unpackhi_epi64(quant, quant); |
| shift = _mm_unpackhi_epi64(shift, shift); |
| highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); |
| |
| // Reinsert signs |
| qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); |
| |
| // Mask out zbin threshold coeffs |
| qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); |
| qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); |
| |
| _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); |
| |
| coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); |
| dequant = _mm_unpackhi_epi64(dequant, dequant); |
| coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); |
| } |
| |
| // AC only loop. |
| while (index < n_coeffs) { |
| coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); |
| coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); |
| |
| coeff0_sign = _mm_srai_epi32(coeff0, 31); |
| coeff1_sign = _mm_srai_epi32(coeff1, 31); |
| qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); |
| |
| highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, |
| &is_found0, &mask0); |
| |
| cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); |
| cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); |
| cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); |
| |
| all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); |
| if (_mm_movemask_epi8(all_zero) == 0) { |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); |
| index += 8; |
| continue; |
| } |
| highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); |
| highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); |
| |
| qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); |
| |
| qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); |
| qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); |
| |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); |
| |
| coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); |
| coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); |
| |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); |
| |
| index += 8; |
| } |
| if (is_found0) non_zero_count = calculate_non_zero_count(mask0); |
| if (is_found1) |
| non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); |
| |
| for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { |
| const int rc = scan[i]; |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| } |
| |
| for (int i = non_zero_count - 1; i >= 0; i--) { |
| const int rc = scan[i]; |
| if (qcoeff_ptr[rc]) { |
| eob = i; |
| break; |
| } |
| } |
| |
| *eob_ptr = eob + 1; |
| #if SKIP_EOB_FACTOR_ADJUST |
| // TODO(Aniket): Experiment the following loop with intrinsic by combining |
| // with the quantization loop above |
| for (int i = 0; i < non_zero_count; i++) { |
| const int rc = scan[i]; |
| const int qcoeff = qcoeff_ptr[rc]; |
| if (qcoeff) { |
| first = i; |
| break; |
| } |
| } |
| if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { |
| const int rc = scan[(*eob_ptr - 1)]; |
| if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { |
| const int coeff = coeff_ptr[rc] * wt; |
| const int coeff_sign = AOMSIGN(coeff); |
| const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; |
| const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; |
| const int prescan_add_val = |
| ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); |
| if (abs_coeff < |
| (zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| *eob_ptr = 0; |
| } |
| } |
| } |
| #endif |
| } |
| |
| void aom_highbd_quantize_b_32x32_adaptive_sse2( |
| const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, |
| const int16_t *round_ptr, const int16_t *quant_ptr, |
| const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, |
| tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, |
| const int16_t *scan, const int16_t *iscan) { |
| int index = 8; |
| const int log_scale = 1; |
| int non_zero_count = 0; |
| int non_zero_count_prescan_add_zero = 0; |
| int is_found0 = 0, is_found1 = 0; |
| int eob = -1; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i one = _mm_set1_epi32(1); |
| const __m128i log_scale_vec = _mm_set1_epi32(log_scale); |
| __m128i zbin, round, quant, dequant, shift; |
| __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; |
| __m128i qcoeff0, qcoeff1; |
| __m128i cmp_mask0, cmp_mask1, cmp_mask; |
| __m128i all_zero; |
| __m128i mask0 = zero, mask1 = zero; |
| |
| const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), |
| ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; |
| int prescan_add[2]; |
| int thresh[4]; |
| const qm_val_t wt = (1 << AOM_QM_BITS); |
| for (int i = 0; i < 2; ++i) { |
| prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); |
| thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; |
| } |
| thresh[2] = thresh[3] = thresh[1]; |
| __m128i threshold[2]; |
| threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); |
| threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); |
| |
| #if SKIP_EOB_FACTOR_ADJUST |
| int first = -1; |
| #endif |
| // Setup global values. |
| zbin = _mm_load_si128((const __m128i *)zbin_ptr); |
| round = _mm_load_si128((const __m128i *)round_ptr); |
| quant = _mm_load_si128((const __m128i *)quant_ptr); |
| dequant = _mm_load_si128((const __m128i *)dequant_ptr); |
| shift = _mm_load_si128((const __m128i *)quant_shift_ptr); |
| |
| __m128i zbin_sign = _mm_srai_epi16(zbin, 15); |
| __m128i round_sign = _mm_srai_epi16(round, 15); |
| __m128i quant_sign = _mm_srai_epi16(quant, 15); |
| __m128i dequant_sign = _mm_srai_epi16(dequant, 15); |
| __m128i shift_sign = _mm_srai_epi16(shift, 15); |
| |
| zbin = _mm_unpacklo_epi16(zbin, zbin_sign); |
| round = _mm_unpacklo_epi16(round, round_sign); |
| quant = _mm_unpacklo_epi16(quant, quant_sign); |
| dequant = _mm_unpacklo_epi16(dequant, dequant_sign); |
| shift = _mm_unpacklo_epi16(shift, shift_sign); |
| |
| // Shift with rounding. |
| zbin = _mm_add_epi32(zbin, log_scale_vec); |
| round = _mm_add_epi32(round, log_scale_vec); |
| zbin = _mm_srli_epi32(zbin, log_scale); |
| round = _mm_srli_epi32(round, log_scale); |
| zbin = _mm_sub_epi32(zbin, one); |
| |
