| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/restoration.h" |
| #include "aom_dsp/x86/synonyms.h" |
| #include "aom_dsp/x86/synonyms_avx2.h" |
| |
| // Load 8 bytes from the possibly-misaligned pointer p, extend each byte to |
| // 32-bit precision and return them in an AVX2 register. |
| static __m256i yy256_load_extend_8_32(const void *p) { |
| return _mm256_cvtepu8_epi32(xx_loadl_64(p)); |
| } |
| |
| // Load 8 halfwords from the possibly-misaligned pointer p, extend each |
| // halfword to 32-bit precision and return them in an AVX2 register. |
| static __m256i yy256_load_extend_16_32(const void *p) { |
| return _mm256_cvtepu16_epi32(xx_loadu_128(p)); |
| } |
| |
| // Compute the scan of an AVX2 register holding 8 32-bit integers. If the |
| // register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ..., |
| // x0+x1+...+x7 |
| // |
| // Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers |
| // (assumed small enough to be able to add them without overflow). |
| // |
| // Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a. |
| // |
| // x = [h g f e][d c b a] |
| // x01 = [g f e 0][c b a 0] |
| // x02 = [g+h f+g e+f e][c+d b+c a+b a] |
| // x03 = [e+f e 0 0][a+b a 0 0] |
| // x04 = [e->h e->g e->f e][a->d a->c a->b a] |
| // s = a->d |
| // s01 = [a->d a->d a->d a->d] |
| // s02 = [a->d a->d a->d a->d][0 0 0 0] |
| // ret = [a->h a->g a->f a->e][a->d a->c a->b a] |
| static __m256i scan_32(__m256i x) { |
| const __m256i x01 = _mm256_slli_si256(x, 4); |
| const __m256i x02 = _mm256_add_epi32(x, x01); |
| const __m256i x03 = _mm256_slli_si256(x02, 8); |
| const __m256i x04 = _mm256_add_epi32(x02, x03); |
| const int32_t s = _mm256_extract_epi32(x04, 3); |
| const __m128i s01 = _mm_set1_epi32(s); |
| const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1); |
| return _mm256_add_epi32(x04, s02); |
| } |
| |
| // Compute two integral images from src. B sums elements; A sums their |
| // squares. The images are offset by one pixel, so will have width and height |
| // equal to width + 1, height + 1 and the first row and column will be zero. |
| // |
| // A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple |
| // of 8. |
| |
| static void *memset_zero_avx(int32_t *dest, const __m256i *zero, size_t count) { |
| unsigned int i = 0; |
| for (i = 0; i < (count & 0xffffffe0); i += 32) { |
| _mm256_storeu_si256((__m256i *)(dest + i), *zero); |
| _mm256_storeu_si256((__m256i *)(dest + i + 8), *zero); |
| _mm256_storeu_si256((__m256i *)(dest + i + 16), *zero); |
| _mm256_storeu_si256((__m256i *)(dest + i + 24), *zero); |
| } |
| for (; i < (count & 0xfffffff8); i += 8) { |
| _mm256_storeu_si256((__m256i *)(dest + i), *zero); |
| } |
| for (; i < count; i++) { |
| dest[i] = 0; |
| } |
| return dest; |
| } |
| |
| static void integral_images(const uint8_t *src, int src_stride, int width, |
| int height, int32_t *A, int32_t *B, |
| int buf_stride) { |
| const __m256i zero = _mm256_setzero_si256(); |
| // Write out the zero top row |
| memset_zero_avx(A, &zero, (width + 8)); |
| memset_zero_avx(B, &zero, (width + 8)); |
| for (int i = 0; i < height; ++i) { |
| // Zero the left column. |
| A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; |
| |
| // ldiff is the difference H - D where H is the output sample immediately |
| // to the left and D is the output sample above it. These are scalars, |
| // replicated across the eight lanes. |
| __m256i ldiff1 = zero, ldiff2 = zero; |
| for (int j = 0; j < width; j += 8) { |
| const int ABj = 1 + j; |
| |
| const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); |
| const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); |
| |
| const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride); |
| const __m256i x2 = _mm256_madd_epi16(x1, x1); |
| |
| const __m256i sc1 = scan_32(x1); |
| const __m256i sc2 = scan_32(x2); |
| |
| const __m256i row1 = |
| _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); |
| const __m256i row2 = |
| _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); |
| |
| yy_store_256(B + ABj + (i + 1) * buf_stride, row1); |
| yy_store_256(A + ABj + (i + 1) * buf_stride, row2); |
| |
| // Calculate the new H - D. |
| ldiff1 = _mm256_set1_epi32( |
| _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); |
| ldiff2 = _mm256_set1_epi32( |
| _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); |
| } |
| } |
| } |
| |
| // Compute two integral images from src. B sums elements; A sums their squares |
| // |
