| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #include <immintrin.h> // AVX2 |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/x86/synonyms_avx2.h" |
| |
| static AOM_FORCE_INLINE void aggregate_and_store_sum(uint32_t res[4], |
| const __m256i *sum_ref0, |
| const __m256i *sum_ref1, |
| const __m256i *sum_ref2, |
| const __m256i *sum_ref3) { |
| // In sum_ref-i the result is saved in the first 4 bytes and the other 4 |
| // bytes are zeroed. |
| // merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3 |
| // 0, 0, 1, 1 |
| __m256i sum_ref01 = _mm256_castps_si256(_mm256_shuffle_ps( |
| _mm256_castsi256_ps(*sum_ref0), _mm256_castsi256_ps(*sum_ref1), |
| _MM_SHUFFLE(2, 0, 2, 0))); |
| // 2, 2, 3, 3 |
| __m256i sum_ref23 = _mm256_castps_si256(_mm256_shuffle_ps( |
| _mm256_castsi256_ps(*sum_ref2), _mm256_castsi256_ps(*sum_ref3), |
| _MM_SHUFFLE(2, 0, 2, 0))); |
| |
| // sum adjacent 32 bit integers |
| __m256i sum_ref0123 = _mm256_hadd_epi32(sum_ref01, sum_ref23); |
| |
| // add the low 128 bit to the high 128 bit |
| __m128i sum = _mm_add_epi32(_mm256_castsi256_si128(sum_ref0123), |
| _mm256_extractf128_si256(sum_ref0123, 1)); |
| |
| _mm_storeu_si128((__m128i *)(res), sum); |
| } |
| |
| static AOM_FORCE_INLINE void aom_sadMxNx4d_avx2( |
| int M, int N, const uint8_t *src, int src_stride, |
| const uint8_t *const ref[4], int ref_stride, uint32_t res[4]) { |
| __m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg; |
| __m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3; |
| int i, j; |
| const uint8_t *ref0, *ref1, *ref2, *ref3; |
| |
| ref0 = ref[0]; |
| ref1 = ref[1]; |
| ref2 = ref[2]; |
| ref3 = ref[3]; |
| sum_ref0 = _mm256_setzero_si256(); |
| sum_ref2 = _mm256_setzero_si256(); |
| sum_ref1 = _mm256_setzero_si256(); |
| sum_ref3 = _mm256_setzero_si256(); |
| |
| for (i = 0; i < N; i++) { |
| for (j = 0; j < M; j += 32) { |
| // load src and all refs |
| src_reg = _mm256_loadu_si256((const __m256i *)(src + j)); |
| ref0_reg = _mm256_loadu_si256((const __m256i *)(ref0 + j)); |
| ref1_reg = _mm256_loadu_si256((const __m256i *)(ref1 + j)); |
| ref2_reg = _mm256_loadu_si256((const __m256i *)(ref2 + j)); |
| ref3_reg = _mm256_loadu_si256((const __m256i *)(ref3 + j)); |
| |
| // sum of the absolute differences between every ref-i to src |
| ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg); |
| ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg); |
| ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg); |
| ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg); |
| // sum every ref-i |
| sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg); |
| sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg); |
| sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg); |
| sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg); |
| } |
| src += src_stride; |
| ref0 += ref_stride; |
| ref1 += ref_stride; |
| ref2 += ref_stride; |
| ref3 += ref_stride; |
| } |
| |
| aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &sum_ref3); |
| } |
| |
| static AOM_FORCE_INLINE void aom_sadMxNx3d_avx2( |
| int M, int N, const uint8_t *src, int src_stride, |
| const uint8_t *const ref[4], int ref_stride, uint32_t res[4]) { |
| __m256i src_reg, ref0_reg, ref1_reg, ref2_reg; |
| __m256i sum_ref0, sum_ref1, sum_ref2; |
| int i, j; |
| const uint8_t *ref0, *ref1, *ref2; |
| const __m256i zero = _mm256_setzero_si256(); |
| |
| ref0 = ref[0]; |
| ref1 = ref[1]; |
| ref2 = ref[2]; |
| sum_ref0 = _mm256_setzero_si256(); |
| sum_ref2 = _mm256_setzero_si256(); |
| sum_ref1 = _mm256_setzero_si256(); |
| |
| for (i = 0; i < N; i++) { |
