blob: e6bcac4fbaa77bbb9da9831e09755ee94a34e084 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/fwd_txfm.h"
#include "aom_ports/mem.h"
#include "av1/common/blockd.h"
#include "av1/common/av1_fwd_txfm1d.h"
#include "av1/common/av1_fwd_txfm1d_cfg.h"
#include "av1/common/idct.h"
#if CONFIG_DAALA_TX4 || CONFIG_DAALA_TX8 || CONFIG_DAALA_TX16 || \
CONFIG_DAALA_TX32 || CONFIG_DAALA_TX64
#include "av1/common/daala_tx.h"
#endif
static INLINE void range_check(const tran_low_t *input, const int size,
const int bit) {
#if 0 // CONFIG_COEFFICIENT_RANGE_CHECKING
// TODO(angiebird): the range_check is not used because the bit range
// in fdct# is not correct. Since we are going to merge in a new version
// of fdct# from nextgenv2, we won't fix the incorrect bit range now.
int i;
for (i = 0; i < size; ++i) {
assert(abs(input[i]) < (1 << bit));
}
#else
(void)input;
(void)size;
(void)bit;
#endif
}
static void fdct4(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[4];
// stage 0
range_check(input, 4, 14);
// stage 1
output[0] = input[0] + input[3];
output[1] = input[1] + input[2];
output[2] = input[1] - input[2];
output[3] = input[0] - input[3];
range_check(output, 4, 15);
// stage 2
temp = output[0] * cospi_16_64 + output[1] * cospi_16_64;
step[0] = (tran_low_t)fdct_round_shift(temp);
temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64;
step[1] = (tran_low_t)fdct_round_shift(temp);
temp = output[2] * cospi_24_64 + output[3] * cospi_8_64;
step[2] = (tran_low_t)fdct_round_shift(temp);
temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64;
step[3] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 4, 16);
// stage 3
output[0] = step[0];
output[1] = step[2];
output[2] = step[1];
output[3] = step[3];
range_check(output, 4, 16);
}
static void fdct8(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[8];
// stage 0
range_check(input, 8, 13);
// stage 1
output[0] = input[0] + input[7];
output[1] = input[1] + input[6];
output[2] = input[2] + input[5];
output[3] = input[3] + input[4];
output[4] = input[3] - input[4];
output[5] = input[2] - input[5];
output[6] = input[1] - input[6];
output[7] = input[0] - input[7];
range_check(output, 8, 14);
// stage 2
step[0] = output[0] + output[3];
step[1] = output[1] + output[2];
step[2] = output[1] - output[2];
step[3] = output[0] - output[3];
step[4] = output[4];
temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_16_64 + output[5] * cospi_16_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
step[7] = output[7];
range_check(step, 8, 15);
// stage 3
temp = step[0] * cospi_16_64 + step[1] * cospi_16_64;
output[0] = (tran_low_t)fdct_round_shift(temp);
temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64;
output[1] = (tran_low_t)fdct_round_shift(temp);
temp = step[2] * cospi_24_64 + step[3] * cospi_8_64;
output[2] = (tran_low_t)fdct_round_shift(temp);
temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64;
output[3] = (tran_low_t)fdct_round_shift(temp);
output[4] = step[4] + step[5];
output[5] = step[4] - step[5];
output[6] = step[7] - step[6];
output[7] = step[7] + step[6];
range_check(output, 8, 16);
// stage 4
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
temp = output[4] * cospi_28_64 + output[7] * cospi_4_64;
step[4] = (tran_low_t)fdct_round_shift(temp);
temp = output[5] * cospi_12_64 + output[6] * cospi_20_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64;
step[7] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 8, 16);
// stage 5
output[0] = step[0];
output[1] = step[4];
output[2] = step[2];
output[3] = step[6];
