blob: 5441441beb5ddaf76ea34b7a64acf6a05e7ad849 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <tmmintrin.h>
#include "config/av1_rtcd.h"
#include "av1/common/cfl.h"
#include "av1/common/x86/cfl_simd.h"
// Load 32-bit integer from memory into the first element of dst.
static inline __m128i _mm_loadh_epi32(__m128i const *mem_addr) {
return _mm_cvtsi32_si128(*((int *)mem_addr));
}
// Store 32-bit integer from the first element of a into memory.
static inline void _mm_storeh_epi32(__m128i const *mem_addr, __m128i a) {
*((int *)mem_addr) = _mm_cvtsi128_si32(a);
}
/**
* Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
* precise version of a box filter 4:2:0 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*/
static inline void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input,
int input_stride,
uint16_t *pred_buf_q3,
int width, int height) {
const __m128i twos = _mm_set1_epi8(2);
__m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
const __m128i *end = pred_buf_m128i + (height >> 1) * CFL_BUF_LINE_I128;
const int luma_stride = input_stride << 1;
do {
if (width == 4) {
__m128i top = _mm_loadh_epi32((__m128i *)input);
top = _mm_maddubs_epi16(top, twos);
__m128i bot = _mm_loadh_epi32((__m128i *)(input + input_stride));
bot = _mm_maddubs_epi16(bot, twos);
const __m128i sum = _mm_add_epi16(top, bot);
_mm_storeh_epi32(pred_buf_m128i, sum);
} else if (width == 8) {
__m128i top = _mm_loadl_epi64((__m128i *)input);
top = _mm_maddubs_epi16(top, twos);
__m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
bot = _mm_maddubs_epi16(bot, twos);
const __m128i sum = _mm_add_epi16(top, bot);
_mm_storel_epi64(pred_buf_m128i, sum);
} else {
__m128i top = _mm_loadu_si128((__m128i *)input);
top = _mm_maddubs_epi16(top, twos);
__m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride));
bot = _mm_maddubs_epi16(bot, twos);
const __m128i sum = _mm_add_epi16(top, bot);
_mm_storeu_si128(pred_buf_m128i, sum);
if (width == 32) {
__m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
__m128i bot_1 =
_mm_loadu_si128(((__m128i *)(input + input_stride)) + 1);
top_1 = _mm_maddubs_epi16(top_1, twos);
bot_1 = _mm_maddubs_epi16(bot_1, twos);
__m128i sum_1 = _mm_add_epi16(top_1, bot_1);
_mm_storeu_si128(pred_buf_m128i + 1, sum_1);
}
}
input += luma_stride;
pred_buf_m128i += CFL_BUF_LINE_I128;
} while (pred_buf_m128i < end);
}
/**
* Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
* precise version of a box filter 4:2:2 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*/
static inline void cfl_luma_subsampling_422_lbd_ssse3(const uint8_t *input,
int input_stride,
uint16_t *pred_buf_q3,
int width, int height) {
const __m128i fours = _mm_set1_epi8(4);
__m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
do {
if (width == 4) {
__m128i top = _mm_loadh_epi32((__m128i *)input);
top = _mm_maddubs_epi16(top, fours);
_mm_storeh_epi32(pred_buf_m128i, top);
} else if (width == 8) {
__m128i top = _mm_loadl_epi64((__m128i *)input);
top = _mm_maddubs_epi16(top, fours);
_mm_storel_epi64(pred_buf_m128i, top);
} else {
__m128i top = _mm_loadu_si128((__m128i *)input);
top = _mm_maddubs_epi16(top, fours);
_mm_storeu_si128(pred_buf_m128i, top);
if (width == 32) {
__m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
top_1 = _mm_maddubs_epi16(top_1, fours);
_mm_storeu_si128(pred_buf_m128i + 1, top_1);
}
}
input += input_stride;
pred_buf_m128i += CFL_BUF_LINE_I128;
} while (pred_buf_m128i < end);
}
/**
* Multiplies the pixels by 8 (scaling in Q3).