| for (j = 0; j < M; j += 32) { |
| // load src and all refs |
| src_reg = _mm256_loadu_si256((const __m256i *)(src + j)); |
| ref0_reg = _mm256_loadu_si256((const __m256i *)(ref0 + j)); |
| ref1_reg = _mm256_loadu_si256((const __m256i *)(ref1 + j)); |
| ref2_reg = _mm256_loadu_si256((const __m256i *)(ref2 + j)); |
| |
| // sum of the absolute differences between every ref-i to src |
| ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg); |
| ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg); |
| ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg); |
| // sum every ref-i |
| sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg); |
| sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg); |
| sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg); |
| } |
| src += src_stride; |
| ref0 += ref_stride; |
| ref1 += ref_stride; |
| ref2 += ref_stride; |
| } |
| aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &zero); |
| } |
| |
| #define SADMXN_AVX2(m, n) \ |
| void aom_sad##m##x##n##x4d_avx2(const uint8_t *src, int src_stride, \ |
| const uint8_t *const ref[4], int ref_stride, \ |
| uint32_t res[4]) { \ |
| aom_sadMxNx4d_avx2(m, n, src, src_stride, ref, ref_stride, res); \ |
| } \ |
| void aom_sad##m##x##n##x3d_avx2(const uint8_t *src, int src_stride, \ |
| const uint8_t *const ref[4], int ref_stride, \ |
| uint32_t res[4]) { \ |
| aom_sadMxNx3d_avx2(m, n, src, src_stride, ref, ref_stride, res); \ |
| } |
| |
| SADMXN_AVX2(32, 16) |
| SADMXN_AVX2(32, 32) |
| SADMXN_AVX2(32, 64) |
| |
| SADMXN_AVX2(64, 32) |
| SADMXN_AVX2(64, 64) |
| SADMXN_AVX2(64, 128) |
| |
| SADMXN_AVX2(128, 64) |
| SADMXN_AVX2(128, 128) |
| |
| #if !CONFIG_REALTIME_ONLY |
| SADMXN_AVX2(32, 8) |
| SADMXN_AVX2(64, 16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #define SAD_SKIP_MXN_AVX2(m, n) \ |
| void aom_sad_skip_##m##x##n##x4d_avx2(const uint8_t *src, int src_stride, \ |
| const uint8_t *const ref[4], \ |
| int ref_stride, uint32_t res[4]) { \ |
| aom_sadMxNx4d_avx2(m, ((n) >> 1), src, 2 * src_stride, ref, \ |
| 2 * ref_stride, res); \ |
| res[0] <<= 1; \ |
| res[1] <<= 1; \ |
| res[2] <<= 1; \ |
| res[3] <<= 1; \ |
| } |
| |
| SAD_SKIP_MXN_AVX2(32, 16) |
| SAD_SKIP_MXN_AVX2(32, 32) |
| SAD_SKIP_MXN_AVX2(32, 64) |
| |
| SAD_SKIP_MXN_AVX2(64, 32) |
| SAD_SKIP_MXN_AVX2(64, 64) |
| SAD_SKIP_MXN_AVX2(64, 128) |
| |
| SAD_SKIP_MXN_AVX2(128, 64) |
| SAD_SKIP_MXN_AVX2(128, 128) |
| |
| #if !CONFIG_REALTIME_ONLY |
| SAD_SKIP_MXN_AVX2(32, 8) |
| SAD_SKIP_MXN_AVX2(64, 16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static AOM_FORCE_INLINE void aom_sad16xNx3d_avx2(int N, const uint8_t *src, |
| int src_stride, |
| const uint8_t *const ref[4], |
| int ref_stride, |
| uint32_t res[4]) { |
| __m256i src_reg, ref0_reg, ref1_reg, ref2_reg; |
| __m256i sum_ref0, sum_ref1, sum_ref2; |
| const uint8_t *ref0, *ref1, *ref2; |
| const __m256i zero = _mm256_setzero_si256(); |
| assert(N % 2 == 0); |
| |
| ref0 = ref[0]; |
| ref1 = ref[1]; |
| ref2 = ref[2]; |
| sum_ref0 = _mm256_setzero_si256(); |
| sum_ref2 = _mm256_setzero_si256(); |
| sum_ref1 = _mm256_setzero_si256(); |
| |
| for (int i = 0; i < N; i += 2) { |
| // load src and all refs |
| src_reg = yy_loadu2_128(src + src_stride, src); |
| ref0_reg = yy_loadu2_128(ref0 + ref_stride, ref0); |
| ref1_reg = yy_loadu2_128(ref1 + ref_stride, ref1); |
| ref2_reg = yy_loadu2_128(ref2 + ref_stride, ref2); |
| |
| // sum of the absolute differences between every ref-i to src |
| ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg); |
| ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg); |
| ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg); |
