blob: e8dfa4ad90b977fc9fc2dd21f0c04f5a0ade6b17 [file] [log] [blame]
/*
*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <tmmintrin.h> // SSSE3
#include "config/av1_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/x86/convolve_sse2.h"
#include "aom_dsp/x86/convolve_ssse3.h"
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/transpose_sse2.h"
#include "av1/common/resize.h"
static inline __m128i scale_plane_2_to_1_phase_0_kernel(
const uint8_t *const src, const __m128i *const mask) {
const __m128i a = _mm_loadu_si128((const __m128i *)(&src[0]));
const __m128i b = _mm_loadu_si128((const __m128i *)(&src[16]));
const __m128i a_and = _mm_and_si128(a, *mask);
const __m128i b_and = _mm_and_si128(b, *mask);
return _mm_packus_epi16(a_and, b_and);
}
static inline void shuffle_filter_odd_ssse3(const int16_t *const filter,
__m128i *const f) {
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
// pack and duplicate the filter values
// It utilizes the fact that the high byte of filter[3] is always 0 to clean
// half of f[0] and f[4].
assert(filter[3] >= 0 && filter[3] < 256);
f[0] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0007u));
f[1] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0402u));
f[2] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0806u));
f[3] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0c0au));
f[4] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x070eu));
}
static inline __m128i convolve8_8_even_offset_ssse3(const __m128i *const s,
const __m128i *const f) {
// multiply 2 adjacent elements with the filter and add the result
const __m128i k_64 = _mm_set1_epi16(1 << 6);
const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]);
const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]);
const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]);
const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]);
// compensate the subtracted 64 in f[1]. x4 is always non negative.
const __m128i x4 = _mm_maddubs_epi16(s[1], _mm_set1_epi8(64));
// add and saturate the results together
__m128i temp = _mm_adds_epi16(x0, x3);
temp = _mm_adds_epi16(temp, x1);
temp = _mm_adds_epi16(temp, x2);
temp = _mm_adds_epi16(temp, x4);
// round and shift by 7 bit each 16 bit
temp = _mm_adds_epi16(temp, k_64);
temp = _mm_srai_epi16(temp, 7);
return temp;
}
static inline __m128i convolve8_8_odd_offset_ssse3(const __m128i *const s,
const __m128i *const f) {
// multiply 2 adjacent elements with the filter and add the result
const __m128i k_64 = _mm_set1_epi16(1 << 6);
const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]);
const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]);
const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]);
const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]);
const __m128i x4 = _mm_maddubs_epi16(s[4], f[4]);
// compensate the subtracted 64 in f[2]. x5 is always non negative.
const __m128i x5 = _mm_maddubs_epi16(s[2], _mm_set1_epi8(64));
__m128i temp;
// add and saturate the results together
temp = _mm_adds_epi16(x0, x1);
temp = _mm_adds_epi16(temp, x2);
temp = _mm_adds_epi16(temp, x3);
temp = _mm_adds_epi16(temp, x4);
temp = _mm_adds_epi16(temp, x5);
// round and shift by 7 bit each 16 bit
temp = _mm_adds_epi16(temp, k_64);
temp = _mm_srai_epi16(temp, 7);
return temp;
}
static void scale_plane_2_to_1_phase_0(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const int dst_w, const int dst_h) {
const int max_width = (dst_w + 15) & ~15;
const __m128i mask = _mm_set1_epi16(0x00FF);
int y = dst_h;
do {
int x = max_width;
do {
const __m128i d = scale_plane_2_to_1_phase_0_kernel(src, &mask);
_mm_storeu_si128((__m128i *)dst, d);
src += 32;
dst += 16;
x -= 16;
} while (x);
src += 2 * (src_stride - max_width);
dst += dst_stride - max_width;
} while (--y);
}
static void scale_plane_4_to_1_phase_0(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const int dst_w, const int dst_h) {
const int max_width = (dst_w + 15) & ~15;
const __m128i mask = _mm_set1_epi32(0x000000FF);
int y = dst_h;
do {
int x = max_width;
do {
const __m128i d0 = scale_plane_2_to_1_phase_0_kernel(&src[0], &mask);
