blob: 57725d17959d37a72fd0df2351c658b5c7a1f75a [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h> // AVX2
#include "config/av1_rtcd.h"
#include "aom/aom_integer.h"
static INLINE void read_coeff(const tran_low_t *coeff, intptr_t offset,
__m256i *c) {
const tran_low_t *addr = coeff + offset;
if (sizeof(tran_low_t) == 4) {
const __m256i x0 = _mm256_loadu_si256((const __m256i *)addr);
const __m256i x1 = _mm256_loadu_si256((const __m256i *)addr + 1);
const __m256i y = _mm256_packs_epi32(x0, x1);
*c = _mm256_permute4x64_epi64(y, 0xD8);
} else {
*c = _mm256_loadu_si256((const __m256i *)addr);
}
}
static INLINE void av1_block_error_num_coeff16_avx2(const int16_t *coeff,
const int16_t *dqcoeff,
__m256i *sse_256) {
const __m256i _coeff = _mm256_loadu_si256((const __m256i *)coeff);
const __m256i _dqcoeff = _mm256_loadu_si256((const __m256i *)dqcoeff);
// d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
// r0 r1 r2 r3 r4 r5 r6 r7
const __m256i error = _mm256_madd_epi16(diff, diff);
// r0+r1 r2+r3 | r0+r1 r2+r3 | r4+r5 r6+r7 | r4+r5 r6+r7
const __m256i error_hi = _mm256_hadd_epi32(error, error);
// r0+r1 | r2+r3 | r4+r5 | r6+r7
*sse_256 = _mm256_unpacklo_epi32(error_hi, _mm256_setzero_si256());
}
static INLINE void av1_block_error_num_coeff32_avx2(const int16_t *coeff,
const int16_t *dqcoeff,
__m256i *sse_256) {
const __m256i zero = _mm256_setzero_si256();
const __m256i _coeff_0 = _mm256_loadu_si256((const __m256i *)coeff);
const __m256i _dqcoeff_0 = _mm256_loadu_si256((const __m256i *)dqcoeff);
const __m256i _coeff_1 = _mm256_loadu_si256((const __m256i *)(coeff + 16));
const __m256i _dqcoeff_1 =
_mm256_loadu_si256((const __m256i *)(dqcoeff + 16));
// d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
const __m256i diff_0 = _mm256_sub_epi16(_dqcoeff_0, _coeff_0);
const __m256i diff_1 = _mm256_sub_epi16(_dqcoeff_1, _coeff_1);
// r0 r1 r2 r3 r4 r5 r6 r7
const __m256i error_0 = _mm256_madd_epi16(diff_0, diff_0);
const __m256i error_1 = _mm256_madd_epi16(diff_1, diff_1);
const __m256i err_final_0 = _mm256_add_epi32(error_0, error_1);
// For extreme input values, the accumulation needs to happen in 64 bit
// precision to avoid any overflow.
const __m256i exp0_error_lo = _mm256_unpacklo_epi32(err_final_0, zero);
const __m256i exp0_error_hi = _mm256_unpackhi_epi32(err_final_0, zero);
const __m256i sum_temp_0 = _mm256_add_epi64(exp0_error_hi, exp0_error_lo);
*sse_256 = _mm256_add_epi64(*sse_256, sum_temp_0);
}
static INLINE void av1_block_error_num_coeff64_avx2(const int16_t *coeff,
const int16_t *dqcoeff,
__m256i *sse_256,
intptr_t num_coeff) {
const __m256i zero = _mm256_setzero_si256();
for (int i = 0; i < num_coeff; i += 64) {
// Load 64 elements for coeff and dqcoeff.