| // A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8. |
| static void integral_images_highbd(const uint16_t *src, int src_stride, |
| int width, int height, int32_t *A, |
| int32_t *B, int buf_stride) { |
| const __m256i zero = _mm256_setzero_si256(); |
| // Write out the zero top row |
| memset_zero_avx(A, &zero, (width + 8)); |
| memset_zero_avx(B, &zero, (width + 8)); |
| |
| for (int i = 0; i < height; ++i) { |
| // Zero the left column. |
| A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; |
| |
| // ldiff is the difference H - D where H is the output sample immediately |
| // to the left and D is the output sample above it. These are scalars, |
| // replicated across the eight lanes. |
| __m256i ldiff1 = zero, ldiff2 = zero; |
| for (int j = 0; j < width; j += 8) { |
| const int ABj = 1 + j; |
| |
| const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); |
| const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); |
| |
| const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride); |
| const __m256i x2 = _mm256_madd_epi16(x1, x1); |
| |
| const __m256i sc1 = scan_32(x1); |
| const __m256i sc2 = scan_32(x2); |
| |
| const __m256i row1 = |
| _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); |
| const __m256i row2 = |
| _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); |
| |
| yy_store_256(B + ABj + (i + 1) * buf_stride, row1); |
| yy_store_256(A + ABj + (i + 1) * buf_stride, row2); |
| |
| // Calculate the new H - D. |
| ldiff1 = _mm256_set1_epi32( |
| _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); |
| ldiff2 = _mm256_set1_epi32( |
| _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); |
| } |
| } |
| } |
| |
| // Compute 8 values of boxsum from the given integral image. ii should point |
| // at the middle of the box (for the first value). r is the box radius. |
| static inline __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) { |
| const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride); |
| const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride); |
| const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride); |
| const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride); |
| const __m256i u = _mm256_sub_epi32(tr, tl); |
| const __m256i v = _mm256_sub_epi32(br, bl); |
| return _mm256_sub_epi32(v, u); |
| } |
| |
| static __m256i round_for_shift(unsigned shift) { |
| return _mm256_set1_epi32((1 << shift) >> 1); |
| } |
| |
| static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) { |
| __m256i an, bb; |
| if (bit_depth > 8) { |
| const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8)); |
| const __m256i rounding_b = round_for_shift(bit_depth - 8); |
| const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8)); |
| const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8); |
| const __m256i a = |
| _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a); |
| const __m256i b = |
| _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b); |
| // b < 2^14, so we can use a 16-bit madd rather than a 32-bit |
| // mullo to square it |
| bb = _mm256_madd_epi16(b, b); |
| an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb); |
| } else { |
| bb = _mm256_madd_epi16(sum1, sum1); |
| an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n)); |
| } |
| return _mm256_sub_epi32(an, bb); |
| } |
| |
| // Assumes that C, D are integral images for the original buffer which has been |
| // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels |
| // on the sides. A, B, C, D point at logical position (0, 0). |
| static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D, |
| int width, int height, int buf_stride, int bit_depth, |
| int sgr_params_idx, int radius_idx) { |
| const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; |
| const int r = params->r[radius_idx]; |
| const int n = (2 * r + 1) * (2 * r + 1); |
| const __m256i s = _mm256_set1_epi32(params->s[radius_idx]); |
| // one_over_n[n-1] is 2^12/n, so easily fits in an int16 |
| const __m256i one_over_n = _mm256_set1_epi32(av1_one_by_x[n - 1]); |
| |
| const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); |
| const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); |
| |
| // Set up masks |
| const __m128i ones32 = _mm_set_epi32(0, 0, ~0, ~0); |
| __m256i mask[8]; |
| for (int idx = 0; idx < 8; idx++) { |
| const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx)); |
| mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); |
| } |
| |
| for (int i = -1; i < height + 1; ++i) { |