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*/
static inline void cfl_luma_subsampling_444_lbd_ssse3(const uint8_t *input,
int input_stride,
uint16_t *pred_buf_q3,
int width, int height) {
const __m128i zeros = _mm_setzero_si128();
const int luma_stride = input_stride;
__m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
do {
if (width == 4) {
__m128i row = _mm_loadh_epi32((__m128i *)input);
row = _mm_unpacklo_epi8(row, zeros);
_mm_storel_epi64(pred_buf_m128i, _mm_slli_epi16(row, 3));
} else if (width == 8) {
__m128i row = _mm_loadl_epi64((__m128i *)input);
row = _mm_unpacklo_epi8(row, zeros);
_mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row, 3));
} else {
__m128i row = _mm_loadu_si128((__m128i *)input);
const __m128i row_lo = _mm_unpacklo_epi8(row, zeros);
const __m128i row_hi = _mm_unpackhi_epi8(row, zeros);
_mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row_lo, 3));
_mm_storeu_si128(pred_buf_m128i + 1, _mm_slli_epi16(row_hi, 3));
if (width == 32) {
__m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1);
const __m128i row_1_lo = _mm_unpacklo_epi8(row_1, zeros);
const __m128i row_1_hi = _mm_unpackhi_epi8(row_1, zeros);
_mm_storeu_si128(pred_buf_m128i + 2, _mm_slli_epi16(row_1_lo, 3));
_mm_storeu_si128(pred_buf_m128i + 3, _mm_slli_epi16(row_1_hi, 3));
}
}
input += luma_stride;
pred_buf_m128i += CFL_BUF_LINE_I128;
} while (pred_buf_m128i < end);
}
#if CONFIG_AV1_HIGHBITDEPTH
/**
* Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
* precise version of a box filter 4:2:0 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*/
static inline void cfl_luma_subsampling_420_hbd_ssse3(const uint16_t *input,
int input_stride,
uint16_t *pred_buf_q3,
int width, int height) {
const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE;
const int luma_stride = input_stride << 1;
do {
if (width == 4) {
const __m128i top = _mm_loadl_epi64((__m128i *)input);
const __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
__m128i sum = _mm_add_epi16(top, bot);
sum = _mm_hadd_epi16(sum, sum);
*((int *)pred_buf_q3) = _mm_cvtsi128_si32(_mm_add_epi16(sum, sum));
} else {
const __m128i top = _mm_loadu_si128((__m128i *)input);
const __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride));
__m128i sum = _mm_add_epi16(top, bot);
if (width == 8) {
sum = _mm_hadd_epi16(sum, sum);
_mm_storel_epi64((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum));
} else {
const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
const __m128i bot_1 =
_mm_loadu_si128(((__m128i *)(input + input_stride)) + 1);
sum = _mm_hadd_epi16(sum, _mm_add_epi16(top_1, bot_1));
_mm_storeu_si128((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum));
if (width == 32) {
const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2);
const __m128i bot_2 =
_mm_loadu_si128(((__m128i *)(input + input_stride)) + 2);
const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3);
const __m128i bot_3 =
_mm_loadu_si128(((__m128i *)(input + input_stride)) + 3);
const __m128i sum_2 = _mm_add_epi16(top_2, bot_2);
const __m128i sum_3 = _mm_add_epi16(top_3, bot_3);
__m128i next_sum = _mm_hadd_epi16(sum_2, sum_3);
_mm_storeu_si128(((__m128i *)pred_buf_q3) + 1,
_mm_add_epi16(next_sum, next_sum));
}
}
}
input += luma_stride;
} while ((pred_buf_q3 += CFL_BUF_LINE) < end);
}
/**
* Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
* precise version of a box filter 4:2:2 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*/
static inline void cfl_luma_subsampling_422_hbd_ssse3(const uint16_t *input,
int input_stride,
uint16_t *pred_buf_q3,
int width, int height) {
__m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
do {
if (width == 4) {
const __m128i top = _mm_loadl_epi64((__m128i *)input);
const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2);
_mm_storeh_epi32(pred_buf_m128i, sum);
} else {
const __m128i top = _mm_loadu_si128((__m128i *)input);
if (width == 8) {
const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2);
_mm_storel_epi64(pred_buf_m128i, sum);
} else {
const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top_1), 2);
_mm_storeu_si128(pred_buf_m128i, sum);
if (width == 32) {
const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2);
const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3);