| // Do DC and first 15 AC. |
| coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); |
| coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); |
| |
| coeff0_sign = _mm_srai_epi32(coeff0, 31); |
| coeff1_sign = _mm_srai_epi32(coeff1, 31); |
| qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); |
| |
| highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); |
| |
| cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); |
| zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC |
| cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); |
| cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); |
| |
| threshold[0] = threshold[1]; |
| all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); |
| if (_mm_movemask_epi8(all_zero) == 0) { |
| _mm_store_si128((__m128i *)(qcoeff_ptr), zero); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); |
| |
| round = _mm_unpackhi_epi64(round, round); |
| quant = _mm_unpackhi_epi64(quant, quant); |
| shift = _mm_unpackhi_epi64(shift, shift); |
| dequant = _mm_unpackhi_epi64(dequant, dequant); |
| } else { |
| highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); |
| |
| round = _mm_unpackhi_epi64(round, round); |
| quant = _mm_unpackhi_epi64(quant, quant); |
| shift = _mm_unpackhi_epi64(shift, shift); |
| highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); |
| |
| // Reinsert signs |
| qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); |
| |
| // Mask out zbin threshold coeffs |
| qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); |
| qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); |
| |
| _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); |
| |
| coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); |
| dequant = _mm_unpackhi_epi64(dequant, dequant); |
| coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); |
| } |
| |
| // AC only loop. |
| while (index < n_coeffs) { |
| coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); |
| coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); |
| |
| coeff0_sign = _mm_srai_epi32(coeff0, 31); |
| coeff1_sign = _mm_srai_epi32(coeff1, 31); |
| qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); |
| |
| highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, |
| &is_found0, &mask0); |
| |
| cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); |
| cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); |
| cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); |
| |
| all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); |
| if (_mm_movemask_epi8(all_zero) == 0) { |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); |
| index += 8; |
| continue; |
| } |
| highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); |
| highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); |
| |
| qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); |
| |
| qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); |
| qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); |
| |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); |
| |
| coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); |
| coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); |
| |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); |
| |
| index += 8; |
| } |
| if (is_found0) non_zero_count = calculate_non_zero_count(mask0); |
| if (is_found1) |
| non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); |
| |
| for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { |
| const int rc = scan[i]; |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| } |
| |
| for (int i = non_zero_count - 1; i >= 0; i--) { |
| const int rc = scan[i]; |
| if (qcoeff_ptr[rc]) { |
| eob = i; |
| break; |
| } |
| } |
| |
| *eob_ptr = eob + 1; |
| #if SKIP_EOB_FACTOR_ADJUST |
| // TODO(Aniket): Experiment the following loop with intrinsic by combining |
| // with the quantization loop above |
| for (int i = 0; i < non_zero_count; i++) { |
| const int rc = scan[i]; |
| const int qcoeff = qcoeff_ptr[rc]; |
| if (qcoeff) { |
| first = i; |
| break; |
| } |
| } |
| if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { |
| const int rc = scan[(*eob_ptr - 1)]; |
| if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { |
| const int coeff = coeff_ptr[rc] * wt; |
| const int coeff_sign = AOMSIGN(coeff); |
| const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; |
| const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; |
| const int prescan_add_val = |
| ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); |
| if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| *eob_ptr = 0; |
| } |
| } |
| } |
| #endif |
| } |
| |
| void aom_highbd_quantize_b_64x64_adaptive_sse2( |
| const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, |
| const int16_t *round_ptr, const int16_t *quant_ptr, |
| const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, |
| tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, |
| const int16_t *scan, const int16_t *iscan) { |
| int index = 8; |
| const int log_scale = 2; |
| int non_zero_count = 0; |
| int non_zero_count_prescan_add_zero = 0; |
| int is_found0 = 0, is_found1 = 0; |
| int eob = -1; |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i one = _mm_set1_epi32(1); |
| const __m128i log_scale_vec = _mm_set1_epi32(log_scale); |
| __m128i zbin, round, quant, dequant, shift; |
| __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; |
| __m128i qcoeff0, qcoeff1; |
| __m128i cmp_mask0, cmp_mask1, cmp_mask; |
| __m128i all_zero; |
| __m128i mask0 = zero, mask1 = zero; |
| |
| const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), |
| ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; |
| int prescan_add[2]; |
| int thresh[4]; |
| const qm_val_t wt = (1 << AOM_QM_BITS); |
| for (int i = 0; i < 2; ++i) { |
| prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); |
| thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; |
| } |
| thresh[2] = thresh[3] = thresh[1]; |
| __m128i threshold[2]; |
| threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); |
| threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); |