| for (int j = -1; j < width + 1; j += 8) { |
| const int32_t *Cij = C + i * buf_stride + j; |
| const int32_t *Dij = D + i * buf_stride + j; |
| |
| __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); |
| __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); |
| |
| // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain |
| // some uninitialised data in their upper words. We use a mask to |
| // ensure that these bits are set to 0. |
| int idx = AOMMIN(8, width + 1 - j); |
| assert(idx >= 1); |
| |
| if (idx < 8) { |
| sum1 = _mm256_and_si256(mask[idx], sum1); |
| sum2 = _mm256_and_si256(mask[idx], sum2); |
| } |
| |
| const __m256i p = compute_p(sum1, sum2, bit_depth, n); |
| |
| const __m256i z = _mm256_min_epi32( |
| _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), |
| SGRPROJ_MTABLE_BITS), |
| _mm256_set1_epi32(255)); |
| |
| const __m256i a_res = _mm256_i32gather_epi32(av1_x_by_xplus1, z, 4); |
| |
| yy_storeu_256(A + i * buf_stride + j, a_res); |
| |
| const __m256i a_complement = |
| _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); |
| |
| // sum1 might have lanes greater than 2^15, so we can't use madd to do |
| // multiplication involving sum1. However, a_complement and one_over_n |
| // are both less than 256, so we can multiply them first. |
| const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); |
| const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); |
| const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), |
| SGRPROJ_RECIP_BITS); |
| |
| yy_storeu_256(B + i * buf_stride + j, b_res); |
| } |
| } |
| } |
| |
| // Calculate 8 values of the "cross sum" starting at buf. This is a 3x3 filter |
| // where the outer four corners have weight 3 and all other pixels have weight |
| // 4. |
| // |
| // Pixels are indexed as follows: |
| // xtl xt xtr |
| // xl x xr |
| // xbl xb xbr |
| // |
| // buf points to x |
| // |
| // fours = xl + xt + xr + xb + x |
| // threes = xtl + xtr + xbr + xbl |
| // cross_sum = 4 * fours + 3 * threes |
| // = 4 * (fours + threes) - threes |
| // = (fours + threes) << 2 - threes |
| static inline __m256i cross_sum(const int32_t *buf, int stride) { |
| const __m256i xtl = yy_loadu_256(buf - 1 - stride); |
| const __m256i xt = yy_loadu_256(buf - stride); |
| const __m256i xtr = yy_loadu_256(buf + 1 - stride); |
| const __m256i xl = yy_loadu_256(buf - 1); |
| const __m256i x = yy_loadu_256(buf); |
| const __m256i xr = yy_loadu_256(buf + 1); |
| const __m256i xbl = yy_loadu_256(buf - 1 + stride); |
| const __m256i xb = yy_loadu_256(buf + stride); |
| const __m256i xbr = yy_loadu_256(buf + 1 + stride); |
| |
| const __m256i fours = _mm256_add_epi32( |
| xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x)))); |
| const __m256i threes = |
| _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); |
| |
| return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2), |
| threes); |
| } |
| |
| // The final filter for self-guided restoration. Computes a weighted average |
| // across A, B with "cross sums" (see cross_sum implementation above). |
| static void final_filter(int32_t *dst, int dst_stride, const int32_t *A, |
| const int32_t *B, int buf_stride, const void *dgd8, |
| int dgd_stride, int width, int height, int highbd) { |
| const int nb = 5; |
| const __m256i rounding = |
| round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); |
| const uint8_t *dgd_real = |
| highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; |
| |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; j += 8) { |
| const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride); |
| const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride); |
| |
| const __m128i raw = |
| xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| const __m256i src = |
| highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| |
| __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding), |
| SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); |
| |
| yy_storeu_256(dst + i * dst_stride + j, w); |
| } |
| } |
| } |
| |
| // Assumes that C, D are integral images for the original buffer which has been |
| // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels |
| // on the sides. A, B, C, D point at logical position (0, 0). |
| static void calc_ab_fast(int32_t *A, int32_t *B, const int32_t *C, |
| const int32_t *D, int width, int height, |
| int buf_stride, int bit_depth, int sgr_params_idx, |
| int radius_idx) { |