output[4] = step[1];
output[5] = step[5];
output[6] = step[3];
output[7] = step[7];
range_check(output, 8, 16);
}
static void fdct16(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[16];
// stage 0
range_check(input, 16, 13);
// stage 1
output[0] = input[0] + input[15];
output[1] = input[1] + input[14];
output[2] = input[2] + input[13];
output[3] = input[3] + input[12];
output[4] = input[4] + input[11];
output[5] = input[5] + input[10];
output[6] = input[6] + input[9];
output[7] = input[7] + input[8];
output[8] = input[7] - input[8];
output[9] = input[6] - input[9];
output[10] = input[5] - input[10];
output[11] = input[4] - input[11];
output[12] = input[3] - input[12];
output[13] = input[2] - input[13];
output[14] = input[1] - input[14];
output[15] = input[0] - input[15];
range_check(output, 16, 14);
// stage 2
step[0] = output[0] + output[7];
step[1] = output[1] + output[6];
step[2] = output[2] + output[5];
step[3] = output[3] + output[4];
step[4] = output[3] - output[4];
step[5] = output[2] - output[5];
step[6] = output[1] - output[6];
step[7] = output[0] - output[7];
step[8] = output[8];
step[9] = output[9];
temp = output[10] * -cospi_16_64 + output[13] * cospi_16_64;
step[10] = (tran_low_t)fdct_round_shift(temp);
temp = output[11] * -cospi_16_64 + output[12] * cospi_16_64;
step[11] = (tran_low_t)fdct_round_shift(temp);
temp = output[12] * cospi_16_64 + output[11] * cospi_16_64;
step[12] = (tran_low_t)fdct_round_shift(temp);
temp = output[13] * cospi_16_64 + output[10] * cospi_16_64;
step[13] = (tran_low_t)fdct_round_shift(temp);
step[14] = output[14];
step[15] = output[15];
range_check(step, 16, 15);
// stage 3
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = step[1] - step[2];
output[3] = step[0] - step[3];
output[4] = step[4];
temp = step[5] * -cospi_16_64 + step[6] * cospi_16_64;
output[5] = (tran_low_t)fdct_round_shift(temp);
temp = step[6] * cospi_16_64 + step[5] * cospi_16_64;
output[6] = (tran_low_t)fdct_round_shift(temp);
output[7] = step[7];
output[8] = step[8] + step[11];
output[9] = step[9] + step[10];
output[10] = step[9] - step[10];
output[11] = step[8] - step[11];
output[12] = step[15] - step[12];
output[13] = step[14] - step[13];
output[14] = step[14] + step[13];
output[15] = step[15] + step[12];
range_check(output, 16, 16);
// stage 4
temp = output[0] * cospi_16_64 + output[1] * cospi_16_64;
step[0] = (tran_low_t)fdct_round_shift(temp);
temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64;
step[1] = (tran_low_t)fdct_round_shift(temp);
temp = output[2] * cospi_24_64 + output[3] * cospi_8_64;
step[2] = (tran_low_t)fdct_round_shift(temp);
temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64;
step[3] = (tran_low_t)fdct_round_shift(temp);
step[4] = output[4] + output[5];
step[5] = output[4] - output[5];
step[6] = output[7] - output[6];
step[7] = output[7] + output[6];
step[8] = output[8];
temp = output[9] * -cospi_8_64 + output[14] * cospi_24_64;
step[9] = (tran_low_t)fdct_round_shift(temp);
temp = output[10] * -cospi_24_64 + output[13] * -cospi_8_64;
step[10] = (tran_low_t)fdct_round_shift(temp);
step[11] = output[11];
step[12] = output[12];
temp = output[13] * cospi_24_64 + output[10] * -cospi_8_64;
step[13] = (tran_low_t)fdct_round_shift(temp);
temp = output[14] * cospi_8_64 + output[9] * cospi_24_64;
step[14] = (tran_low_t)fdct_round_shift(temp);
step[15] = output[15];
range_check(step, 16, 16);
// stage 5
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
temp = step[4] * cospi_28_64 + step[7] * cospi_4_64;
output[4] = (tran_low_t)fdct_round_shift(temp);