const __m128i sum_1 = _mm_slli_epi16(_mm_hadd_epi16(top_2, top_3), 2);
_mm_storeu_si128(pred_buf_m128i + 1, sum_1);
}
}
}
pred_buf_m128i += CFL_BUF_LINE_I128;
input += input_stride;
} while (pred_buf_m128i < end);
}
static inline void cfl_luma_subsampling_444_hbd_ssse3(const uint16_t *input,
int input_stride,
uint16_t *pred_buf_q3,
int width, int height) {
const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
do {
if (width == 4) {
const __m128i row = _mm_slli_epi16(_mm_loadl_epi64((__m128i *)input), 3);
_mm_storel_epi64((__m128i *)pred_buf_q3, row);
} else {
const __m128i row = _mm_slli_epi16(_mm_loadu_si128((__m128i *)input), 3);
_mm_storeu_si128((__m128i *)pred_buf_q3, row);
if (width >= 16) {
__m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1);
row_1 = _mm_slli_epi16(row_1, 3);
_mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, row_1);
if (width == 32) {
__m128i row_2 = _mm_loadu_si128(((__m128i *)input) + 2);
row_2 = _mm_slli_epi16(row_2, 3);
_mm_storeu_si128(((__m128i *)pred_buf_q3) + 2, row_2);
__m128i row_3 = _mm_loadu_si128(((__m128i *)input) + 3);
row_3 = _mm_slli_epi16(row_3, 3);
_mm_storeu_si128(((__m128i *)pred_buf_q3) + 3, row_3);
}
}
}
input += input_stride;
pred_buf_q3 += CFL_BUF_LINE;
} while (pred_buf_q3 < end);
}
#endif // CONFIG_AV1_HIGHBITDEPTH
CFL_GET_SUBSAMPLE_FUNCTION(ssse3)
static inline __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12,
__m128i alpha_sign, __m128i dc_q0) {
__m128i ac_q3 = _mm_loadu_si128(input);
__m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3);
__m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12);
scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign);
return _mm_add_epi16(scaled_luma_q0, dc_q0);
}
static inline void cfl_predict_lbd_ssse3(const int16_t *pred_buf_q3,
uint8_t *dst, int dst_stride,
int alpha_q3, int width, int height) {
const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
const __m128i dc_q0 = _mm_set1_epi16(*dst);
__m128i *row = (__m128i *)pred_buf_q3;
const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
do {
__m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
if (width < 16) {
res = _mm_packus_epi16(res, res);
if (width == 4)
_mm_storeh_epi32((__m128i *)dst, res);
else
_mm_storel_epi64((__m128i *)dst, res);
} else {
__m128i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
res = _mm_packus_epi16(res, next);
_mm_storeu_si128((__m128i *)dst, res);
if (width == 32) {
res = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
next = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
res = _mm_packus_epi16(res, next);
_mm_storeu_si128((__m128i *)(dst + 16), res);
}
}
dst += dst_stride;
} while ((row += CFL_BUF_LINE_I128) < row_end);
}
CFL_PREDICT_FN(ssse3, lbd)
#if CONFIG_AV1_HIGHBITDEPTH
static inline __m128i highbd_max_epi16(int bd) {
const __m128i neg_one = _mm_set1_epi16(-1);
// (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one);
}
static inline __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) {
return _mm_max_epi16(_mm_min_epi16(u, max), zero);
}
static inline void cfl_predict_hbd_ssse3(const int16_t *pred_buf_q3,
uint16_t *dst, int dst_stride,
int alpha_q3, int bd, int width,
int height) {
const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
const __m128i dc_q0 = _mm_set1_epi16(*dst);
const __m128i max = highbd_max_epi16(bd);
const __m128i zeros = _mm_setzero_si128();
__m128i *row = (__m128i *)pred_buf_q3;
const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
do {
__m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
res = highbd_clamp_epi16(res, zeros, max);
if (width == 4) {
_mm_storel_epi64((__m128i *)dst, res);
} else {
_mm_storeu_si128((__m128i *)dst, res);
}
if (width >= 16) {
const __m128i res_1 =
predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
_mm_storeu_si128(((__m128i *)dst) + 1,
highbd_clamp_epi16(res_1, zeros, max));
}
if (width == 32) {
const __m128i res_2 =
predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
_mm_storeu_si128((__m128i *)(dst + 16),
highbd_clamp_epi16(res_2, zeros, max));
const __m128i res_3 =
predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
_mm_storeu_si128((__m128i *)(dst + 24),
highbd_clamp_epi16(res_3, zeros, max));
}
dst += dst_stride;
} while ((row += CFL_BUF_LINE_I128) < row_end);
}
CFL_PREDICT_FN(ssse3, hbd)
#endif // CONFIG_AV1_HIGHBITDEPTH