| const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; |
| const int r = params->r[radius_idx]; |
| const int n = (2 * r + 1) * (2 * r + 1); |
| const __m256i s = _mm256_set1_epi32(params->s[radius_idx]); |
| // one_over_n[n-1] is 2^12/n, so easily fits in an int16 |
| const __m256i one_over_n = _mm256_set1_epi32(av1_one_by_x[n - 1]); |
| |
| const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); |
| const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); |
| |
| // Set up masks |
| const __m128i ones32 = _mm_set_epi32(0, 0, ~0, ~0); |
| __m256i mask[8]; |
| for (int idx = 0; idx < 8; idx++) { |
| const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx)); |
| mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); |
| } |
| |
| for (int i = -1; i < height + 1; i += 2) { |
| for (int j = -1; j < width + 1; j += 8) { |
| const int32_t *Cij = C + i * buf_stride + j; |
| const int32_t *Dij = D + i * buf_stride + j; |
| |
| __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); |
| __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); |
| |
| // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain |
| // some uninitialised data in their upper words. We use a mask to |
| // ensure that these bits are set to 0. |
| int idx = AOMMIN(8, width + 1 - j); |
| assert(idx >= 1); |
| |
| if (idx < 8) { |
| sum1 = _mm256_and_si256(mask[idx], sum1); |
| sum2 = _mm256_and_si256(mask[idx], sum2); |
| } |
| |
| const __m256i p = compute_p(sum1, sum2, bit_depth, n); |
| |
| const __m256i z = _mm256_min_epi32( |
| _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), |
| SGRPROJ_MTABLE_BITS), |
| _mm256_set1_epi32(255)); |
| |
| const __m256i a_res = _mm256_i32gather_epi32(av1_x_by_xplus1, z, 4); |
| |
| yy_storeu_256(A + i * buf_stride + j, a_res); |
| |
| const __m256i a_complement = |
| _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); |
| |
| // sum1 might have lanes greater than 2^15, so we can't use madd to do |
| // multiplication involving sum1. However, a_complement and one_over_n |
| // are both less than 256, so we can multiply them first. |
| const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); |
| const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); |
| const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), |
| SGRPROJ_RECIP_BITS); |
| |
| yy_storeu_256(B + i * buf_stride + j, b_res); |
| } |
| } |
| } |
| |
| // Calculate 8 values of the "cross sum" starting at buf. |
| // |
| // Pixels are indexed like this: |
| // xtl xt xtr |
| // - buf - |
| // xbl xb xbr |
| // |
| // Pixels are weighted like this: |
| // 5 6 5 |
| // 0 0 0 |
| // 5 6 5 |
| // |
| // fives = xtl + xtr + xbl + xbr |
| // sixes = xt + xb |
| // cross_sum = 6 * sixes + 5 * fives |
| // = 5 * (fives + sixes) - sixes |
| // = (fives + sixes) << 2 + (fives + sixes) + sixes |
| static inline __m256i cross_sum_fast_even_row(const int32_t *buf, int stride) { |
| const __m256i xtl = yy_loadu_256(buf - 1 - stride); |
| const __m256i xt = yy_loadu_256(buf - stride); |
| const __m256i xtr = yy_loadu_256(buf + 1 - stride); |
| const __m256i xbl = yy_loadu_256(buf - 1 + stride); |
| const __m256i xb = yy_loadu_256(buf + stride); |
| const __m256i xbr = yy_loadu_256(buf + 1 + stride); |
| |
| const __m256i fives = |
| _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); |
| const __m256i sixes = _mm256_add_epi32(xt, xb); |
| const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); |
| |
| return _mm256_add_epi32( |
| _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), |
| fives_plus_sixes), |
| sixes); |
| } |
| |
| // Calculate 8 values of the "cross sum" starting at buf. |
| // |
| // Pixels are indexed like this: |
| // xl x xr |
| // |
| // Pixels are weighted like this: |
| // 5 6 5 |
| // |
| // buf points to x |
| // |
| // fives = xl + xr |
| // sixes = x |
| // cross_sum = 5 * fives + 6 * sixes |
| // = 4 * (fives + sixes) + (fives + sixes) + sixes |
| // = (fives + sixes) << 2 + (fives + sixes) + sixes |
| static inline __m256i cross_sum_fast_odd_row(const int32_t *buf) { |
| const __m256i xl = yy_loadu_256(buf - 1); |
| const __m256i x = yy_loadu_256(buf); |
| const __m256i xr = yy_loadu_256(buf + 1); |
| |
| const __m256i fives = _mm256_add_epi32(xl, xr); |
| const __m256i sixes = x; |
| |
| const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); |
| |
| return _mm256_add_epi32( |
| _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), |
| fives_plus_sixes), |
| sixes); |
| } |
| |