temp = step[5] * cospi_12_64 + step[6] * cospi_20_64;
output[5] = (tran_low_t)fdct_round_shift(temp);
temp = step[6] * cospi_12_64 + step[5] * -cospi_20_64;
output[6] = (tran_low_t)fdct_round_shift(temp);
temp = step[7] * cospi_28_64 + step[4] * -cospi_4_64;
output[7] = (tran_low_t)fdct_round_shift(temp);
output[8] = step[8] + step[9];
output[9] = step[8] - step[9];
output[10] = step[11] - step[10];
output[11] = step[11] + step[10];
output[12] = step[12] + step[13];
output[13] = step[12] - step[13];
output[14] = step[15] - step[14];
output[15] = step[15] + step[14];
range_check(output, 16, 16);
// stage 6
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
temp = output[8] * cospi_30_64 + output[15] * cospi_2_64;
step[8] = (tran_low_t)fdct_round_shift(temp);
temp = output[9] * cospi_14_64 + output[14] * cospi_18_64;
step[9] = (tran_low_t)fdct_round_shift(temp);
temp = output[10] * cospi_22_64 + output[13] * cospi_10_64;
step[10] = (tran_low_t)fdct_round_shift(temp);
temp = output[11] * cospi_6_64 + output[12] * cospi_26_64;
step[11] = (tran_low_t)fdct_round_shift(temp);
temp = output[12] * cospi_6_64 + output[11] * -cospi_26_64;
step[12] = (tran_low_t)fdct_round_shift(temp);
temp = output[13] * cospi_22_64 + output[10] * -cospi_10_64;
step[13] = (tran_low_t)fdct_round_shift(temp);
temp = output[14] * cospi_14_64 + output[9] * -cospi_18_64;
step[14] = (tran_low_t)fdct_round_shift(temp);
temp = output[15] * cospi_30_64 + output[8] * -cospi_2_64;
step[15] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 16, 16);
// stage 7
output[0] = step[0];
output[1] = step[8];
output[2] = step[4];
output[3] = step[12];
output[4] = step[2];
output[5] = step[10];
output[6] = step[6];
output[7] = step[14];
output[8] = step[1];
output[9] = step[9];
output[10] = step[5];
output[11] = step[13];
output[12] = step[3];
output[13] = step[11];
output[14] = step[7];
output[15] = step[15];
range_check(output, 16, 16);
}
static void fdct32(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[32];
// stage 0
range_check(input, 32, 14);
// stage 1
output[0] = input[0] + input[31];
output[1] = input[1] + input[30];
output[2] = input[2] + input[29];
output[3] = input[3] + input[28];
output[4] = input[4] + input[27];
output[5] = input[5] + input[26];
output[6] = input[6] + input[25];
output[7] = input[7] + input[24];
output[8] = input[8] + input[23];
output[9] = input[9] + input[22];
output[10] = input[10] + input[21];
output[11] = input[11] + input[20];
output[12] = input[12] + input[19];
output[13] = input[13] + input[18];
output[14] = input[14] + input[17];
output[15] = input[15] + input[16];
output[16] = input[15] - input[16];
output[17] = input[14] - input[17];
output[18] = input[13] - input[18];
output[19] = input[12] - input[19];
output[20] = input[11] - input[20];
output[21] = input[10] - input[21];
output[22] = input[9] - input[22];
output[23] = input[8] - input[23];
output[24] = input[7] - input[24];
output[25] = input[6] - input[25];
output[26] = input[5] - input[26];
output[27] = input[4] - input[27];
output[28] = input[3] - input[28];
output[29] = input[2] - input[29];
output[30] = input[1] - input[30];
output[31] = input[0] - input[31];
range_check(output, 32, 15);
// stage 2
step[0] = output[0] + output[15];
step[1] = output[1] + output[14];
step[2] = output[2] + output[13];
step[3] = output[3] + output[12];
step[4] = output[4] + output[11];
step[5] = output[5] + output[10];
step[6] = output[6] + output[9];
step[7] = output[7] + output[8];
step[8] = output[7] - output[8];
step[9] = output[6] - output[9];