| |
| #if SKIP_EOB_FACTOR_ADJUST |
| int first = -1; |
| #endif |
| // Setup global values. |
| zbin = _mm_load_si128((const __m128i *)zbin_ptr); |
| round = _mm_load_si128((const __m128i *)round_ptr); |
| quant = _mm_load_si128((const __m128i *)quant_ptr); |
| dequant = _mm_load_si128((const __m128i *)dequant_ptr); |
| shift = _mm_load_si128((const __m128i *)quant_shift_ptr); |
| |
| __m128i zbin_sign = _mm_srai_epi16(zbin, 15); |
| __m128i round_sign = _mm_srai_epi16(round, 15); |
| __m128i quant_sign = _mm_srai_epi16(quant, 15); |
| __m128i dequant_sign = _mm_srai_epi16(dequant, 15); |
| __m128i shift_sign = _mm_srai_epi16(shift, 15); |
| |
| zbin = _mm_unpacklo_epi16(zbin, zbin_sign); |
| round = _mm_unpacklo_epi16(round, round_sign); |
| quant = _mm_unpacklo_epi16(quant, quant_sign); |
| dequant = _mm_unpacklo_epi16(dequant, dequant_sign); |
| shift = _mm_unpacklo_epi16(shift, shift_sign); |
| |
| // Shift with rounding. |
| zbin = _mm_add_epi32(zbin, log_scale_vec); |
| round = _mm_add_epi32(round, log_scale_vec); |
| zbin = _mm_srli_epi32(zbin, log_scale); |
| round = _mm_srli_epi32(round, log_scale); |
| zbin = _mm_sub_epi32(zbin, one); |
| |
| // Do DC and first 15 AC. |
| coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); |
| coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); |
| |
| coeff0_sign = _mm_srai_epi32(coeff0, 31); |
| coeff1_sign = _mm_srai_epi32(coeff1, 31); |
| qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); |
| |
| highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); |
| |
| cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); |
| zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC |
| cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); |
| cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); |
| |
| threshold[0] = threshold[1]; |
| all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); |
| if (_mm_movemask_epi8(all_zero) == 0) { |
| _mm_store_si128((__m128i *)(qcoeff_ptr), zero); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); |
| |
| round = _mm_unpackhi_epi64(round, round); |
| quant = _mm_unpackhi_epi64(quant, quant); |
| shift = _mm_unpackhi_epi64(shift, shift); |
| dequant = _mm_unpackhi_epi64(dequant, dequant); |
| } else { |
| highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); |
| |
| round = _mm_unpackhi_epi64(round, round); |
| quant = _mm_unpackhi_epi64(quant, quant); |
| shift = _mm_unpackhi_epi64(shift, shift); |
| highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); |
| |
| // Reinsert signs |
| qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); |
| |
| // Mask out zbin threshold coeffs |
| qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); |
| qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); |
| |
| _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); |
| |
| coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); |
| dequant = _mm_unpackhi_epi64(dequant, dequant); |
| coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); |
| } |
| |
| // AC only loop. |
| while (index < n_coeffs) { |
| coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); |
| coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); |
| |
| coeff0_sign = _mm_srai_epi32(coeff0, 31); |
| coeff1_sign = _mm_srai_epi32(coeff1, 31); |
| qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); |
| |
| highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, |
| &is_found0, &mask0); |
| |
| cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); |
| cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); |
| cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); |
| highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); |
| |
| all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); |
| if (_mm_movemask_epi8(all_zero) == 0) { |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); |
| index += 8; |
| continue; |
| } |
| highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); |
| highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); |
| |
| qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); |
| qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); |
| |
| qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); |
| qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); |
| |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); |
| _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); |
| |
| coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); |
| coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); |
| |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); |
| _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); |
| |
| index += 8; |
| } |
| if (is_found0) non_zero_count = calculate_non_zero_count(mask0); |
| if (is_found1) |
| non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); |
| |
| for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { |
| const int rc = scan[i]; |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| } |
| |
| for (int i = non_zero_count - 1; i >= 0; i--) { |
| const int rc = scan[i]; |
| if (qcoeff_ptr[rc]) { |
| eob = i; |
| break; |
| } |
| } |
| |
| *eob_ptr = eob + 1; |
| #if SKIP_EOB_FACTOR_ADJUST |
| // TODO(Aniket): Experiment the following loop with intrinsic by combining |
| // with the quantization loop above |
| for (int i = 0; i < non_zero_count; i++) { |
| const int rc = scan[i]; |
| const int qcoeff = qcoeff_ptr[rc]; |
| if (qcoeff) { |
| first = i; |
| break; |
| } |
| } |
| if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { |
| const int rc = scan[(*eob_ptr - 1)]; |
| if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { |
| const int coeff = coeff_ptr[rc] * wt; |
| const int coeff_sign = AOMSIGN(coeff); |
| const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; |
| const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; |
| const int prescan_add_val = |
| ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); |
| if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { |
| qcoeff_ptr[rc] = 0; |
| dqcoeff_ptr[rc] = 0; |
| *eob_ptr = 0; |
| } |
| } |
| } |
| #endif |
| } |