const __m128i d1 = scale_plane_2_to_1_phase_0_kernel(&src[32], &mask);
const __m128i d2 = _mm_packus_epi16(d0, d1);
_mm_storeu_si128((__m128i *)dst, d2);
src += 64;
dst += 16;
x -= 16;
} while (x);
src += 4 * (src_stride - max_width);
dst += dst_stride - max_width;
} while (--y);
}
static inline __m128i scale_plane_bilinear_kernel(const __m128i *const s,
const __m128i c0c1) {
const __m128i k_64 = _mm_set1_epi16(1 << 6);
const __m128i t0 = _mm_maddubs_epi16(s[0], c0c1);
const __m128i t1 = _mm_maddubs_epi16(s[1], c0c1);
// round and shift by 7 bit each 16 bit
const __m128i t2 = _mm_adds_epi16(t0, k_64);
const __m128i t3 = _mm_adds_epi16(t1, k_64);
const __m128i t4 = _mm_srai_epi16(t2, 7);
const __m128i t5 = _mm_srai_epi16(t3, 7);
return _mm_packus_epi16(t4, t5);
}
static void scale_plane_2_to_1_bilinear(const uint8_t *src,
const ptrdiff_t src_stride,
uint8_t *dst,
const ptrdiff_t dst_stride,
const int dst_w, const int dst_h,
const __m128i c0c1) {
const int max_width = (dst_w + 15) & ~15;
int y = dst_h;
do {
int x = max_width;
do {
__m128i s[2], d[2];
// Horizontal
// Even rows
s[0] = _mm_loadu_si128((const __m128i *)(src + 0));
s[1] = _mm_loadu_si128((const __m128i *)(src + 16));
d[0] = scale_plane_bilinear_kernel(s, c0c1);
// odd rows
s[0] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0));
s[1] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16));
d[1] = scale_plane_bilinear_kernel(s, c0c1);
// Vertical
s[0] = _mm_unpacklo_epi8(d[0], d[1]);
s[1] = _mm_unpackhi_epi8(d[0], d[1]);
d[0] = scale_plane_bilinear_kernel(s, c0c1);
_mm_storeu_si128((__m128i *)dst, d[0]);
src += 32;
dst += 16;
x -= 16;
} while (x);
src += 2 * (src_stride - max_width);
dst += dst_stride - max_width;
} while (--y);
}
static void scale_plane_4_to_1_bilinear(const uint8_t *src,
const ptrdiff_t src_stride,
uint8_t *dst,
const ptrdiff_t dst_stride,
const int dst_w, const int dst_h,
const __m128i c0c1) {
const int max_width = (dst_w + 15) & ~15;
int y = dst_h;
do {
int x = max_width;
do {
__m128i s[8], d[8];
// Note: Using _mm_packus_epi32() in SSE4.1 could be faster.
// Here we tried to not use shuffle instructions which would be slow
// on some x86 CPUs.
// Horizontal
// 000 001 xx xx 004 005 xx xx 008 009 xx xx 00C 00D xx xx
// 010 011 xx xx 014 015 xx xx 018 019 xx xx 01C 01D xx xx
// 020 021 xx xx 024 025 xx xx 028 029 xx xx 02C 02D xx xx
// 030 031 xx xx 034 035 xx xx 038 039 xx xx 03C 03D xx xx
// 100 101 xx xx 104 105 xx xx 108 109 xx xx 10C 10D xx xx
// 110 111 xx xx 114 115 xx xx 118 119 xx xx 11C 11D xx xx
// 120 121 xx xx 124 125 xx xx 128 129 xx xx 12C 12D xx xx
// 130 131 xx xx 134 135 xx xx 138 139 xx xx 13C 13D xx xx
s[0] = _mm_loadu_si128((const __m128i *)(&src[0]));
s[1] = _mm_loadu_si128((const __m128i *)(&src[16]));
s[2] = _mm_loadu_si128((const __m128i *)(&src[32]));
s[3] = _mm_loadu_si128((const __m128i *)(&src[48]));
s[4] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0));
s[5] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16));
s[6] = _mm_loadu_si128((const __m128i *)(src + src_stride + 32));
s[7] = _mm_loadu_si128((const __m128i *)(src + src_stride + 48));
// 000 001 100 101 xx xx xx xx 004 005 104 105 xx xx xx xx
// 008 009 108 109 xx xx xx xx 00C 00D 10C 10D xx xx xx xx
// 010 011 110 111 xx xx xx xx 014 015 114 115 xx xx xx xx
// 018 019 118 119 xx xx xx xx 01C 01D 11C 11D xx xx xx xx
// 020 021 120 121 xx xx xx xx 024 025 124 125 xx xx xx xx
// 028 029 128 129 xx xx xx xx 02C 02D 12C 12D xx xx xx xx
// 030 031 130 131 xx xx xx xx 034 035 134 135 xx xx xx xx
// 038 039 138 139 xx xx xx xx 03C 03D 13C 13D xx xx xx xx
d[0] = _mm_unpacklo_epi16(s[0], s[4]);
d[1] = _mm_unpackhi_epi16(s[0], s[4]);
d[2] = _mm_unpacklo_epi16(s[1], s[5]);
d[3] = _mm_unpackhi_epi16(s[1], s[5]);
d[4] = _mm_unpacklo_epi16(s[2], s[6]);
d[5] = _mm_unpackhi_epi16(s[2], s[6]);
d[6] = _mm_unpacklo_epi16(s[3], s[7]);
d[7] = _mm_unpackhi_epi16(s[3], s[7]);
// 000 001 100 101 008 009 108 109 xx xx xx xx xx xx xx xx
// 004 005 104 105 00C 00D 10C 10D xx xx xx xx xx xx xx xx
// 010 011 110 111 018 019 118 119 xx xx xx xx xx xx xx xx