| // The final filter for the self-guided restoration. Computes a |
| // weighted average across A, B with "cross sums" (see cross_sum_... |
| // implementations above). |
| static void final_filter_fast(int32_t *dst, int dst_stride, const int32_t *A, |
| const int32_t *B, int buf_stride, |
| const void *dgd8, int dgd_stride, int width, |
| int height, int highbd) { |
| const int nb0 = 5; |
| const int nb1 = 4; |
| |
| const __m256i rounding0 = |
| round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); |
| const __m256i rounding1 = |
| round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| |
| const uint8_t *dgd_real = |
| highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; |
| |
| for (int i = 0; i < height; ++i) { |
| if (!(i & 1)) { // even row |
| for (int j = 0; j < width; j += 8) { |
| const __m256i a = |
| cross_sum_fast_even_row(A + i * buf_stride + j, buf_stride); |
| const __m256i b = |
| cross_sum_fast_even_row(B + i * buf_stride + j, buf_stride); |
| |
| const __m128i raw = |
| xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| const __m256i src = |
| highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| |
| __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| __m256i w = |
| _mm256_srai_epi32(_mm256_add_epi32(v, rounding0), |
| SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); |
| |
| yy_storeu_256(dst + i * dst_stride + j, w); |
| } |
| } else { // odd row |
| for (int j = 0; j < width; j += 8) { |
| const __m256i a = cross_sum_fast_odd_row(A + i * buf_stride + j); |
| const __m256i b = cross_sum_fast_odd_row(B + i * buf_stride + j); |
| |
| const __m128i raw = |
| xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); |
| const __m256i src = |
| highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); |
| |
| __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); |
| __m256i w = |
| _mm256_srai_epi32(_mm256_add_epi32(v, rounding1), |
| SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); |
| |
| yy_storeu_256(dst + i * dst_stride + j, w); |
| } |
| } |
| } |
| } |
| |
| int av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height, |
| int dgd_stride, int32_t *flt0, |
| int32_t *flt1, int flt_stride, |
| int sgr_params_idx, int bit_depth, |
| int highbd) { |
| // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl, |
| // Ctl and Dtl is 32-byte aligned. |
| const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3); |
| |
| int32_t *buf = aom_memalign( |
| 32, 4 * sizeof(*buf) * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)); |
| if (!buf) return -1; |
| |
| const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; |
| const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; |
| |
| // Adjusting the stride of A and B here appears to avoid bad cache effects, |
| // leading to a significant speed improvement. |
| // We also align the stride to a multiple of 32 bytes for efficiency. |
| int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3); |
| |
| // The "tl" pointers point at the top-left of the initialised data for the |
| // array. |
| int32_t *Atl = buf + 0 * buf_elts + 7; |
| int32_t *Btl = buf + 1 * buf_elts + 7; |
| int32_t *Ctl = buf + 2 * buf_elts + 7; |
| int32_t *Dtl = buf + 3 * buf_elts + 7; |
| |
| // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note |
| // there's a zero row and column in A, B (integral images), so we move down |
| // and right one for them. |
| const int buf_diag_border = |
| SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT; |
| |
| int32_t *A0 = Atl + 1 + buf_stride; |
| int32_t *B0 = Btl + 1 + buf_stride; |
| int32_t *C0 = Ctl + 1 + buf_stride; |
| int32_t *D0 = Dtl + 1 + buf_stride; |
| |
| // Finally, A, B, C, D point at position (0, 0). |
| int32_t *A = A0 + buf_diag_border; |
| int32_t *B = B0 + buf_diag_border; |
| int32_t *C = C0 + buf_diag_border; |
| int32_t *D = D0 + buf_diag_border; |
| |
| const int dgd_diag_border = |
| SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT; |
| const uint8_t *dgd0 = dgd8 - dgd_diag_border; |
| |
| // Generate integral images from the input. C will contain sums of squares; D |
| // will contain just sums |
| if (highbd) |
| integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext, |
| height_ext, Ctl, Dtl, buf_stride); |
| else |
| integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl, |
| buf_stride); |
| |
| const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; |
| // Write to flt0 and flt1 |
| // If params->r == 0 we skip the corresponding filter. We only allow one of |