| |
| // sum every ref-i |
| sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg); |
| sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg); |
| sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg); |
| |
| src += 2 * src_stride; |
| ref0 += 2 * ref_stride; |
| ref1 += 2 * ref_stride; |
| ref2 += 2 * ref_stride; |
| } |
| |
| aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &zero); |
| } |
| |
| static AOM_FORCE_INLINE void aom_sad16xNx4d_avx2(int N, const uint8_t *src, |
| int src_stride, |
| const uint8_t *const ref[4], |
| int ref_stride, |
| uint32_t res[4]) { |
| __m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg; |
| __m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3; |
| const uint8_t *ref0, *ref1, *ref2, *ref3; |
| assert(N % 2 == 0); |
| |
| ref0 = ref[0]; |
| ref1 = ref[1]; |
| ref2 = ref[2]; |
| ref3 = ref[3]; |
| |
| sum_ref0 = _mm256_setzero_si256(); |
| sum_ref2 = _mm256_setzero_si256(); |
| sum_ref1 = _mm256_setzero_si256(); |
| sum_ref3 = _mm256_setzero_si256(); |
| |
| for (int i = 0; i < N; i += 2) { |
| // load src and all refs |
| src_reg = yy_loadu2_128(src + src_stride, src); |
| ref0_reg = yy_loadu2_128(ref0 + ref_stride, ref0); |
| ref1_reg = yy_loadu2_128(ref1 + ref_stride, ref1); |
| ref2_reg = yy_loadu2_128(ref2 + ref_stride, ref2); |
| ref3_reg = yy_loadu2_128(ref3 + ref_stride, ref3); |
| |
| // sum of the absolute differences between every ref-i to src |
| ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg); |
| ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg); |
| ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg); |
| ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg); |
| |
| // sum every ref-i |
| sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg); |
| sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg); |
| sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg); |
| sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg); |
| |
| src += 2 * src_stride; |
| ref0 += 2 * ref_stride; |
| ref1 += 2 * ref_stride; |
| ref2 += 2 * ref_stride; |
| ref3 += 2 * ref_stride; |
| } |
| |
| aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &sum_ref3); |
| } |
| |
| #define SAD16XNX3_AVX2(n) \ |
| void aom_sad16x##n##x3d_avx2(const uint8_t *src, int src_stride, \ |
| const uint8_t *const ref[4], int ref_stride, \ |
| uint32_t res[4]) { \ |
| aom_sad16xNx3d_avx2(n, src, src_stride, ref, ref_stride, res); \ |
| } |
| #define SAD16XNX4_AVX2(n) \ |
| void aom_sad16x##n##x4d_avx2(const uint8_t *src, int src_stride, \ |
| const uint8_t *const ref[4], int ref_stride, \ |
| uint32_t res[4]) { \ |
| aom_sad16xNx4d_avx2(n, src, src_stride, ref, ref_stride, res); \ |
| } |
| |
| SAD16XNX4_AVX2(32) |
| SAD16XNX4_AVX2(16) |
| SAD16XNX4_AVX2(8) |
| |
| SAD16XNX3_AVX2(32) |
| SAD16XNX3_AVX2(16) |
| SAD16XNX3_AVX2(8) |
| |
| #if !CONFIG_REALTIME_ONLY |
| SAD16XNX3_AVX2(64) |
| SAD16XNX3_AVX2(4) |
| |
| SAD16XNX4_AVX2(64) |
| SAD16XNX4_AVX2(4) |
| |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #define SAD_SKIP_16XN_AVX2(n) \ |
| void aom_sad_skip_16x##n##x4d_avx2(const uint8_t *src, int src_stride, \ |
| const uint8_t *const ref[4], \ |
| int ref_stride, uint32_t res[4]) { \ |
| aom_sad16xNx4d_avx2(((n) >> 1), src, 2 * src_stride, ref, 2 * ref_stride, \ |
| res); \ |
| res[0] <<= 1; \ |
| res[1] <<= 1; \ |
| res[2] <<= 1; \ |
| res[3] <<= 1; \ |
| } |
| |
| SAD_SKIP_16XN_AVX2(32) |
| SAD_SKIP_16XN_AVX2(16) |
| SAD_SKIP_16XN_AVX2(8) |
| |
| #if !CONFIG_REALTIME_ONLY |
| SAD_SKIP_16XN_AVX2(64) |
| SAD_SKIP_16XN_AVX2(4) |
| #endif // !CONFIG_REALTIME_ONLY |