// 014 015 114 115 01C 01D 11C 11D xx xx xx xx xx xx xx xx
// 020 021 120 121 028 029 128 129 xx xx xx xx xx xx xx xx
// 024 025 124 125 02C 02D 12C 12D xx xx xx xx xx xx xx xx
// 030 031 130 131 038 039 138 139 xx xx xx xx xx xx xx xx
// 034 035 134 135 03C 03D 13C 13D xx xx xx xx xx xx xx xx
s[0] = _mm_unpacklo_epi32(d[0], d[1]);
s[1] = _mm_unpackhi_epi32(d[0], d[1]);
s[2] = _mm_unpacklo_epi32(d[2], d[3]);
s[3] = _mm_unpackhi_epi32(d[2], d[3]);
s[4] = _mm_unpacklo_epi32(d[4], d[5]);
s[5] = _mm_unpackhi_epi32(d[4], d[5]);
s[6] = _mm_unpacklo_epi32(d[6], d[7]);
s[7] = _mm_unpackhi_epi32(d[6], d[7]);
// 000 001 100 101 004 005 104 105 008 009 108 109 00C 00D 10C 10D
// 010 011 110 111 014 015 114 115 018 019 118 119 01C 01D 11C 11D
// 020 021 120 121 024 025 124 125 028 029 128 129 02C 02D 12C 12D
// 030 031 130 131 034 035 134 135 038 039 138 139 03C 03D 13C 13D
d[0] = _mm_unpacklo_epi32(s[0], s[1]);
d[1] = _mm_unpacklo_epi32(s[2], s[3]);
d[2] = _mm_unpacklo_epi32(s[4], s[5]);
d[3] = _mm_unpacklo_epi32(s[6], s[7]);
d[0] = scale_plane_bilinear_kernel(&d[0], c0c1);
d[1] = scale_plane_bilinear_kernel(&d[2], c0c1);
// Vertical
d[0] = scale_plane_bilinear_kernel(d, c0c1);
_mm_storeu_si128((__m128i *)dst, d[0]);
src += 64;
dst += 16;
x -= 16;
} while (x);
src += 4 * (src_stride - max_width);
dst += dst_stride - max_width;
} while (--y);
}
static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride,
uint8_t *dst, const int dst_stride,
const int w, const int h,
const int16_t *const coef,
uint8_t *const temp_buffer) {
const int width_hor = (w + 1) & ~1;
const int width_ver = (w + 7) & ~7;
const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7;
const int height_ver = (h + 1) & ~1;
int x, y = height_hor;
uint8_t *t = temp_buffer;
__m128i s[11], d[4];
__m128i f[4];
assert(w && h);
shuffle_filter_ssse3(coef, f);
src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3;
// horizontal 2x8
do {
load_8bit_8x8(src + 4, src_stride, s);
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
// 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 (overlapped)
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped)
transpose_16bit_4x8(s, s);
x = width_hor;
do {
src += 8;
load_8bit_8x8(src, src_stride, &s[2]);
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
// 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79
// 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B
transpose_16bit_4x8(&s[2], &s[2]);
d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70
d[1] = convolve8_8_ssse3(&s[2], f); // 01 11 21 31 41 51 61 71
// 00 10 20 30 40 50 60 70 xx xx xx xx xx xx xx xx
// 01 11 21 31 41 51 61 71 xx xx xx xx xx xx xx xx
d[0] = _mm_packus_epi16(d[0], d[0]);
d[1] = _mm_packus_epi16(d[1], d[1]);
// 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71
d[0] = _mm_unpacklo_epi16(d[0], d[1]);
store_8bit_4x4_sse2(d[0], t, 2 * width_hor);
s[0] = s[4];
s[1] = s[5];
t += 4;
x -= 2;
} while (x);
src += 8 * src_stride - 4 * width_hor;
t += 6 * width_hor;
y -= 8;
} while (y);
// vertical 8x2
x = width_ver;
t = temp_buffer;
do {
// 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17
// 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37
s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor));
s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor));
t += 4 * width_hor;
y = height_ver;
do {
// 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57
// 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77
// 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77
// A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77
loadu_8bit_16x4(t, 2 * width_hor, &s[2]);
t += 8 * width_hor;
d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07
d[1] = convolve8_8_ssse3(&s[2], f); // 10 11 12 13 14 15 16 17
// 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
d[0] = _mm_packus_epi16(d[0], d[1]);
_mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]);
_mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]);
s[0] = s[4];
s[1] = s[5];
dst += 2 * dst_stride;
y -= 2;
} while (y);
t -= width_hor * (4 * height_ver + 4);
t += 16;
dst -= height_ver * dst_stride;
dst += 8;