const __m256i _coeff_0 = _mm256_loadu_si256((const __m256i *)coeff);
const __m256i _dqcoeff_0 = _mm256_loadu_si256((const __m256i *)dqcoeff);
const __m256i _coeff_1 = _mm256_loadu_si256((const __m256i *)(coeff + 16));
const __m256i _dqcoeff_1 =
_mm256_loadu_si256((const __m256i *)(dqcoeff + 16));
const __m256i _coeff_2 = _mm256_loadu_si256((const __m256i *)(coeff + 32));
const __m256i _dqcoeff_2 =
_mm256_loadu_si256((const __m256i *)(dqcoeff + 32));
const __m256i _coeff_3 = _mm256_loadu_si256((const __m256i *)(coeff + 48));
const __m256i _dqcoeff_3 =
_mm256_loadu_si256((const __m256i *)(dqcoeff + 48));
// d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
const __m256i diff_0 = _mm256_sub_epi16(_dqcoeff_0, _coeff_0);
const __m256i diff_1 = _mm256_sub_epi16(_dqcoeff_1, _coeff_1);
const __m256i diff_2 = _mm256_sub_epi16(_dqcoeff_2, _coeff_2);
const __m256i diff_3 = _mm256_sub_epi16(_dqcoeff_3, _coeff_3);
// r0 r1 r2 r3 r4 r5 r6 r7
const __m256i error_0 = _mm256_madd_epi16(diff_0, diff_0);
const __m256i error_1 = _mm256_madd_epi16(diff_1, diff_1);
const __m256i error_2 = _mm256_madd_epi16(diff_2, diff_2);
const __m256i error_3 = _mm256_madd_epi16(diff_3, diff_3);
// r00 r01 r02 r03 r04 r05 r06 r07
const __m256i err_final_0 = _mm256_add_epi32(error_0, error_1);
// r10 r11 r12 r13 r14 r15 r16 r17
const __m256i err_final_1 = _mm256_add_epi32(error_2, error_3);
// For extreme input values, the accumulation needs to happen in 64 bit
// precision to avoid any overflow. r00 r01 r04 r05
const __m256i exp0_error_lo = _mm256_unpacklo_epi32(err_final_0, zero);
// r02 r03 r06 r07
const __m256i exp0_error_hi = _mm256_unpackhi_epi32(err_final_0, zero);
// r10 r11 r14 r15
const __m256i exp1_error_lo = _mm256_unpacklo_epi32(err_final_1, zero);
// r12 r13 r16 r17
const __m256i exp1_error_hi = _mm256_unpackhi_epi32(err_final_1, zero);
const __m256i sum_temp_0 = _mm256_add_epi64(exp0_error_hi, exp0_error_lo);
const __m256i sum_temp_1 = _mm256_add_epi64(exp1_error_hi, exp1_error_lo);
const __m256i sse_256_temp = _mm256_add_epi64(sum_temp_1, sum_temp_0);
*sse_256 = _mm256_add_epi64(*sse_256, sse_256_temp);
coeff += 64;
dqcoeff += 64;
}
}
int64_t av1_block_error_lp_avx2(const int16_t *coeff, const int16_t *dqcoeff,
intptr_t num_coeff) {
assert(num_coeff % 16 == 0);
__m256i sse_256 = _mm256_setzero_si256();
int64_t sse;
if (num_coeff == 16)
av1_block_error_num_coeff16_avx2(coeff, dqcoeff, &sse_256);
else if (num_coeff == 32)
av1_block_error_num_coeff32_avx2(coeff, dqcoeff, &sse_256);
else
av1_block_error_num_coeff64_avx2(coeff, dqcoeff, &sse_256, num_coeff);
// Save the higher 64 bit of each 128 bit lane.
const __m256i sse_hi = _mm256_srli_si256(sse_256, 8);
// Add the higher 64 bit to the low 64 bit.
sse_256 = _mm256_add_epi64(sse_256, sse_hi);
// Accumulate the sse_256 register to get final sse
const __m128i sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
_mm256_extractf128_si256(sse_256, 1));
// Store the results.
_mm_storel_epi64((__m128i *)&sse, sse_128);
return sse;
}
int64_t av1_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
__m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
__m256i sse_reg_64hi, ssz_reg_64hi;
__m128i sse_reg128, ssz_reg128;
int64_t sse;
int i;
const __m256i zero_reg = _mm256_setzero_si256();
// init sse and ssz registerd to zero
sse_reg = _mm256_setzero_si256();
ssz_reg = _mm256_setzero_si256();
for (i = 0; i < block_size; i += 16) {
// load 32 bytes from coeff and dqcoeff
read_coeff(coeff, i, &coeff_reg);
read_coeff(dqcoeff, i, &dqcoeff_reg);
// dqcoeff - coeff
dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
// madd (dqcoeff - coeff)
dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
// madd coeff
coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
// expand each double word of madd (dqcoeff - coeff) to quad word
exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
// expand each double word of madd (coeff) to quad word
exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
// add each quad word of madd (dqcoeff - coeff) and madd (coeff)
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
}
// save the higher 64 bit of each 128 bit lane
sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
// add the higher 64 bit to the low 64 bit
sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
// add each 64 bit from each of the 128 bit lane of the 256 bit
sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
_mm256_extractf128_si256(sse_reg, 1));
ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
_mm256_extractf128_si256(ssz_reg, 1));
// store the results
_mm_storel_epi64((__m128i *)(&sse), sse_reg128);
_mm_storel_epi64((__m128i *)(ssz), ssz_reg128);
_mm256_zeroupper();
return sse;
}