| // the radii to be 0, as having both equal to 0 would be equivalent to |
| // skipping SGR entirely. |
| assert(!(params->r[0] == 0 && params->r[1] == 0)); |
| assert(params->r[0] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); |
| assert(params->r[1] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); |
| |
| if (params->r[0] > 0) { |
| calc_ab_fast(A, B, C, D, width, height, buf_stride, bit_depth, |
| sgr_params_idx, 0); |
| final_filter_fast(flt0, flt_stride, A, B, buf_stride, dgd8, dgd_stride, |
| width, height, highbd); |
| } |
| |
| if (params->r[1] > 0) { |
| calc_ab(A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx, |
| 1); |
| final_filter(flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, |
| height, highbd); |
| } |
| aom_free(buf); |
| return 0; |
| } |
| |
| int av1_apply_selfguided_restoration_avx2(const uint8_t *dat8, int width, |
| int height, int stride, int eps, |
| const int *xqd, uint8_t *dst8, |
| int dst_stride, int32_t *tmpbuf, |
| int bit_depth, int highbd) { |
| int32_t *flt0 = tmpbuf; |
| int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; |
| assert(width * height <= RESTORATION_UNITPELS_MAX); |
| const int ret = av1_selfguided_restoration_avx2( |
| dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); |
| if (ret != 0) return ret; |
| const sgr_params_type *const params = &av1_sgr_params[eps]; |
| int xq[2]; |
| av1_decode_xq(xqd, xq, params); |
| |
| __m256i xq0 = _mm256_set1_epi32(xq[0]); |
| __m256i xq1 = _mm256_set1_epi32(xq[1]); |
| |
| for (int i = 0; i < height; ++i) { |
| // Calculate output in batches of 16 pixels |
| for (int j = 0; j < width; j += 16) { |
| const int k = i * width + j; |
| const int m = i * dst_stride + j; |
| |
| const uint8_t *dat8ij = dat8 + i * stride + j; |
| __m256i ep_0, ep_1; |
| __m128i src_0, src_1; |
| if (highbd) { |
| src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij)); |
| src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8)); |
| ep_0 = _mm256_cvtepu16_epi32(src_0); |
| ep_1 = _mm256_cvtepu16_epi32(src_1); |
| } else { |
| src_0 = xx_loadu_128(dat8ij); |
| ep_0 = _mm256_cvtepu8_epi32(src_0); |
| ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8)); |
| } |
| |
| const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS); |
| const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS); |
| |
| __m256i v_0 = _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS); |
| __m256i v_1 = _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS); |
| |
| if (params->r[0] > 0) { |
| const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt0[k]), u_0); |
| v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq0, f1_0)); |
| |
| const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt0[k + 8]), u_1); |
| v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq0, f1_1)); |
| } |
| |
| if (params->r[1] > 0) { |
| const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0); |
| v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq1, f2_0)); |
| |
| const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1); |
| v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq1, f2_1)); |
| } |
| |
| const __m256i rounding = |
| round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| const __m256i w_0 = _mm256_srai_epi32( |
| _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| const __m256i w_1 = _mm256_srai_epi32( |
| _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| |
| if (highbd) { |
| // Pack into 16 bits and clamp to [0, 2^bit_depth) |
| // Note that packing into 16 bits messes up the order of the bits, |
| // so we use a permute function to correct this |
| const __m256i tmp = _mm256_packus_epi32(w_0, w_1); |
| const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); |
| const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1); |
| const __m256i res = _mm256_min_epi16(tmp2, max); |
| yy_storeu_256(CONVERT_TO_SHORTPTR(dst8 + m), res); |
| } else { |
| // Pack into 8 bits and clamp to [0, 256) |
| // Note that each pack messes up the order of the bits, |
| // so we use a permute function to correct this |
| const __m256i tmp = _mm256_packs_epi32(w_0, w_1); |
| const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); |
| const __m256i res = |
| _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */); |
| const __m128i res2 = |
| _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8)); |
| xx_storeu_128(dst8 + m, res2); |
| } |
| } |
| } |
| return 0; |
| } |