x -= 8;
} while (x);
}
static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride,
uint8_t *dst, const int dst_stride,
const int w, const int h,
const int16_t *const coef,
uint8_t *const temp_buffer) {
const int width_hor = (w + 3) & ~3;
const int width_ver = (w + 7) & ~7;
const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7;
const int height_ver = (h + 3) & ~3;
int x, y = height_hor;
uint8_t *t = temp_buffer;
__m128i s[11], d[4];
__m128i f[4];
assert(w && h);
shuffle_filter_ssse3(coef, f);
src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1;
// horizontal 4x8
do {
load_8bit_8x8(src + 2, src_stride, s);
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
// 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped)
transpose_16bit_4x8(s, s);
x = width_hor;
do {
src += 8;
load_8bit_8x8(src, src_stride, &s[3]);
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
// 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79
// 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B
// 0C 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D
transpose_16bit_4x8(&s[3], &s[3]);
d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70
d[1] = convolve8_8_ssse3(&s[1], f); // 01 11 21 31 41 51 61 71
d[2] = convolve8_8_ssse3(&s[2], f); // 02 12 22 32 42 52 62 72
d[3] = convolve8_8_ssse3(&s[3], f); // 03 13 23 33 43 53 63 73
// 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72
// 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73
d[0] = _mm_packus_epi16(d[0], d[2]);
d[1] = _mm_packus_epi16(d[1], d[3]);
// 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71
// 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73
d[2] = _mm_unpacklo_epi16(d[0], d[1]);
d[3] = _mm_unpackhi_epi16(d[0], d[1]);
// 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33
// 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73
d[0] = _mm_unpacklo_epi32(d[2], d[3]);
d[1] = _mm_unpackhi_epi32(d[2], d[3]);
store_8bit_8x4_from_16x2(d, t, 2 * width_hor);
s[0] = s[4];
s[1] = s[5];
s[2] = s[6];
t += 8;
x -= 4;
} while (x);
src += 8 * src_stride - 2 * width_hor;
t += 6 * width_hor;
y -= 8;
} while (y);
// vertical 8x4
x = width_ver;
t = temp_buffer;
do {
// 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17
// 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57
s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor));
s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor));
s[2] = _mm_loadu_si128((const __m128i *)(t + 4 * width_hor));
t += 6 * width_hor;
y = height_ver;
do {
// 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77
// 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77
// A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77
// C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 77
loadu_8bit_16x4(t, 2 * width_hor, &s[3]);
t += 8 * width_hor;
d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07
d[1] = convolve8_8_ssse3(&s[1], f); // 10 11 12 13 14 15 16 17
d[2] = convolve8_8_ssse3(&s[2], f); // 20 21 22 23 24 25 26 27
d[3] = convolve8_8_ssse3(&s[3], f); // 30 31 32 33 34 35 36 37
// 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37
d[0] = _mm_packus_epi16(d[0], d[1]);
d[1] = _mm_packus_epi16(d[2], d[3]);
store_8bit_8x4_from_16x2(d, dst, dst_stride);
s[0] = s[4];
s[1] = s[5];
s[2] = s[6];
dst += 4 * dst_stride;
y -= 4;
} while (y);
t -= width_hor * (2 * height_ver + 6);
t += 16;
dst -= height_ver * dst_stride;
dst += 8;
x -= 8;
} while (x);
}
typedef void (*shuffle_filter_funcs)(const int16_t *const filter,
__m128i *const f);
typedef __m128i (*convolve8_funcs)(const __m128i *const s,
const __m128i *const f);
static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride,
uint8_t *dst, const int dst_stride,
const int w, const int h,
const InterpKernel *const coef,
const int phase,
uint8_t *const temp_buffer) {
static const int step_q4 = 16 * 4 / 3;
const int width_hor = (w + 5) - ((w + 5) % 6);
const int stride_hor = 2 * width_hor + 4; // store 4 extra pixels
const int width_ver = (w + 7) & ~7;
// We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows
// above and (SUBPEL_TAPS / 2) extra rows below.
const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7;
const int height_ver = (h + 5) - ((h + 5) % 6);
int x, y = height_hor;
uint8_t *t = temp_buffer;
__m128i s[12], d[6], dd[4];
__m128i f0[4], f1[5], f2[5];
// The offset of the first row is always less than 1 pixel.
const int offset1_q4 = phase + 1 * step_q4;
const int offset2_q4 = phase + 2 * step_q4;
// offset_idxx indicates the pixel offset is even (0) or odd (1).
// It's used to choose the src offset and filter coefficient offset.
const int offset_idx1 = (offset1_q4 >> 4) & 1;
const int offset_idx2 = (offset2_q4 >> 4) & 1;
static const shuffle_filter_funcs shuffle_filter_func_list[2] = {
shuffle_filter_ssse3, shuffle_filter_odd_ssse3
};
static const convolve8_funcs convolve8_func_list[2] = {
convolve8_8_even_offset_ssse3, convolve8_8_odd_offset_ssse3
};
assert(w && h);
shuffle_filter_ssse3(coef[(phase + 0 * step_q4) & SUBPEL_MASK], f0);
shuffle_filter_func_list[offset_idx1](coef[offset1_q4 & SUBPEL_MASK], f1);
shuffle_filter_func_list[offset_idx2](coef[offset2_q4 & SUBPEL_MASK], f2);
// Sub 64 to avoid overflow.
// Coef 128 would be treated as -128 in PMADDUBSW. Sub 64 here.
// Coef 128 is in either fx[1] or fx[2] depending on the phase idx.
// When filter phase idx is 1, the two biggest coefficients are shuffled
// together, and the sum of them are always no less than 128. Sub 64 here.
// After the subtraction, when the sum of all positive coefficients are no
// larger than 128, and the sum of all negative coefficients are no
// less than -128, there will be no overflow in the convolve8 functions.
f0[1] = _mm_sub_epi8(f0[1], _mm_set1_epi8(64));
f1[1 + offset_idx1] = _mm_sub_epi8(f1[1 + offset_idx1], _mm_set1_epi8(64));
f2[1 + offset_idx2] = _mm_sub_epi8(f2[1 + offset_idx2], _mm_set1_epi8(64));
src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 - 1;
// horizontal 6x8
do {
load_8bit_8x8(src, src_stride, s);
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
// 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
transpose_16bit_4x8(s, s);
x = width_hor;
do {
src += 8;
load_8bit_8x8(src, src_stride, &s[4]);
// 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79
// 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B
// OC 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D
// 0E 0F 1E 1F 2E 2F 3E 3F 4E 4F 5E 5F 6E 6F 7E 7F
transpose_16bit_4x8(&s[4], &s[4]);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
d[0] = convolve8_8_even_offset_ssse3(&s[0], f0);
d[1] = convolve8_func_list[offset_idx1](&s[offset1_q4 >> 5], f1);
d[2] = convolve8_func_list[offset_idx2](&s[offset2_q4 >> 5], f2);
d[3] = convolve8_8_even_offset_ssse3(&s[2], f0);
d[4] = convolve8_func_list[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1);
d[5] = convolve8_func_list[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2);
// 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72
// 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74 xx xx xx xx xx xx xx xx
// 05 15 25 35 45 55 65 75 xx xx xx xx xx xx xx xx
dd[0] = _mm_packus_epi16(d[0], d[2]);
dd[1] = _mm_packus_epi16(d[1], d[3]);
dd[2] = _mm_packus_epi16(d[4], d[4]);
dd[3] = _mm_packus_epi16(d[5], d[5]);
// 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71
// 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73
// 04 14 05 15 24 34 25 35 44 54 45 55 64 74 65 75
d[0] = _mm_unpacklo_epi16(dd[0], dd[1]);
d[1] = _mm_unpackhi_epi16(dd[0], dd[1]);
d[2] = _mm_unpacklo_epi16(dd[2], dd[3]);
// 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33
// 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73
// 04 14 05 15 xx xx xx xx 24 34 25 35 xx xx xx xx
// 44 54 45 55 xx xx xx xx 64 74 65 75 xx xx xx xx
dd[0] = _mm_unpacklo_epi32(d[0], d[1]);
dd[1] = _mm_unpackhi_epi32(d[0], d[1]);
dd[2] = _mm_unpacklo_epi32(d[2], d[2]);
dd[3] = _mm_unpackhi_epi32(d[2], d[2]);
// 00 10 01 11 02 12 03 13 04 14 05 15 xx xx xx xx
// 20 30 21 31 22 32 23 33 24 34 25 35 xx xx xx xx
// 40 50 41 51 42 52 43 53 44 54 45 55 xx xx xx xx
// 60 70 61 71 62 72 63 73 64 74 65 75 xx xx xx xx
d[0] = _mm_unpacklo_epi64(dd[0], dd[2]);
d[1] = _mm_unpackhi_epi64(dd[0], dd[2]);
d[2] = _mm_unpacklo_epi64(dd[1], dd[3]);
d[3] = _mm_unpackhi_epi64(dd[1], dd[3]);
// store 4 extra pixels
storeu_8bit_16x4(d, t, stride_hor);
s[0] = s[4];
s[1] = s[5];
s[2] = s[6];
s[3] = s[7];
t += 12;
x -= 6;
} while (x);
src += 8 * src_stride - 4 * width_hor / 3;
t += 3 * stride_hor + 4;
y -= 8;
} while (y);
// vertical 8x6
x = width_ver;
t = temp_buffer;
do {
// 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17
// 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57
// 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77
loadu_8bit_16x4(t, stride_hor, s);
y = height_ver;
do {
// 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 97
// A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7
// C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 D7
// E0 F0 E1 F1 E2 F2 E3 F3 E4 F4 E5 F5 E6 F6 E7 F7
t += 4 * stride_hor;
loadu_8bit_16x4(t, stride_hor, &s[4]);
d[0] = convolve8_8_even_offset_ssse3(&s[0], f0);
d[1] = convolve8_func_list[offset_idx1](&s[offset1_q4 >> 5], f1);
d[2] = convolve8_func_list[offset_idx2](&s[offset2_q4 >> 5], f2);
d[3] = convolve8_8_even_offset_ssse3(&s[2], f0);
d[4] = convolve8_func_list[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1);
d[5] = convolve8_func_list[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2);
// 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37
// 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57
d[0] = _mm_packus_epi16(d[0], d[1]);
d[2] = _mm_packus_epi16(d[2], d[3]);
d[4] = _mm_packus_epi16(d[4], d[5]);
_mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]);
_mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]);
_mm_storel_epi64((__m128i *)(dst + 2 * dst_stride), d[2]);
_mm_storeh_epi64((__m128i *)(dst + 3 * dst_stride), d[2]);
_mm_storel_epi64((__m128i *)(dst + 4 * dst_stride), d[4]);
_mm_storeh_epi64((__m128i *)(dst + 5 * dst_stride), d[4]);
s[0] = s[4];
s[1] = s[5];
s[2] = s[6];
s[3] = s[7];
dst += 6 * dst_stride;
y -= 6;
} while (y);
t -= stride_hor * 2 * height_ver / 3;
t += 16;
dst -= height_ver * dst_stride;
dst += 8;
x -= 8;
} while (x);
}
static inline __m128i scale_1_to_2_phase_0_kernel(const __m128i *const s,
const __m128i *const f) {
__m128i ss[4], temp;
ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
temp = convolve8_8_ssse3(ss, f);
return _mm_packus_epi16(temp, temp);
}
// Only calculate odd columns since even columns are just src pixels' copies.
static void scale_1_to_2_phase_0_row(const uint8_t *src, uint8_t *dst,
const int w, const __m128i *const f) {
int x = w;
do {
__m128i s[8], temp;
s[0] = _mm_loadl_epi64((const __m128i *)(src + 0));
s[1] = _mm_loadl_epi64((const __m128i *)(src + 1));
s[2] = _mm_loadl_epi64((const __m128i *)(src + 2));
s[3] = _mm_loadl_epi64((const __m128i *)(src + 3));
s[4] = _mm_loadl_epi64((const __m128i *)(src + 4));
s[5] = _mm_loadl_epi64((const __m128i *)(src + 5));
s[6] = _mm_loadl_epi64((const __m128i *)(src + 6));
s[7] = _mm_loadl_epi64((const __m128i *)(src + 7));
temp = scale_1_to_2_phase_0_kernel(s, f);
_mm_storel_epi64((__m128i *)dst, temp);
src += 8;
dst += 8;
x -= 8;
} while (x);
}
static void scale_plane_1_to_2_phase_0(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const int src_w, const int src_h,
const int16_t *const coef,
uint8_t *const temp_buffer) {
int max_width;
int y;
uint8_t *tmp[9];
__m128i f[4];
max_width = (src_w + 7) & ~7;
tmp[0] = temp_buffer + 0 * max_width;
tmp[1] = temp_buffer + 1 * max_width;
tmp[2] = temp_buffer + 2 * max_width;
tmp[3] = temp_buffer + 3 * max_width;
tmp[4] = temp_buffer + 4 * max_width;
tmp[5] = temp_buffer + 5 * max_width;
tmp[6] = temp_buffer + 6 * max_width;
tmp[7] = temp_buffer + 7 * max_width;
shuffle_filter_ssse3(coef, f);
scale_1_to_2_phase_0_row(src - 3 * src_stride - 3, tmp[0], max_width, f);
scale_1_to_2_phase_0_row(src - 2 * src_stride - 3, tmp[1], max_width, f);
scale_1_to_2_phase_0_row(src - 1 * src_stride - 3, tmp[2], max_width, f);
scale_1_to_2_phase_0_row(src + 0 * src_stride - 3, tmp[3], max_width, f);
scale_1_to_2_phase_0_row(src + 1 * src_stride - 3, tmp[4], max_width, f);
scale_1_to_2_phase_0_row(src + 2 * src_stride - 3, tmp[5], max_width, f);
scale_1_to_2_phase_0_row(src + 3 * src_stride - 3, tmp[6], max_width, f);
y = src_h;
do {
int x;
scale_1_to_2_phase_0_row(src + 4 * src_stride - 3, tmp[7], max_width, f);
for (x = 0; x < max_width; x += 8) {
__m128i s[8], C, D, CD;
// Even rows
const __m128i a = _mm_loadl_epi64((const __m128i *)(src + x));
const __m128i b = _mm_loadl_epi64((const __m128i *)(tmp[3] + x));
const __m128i ab = _mm_unpacklo_epi8(a, b);
_mm_storeu_si128((__m128i *)(dst + 2 * x), ab);
// Odd rows
// Even columns
load_8bit_8x8(src + x - 3 * src_stride, src_stride, s);
C = scale_1_to_2_phase_0_kernel(s, f);
// Odd columns
s[0] = _mm_loadl_epi64((const __m128i *)(tmp[0] + x));
s[1] = _mm_loadl_epi64((const __m128i *)(tmp[1] + x));
s[2] = _mm_loadl_epi64((const __m128i *)(tmp[2] + x));
s[3] = _mm_loadl_epi64((const __m128i *)(tmp[3] + x));
s[4] = _mm_loadl_epi64((const __m128i *)(tmp[4] + x));
s[5] = _mm_loadl_epi64((const __m128i *)(tmp[5] + x));
s[6] = _mm_loadl_epi64((const __m128i *)(tmp[6] + x));
s[7] = _mm_loadl_epi64((const __m128i *)(tmp[7] + x));
D = scale_1_to_2_phase_0_kernel(s, f);
CD = _mm_unpacklo_epi8(C, D);
_mm_storeu_si128((__m128i *)(dst + dst_stride + 2 * x), CD);
}
src += src_stride;
dst += 2 * dst_stride;
tmp[8] = tmp[0];
tmp[0] = tmp[1];
tmp[1] = tmp[2];
tmp[2] = tmp[3];
tmp[3] = tmp[4];
tmp[4] = tmp[5];
tmp[5] = tmp[6];
tmp[6] = tmp[7];
tmp[7] = tmp[8];
} while (--y);
}
// There's SIMD optimizations for 1/4, 1/2 and 3/4 downscaling and 2x upscaling
// in SSSE3.
static inline bool has_normative_scaler_ssse3(const int src_width,
const int src_height,
const int dst_width,
const int dst_height) {
const bool has_normative_scaler =
(2 * dst_width == src_width && 2 * dst_height == src_height) ||
(4 * dst_width == src_width && 4 * dst_height == src_height) ||
(4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) ||
(dst_width == src_width * 2 && dst_height == src_height * 2);
return has_normative_scaler;
}
void av1_resize_and_extend_frame_ssse3(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
const InterpFilter filter,
const int phase, const int num_planes) {
bool has_normative_scaler =
has_normative_scaler_ssse3(src->y_crop_width, src->y_crop_height,
dst->y_crop_width, dst->y_crop_height);
if (num_planes > 1) {
has_normative_scaler =
has_normative_scaler &&
has_normative_scaler_ssse3(src->uv_crop_width, src->uv_crop_height,
dst->uv_crop_width, dst->uv_crop_height);
}
if (!has_normative_scaler) {
av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes);
return;
}
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
int malloc_failed = 0;
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
const int is_uv = i > 0;
const int src_w = src->crop_widths[is_uv];
const int src_h = src->crop_heights[is_uv];
const int src_y_w = (src->crop_widths[0] + 1) & ~1;
const int dst_w = dst->crop_widths[is_uv];
const int dst_h = dst->crop_heights[is_uv];
const int dst_y_w = (dst->crop_widths[0] + 1) & ~1;
const int dst_y_h = (dst->crop_heights[0] + 1) & ~1;
if (2 * dst_w == src_w && 2 * dst_h == src_h) {
// 2 to 1
if (phase == 0) {
scale_plane_2_to_1_phase_0(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h);
} else if (filter == BILINEAR) {
const int16_t c0 = av1_bilinear_filters[phase][3];
const int16_t c1 = av1_bilinear_filters[phase][4];
const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0
scale_plane_2_to_1_bilinear(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, c0c1);
} else {
const int buffer_stride = (dst_y_w + 3) & ~3;
const int buffer_height = (2 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7;
uint8_t *const temp_buffer =
(uint8_t *)malloc(buffer_stride * buffer_height);
if (!temp_buffer) {
malloc_failed = 1;
break;
}
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_2_to_1_general(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, interp_kernel[phase], temp_buffer);
free(temp_buffer);
}
} else if (4 * dst_w == src_w && 4 * dst_h == src_h) {
// 4 to 1
if (phase == 0) {
scale_plane_4_to_1_phase_0(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h);
} else if (filter == BILINEAR) {
const int16_t c0 = av1_bilinear_filters[phase][3];
const int16_t c1 = av1_bilinear_filters[phase][4];
const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0
scale_plane_4_to_1_bilinear(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, c0c1);
} else {
const int buffer_stride = (dst_y_w + 1) & ~1;
const int buffer_height = (4 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7;
// When dst_w is 1 or 2, we need extra padding to avoid heap read
// overflow
const int extra_padding = 16;
uint8_t *const temp_buffer =
(uint8_t *)malloc(buffer_stride * buffer_height + extra_padding);
if (!temp_buffer) {
malloc_failed = 1;
break;
}
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_4_to_1_general(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, interp_kernel[phase], temp_buffer);
free(temp_buffer);
}
} else if (4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h) {
// 4 to 3
const int buffer_stride_hor = (dst_y_w + 5) - ((dst_y_w + 5) % 6) + 2;
const int buffer_stride_ver = (dst_y_w + 7) & ~7;
const int buffer_height = (4 * dst_y_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7;
// When the vertical filter reads more pixels than the horizontal filter
// generated in each row, we need extra padding to avoid heap read
// overflow. For example, the horizontal filter generates 18 pixels but
// the vertical filter reads 24 pixels in a row. The difference is
// multiplied by 2 since two rows are interlaced together in the
// optimization.
const int extra_padding =
(buffer_stride_ver > buffer_stride_hor)
? 2 * (buffer_stride_ver - buffer_stride_hor)
: 0;
const int buffer_size = buffer_stride_hor * buffer_height + extra_padding;
uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_size);
if (!temp_buffer) {
malloc_failed = 1;
break;
}
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_4_to_3_general(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, interp_kernel, phase, temp_buffer);
free(temp_buffer);
} else {
assert(dst_w == src_w * 2 && dst_h == src_h * 2);
// 1 to 2
uint8_t *const temp_buffer = (uint8_t *)malloc(8 * ((src_y_w + 7) & ~7));
if (!temp_buffer) {
malloc_failed = 1;
break;
}
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_1_to_2_phase_0(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], src_w,
src_h, interp_kernel[8], temp_buffer);
free(temp_buffer);
}
}
if (malloc_failed) {
av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes);
} else {
aom_extend_frame_borders(dst, num_planes);
}
}