step[10] = output[5] - output[10];
step[11] = output[4] - output[11];
step[12] = output[3] - output[12];
step[13] = output[2] - output[13];
step[14] = output[1] - output[14];
step[15] = output[0] - output[15];
step[16] = output[16];
step[17] = output[17];
step[18] = output[18];
step[19] = output[19];
temp = output[20] * -cospi_16_64 + output[27] * cospi_16_64;
step[20] = (tran_low_t)fdct_round_shift(temp);
temp = output[21] * -cospi_16_64 + output[26] * cospi_16_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
temp = output[22] * -cospi_16_64 + output[25] * cospi_16_64;
step[22] = (tran_low_t)fdct_round_shift(temp);
temp = output[23] * -cospi_16_64 + output[24] * cospi_16_64;
step[23] = (tran_low_t)fdct_round_shift(temp);
temp = output[24] * cospi_16_64 + output[23] * cospi_16_64;
step[24] = (tran_low_t)fdct_round_shift(temp);
temp = output[25] * cospi_16_64 + output[22] * cospi_16_64;
step[25] = (tran_low_t)fdct_round_shift(temp);
temp = output[26] * cospi_16_64 + output[21] * cospi_16_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
temp = output[27] * cospi_16_64 + output[20] * cospi_16_64;
step[27] = (tran_low_t)fdct_round_shift(temp);
step[28] = output[28];
step[29] = output[29];
step[30] = output[30];
step[31] = output[31];
range_check(step, 32, 16);
// stage 3
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
output[8] = step[8];
output[9] = step[9];
temp = step[10] * -cospi_16_64 + step[13] * cospi_16_64;
output[10] = (tran_low_t)fdct_round_shift(temp);
temp = step[11] * -cospi_16_64 + step[12] * cospi_16_64;
output[11] = (tran_low_t)fdct_round_shift(temp);
temp = step[12] * cospi_16_64 + step[11] * cospi_16_64;
output[12] = (tran_low_t)fdct_round_shift(temp);
temp = step[13] * cospi_16_64 + step[10] * cospi_16_64;
output[13] = (tran_low_t)fdct_round_shift(temp);
output[14] = step[14];
output[15] = step[15];
output[16] = step[16] + step[23];
output[17] = step[17] + step[22];
output[18] = step[18] + step[21];
output[19] = step[19] + step[20];
output[20] = step[19] - step[20];
output[21] = step[18] - step[21];
output[22] = step[17] - step[22];
output[23] = step[16] - step[23];
output[24] = step[31] - step[24];
output[25] = step[30] - step[25];
output[26] = step[29] - step[26];
output[27] = step[28] - step[27];
output[28] = step[28] + step[27];
output[29] = step[29] + step[26];
output[30] = step[30] + step[25];
output[31] = step[31] + step[24];
range_check(output, 32, 17);
// stage 4
step[0] = output[0] + output[3];
step[1] = output[1] + output[2];
step[2] = output[1] - output[2];
step[3] = output[0] - output[3];
step[4] = output[4];
temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_16_64 + output[5] * cospi_16_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
step[7] = output[7];
step[8] = output[8] + output[11];
step[9] = output[9] + output[10];
step[10] = output[9] - output[10];
step[11] = output[8] - output[11];
step[12] = output[15] - output[12];
step[13] = output[14] - output[13];
step[14] = output[14] + output[13];
step[15] = output[15] + output[12];
step[16] = output[16];
step[17] = output[17];
temp = output[18] * -cospi_8_64 + output[29] * cospi_24_64;
step[18] = (tran_low_t)fdct_round_shift(temp);
temp = output[19] * -cospi_8_64 + output[28] * cospi_24_64;
step[19] = (tran_low_t)fdct_round_shift(temp);
temp = output[20] * -cospi_24_64 + output[27] * -cospi_8_64;
step[20] = (tran_low_t)fdct_round_shift(temp);
temp = output[21] * -cospi_24_64 + output[26] * -cospi_8_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
step[22] = output[22];
step[23] = output[23];
step[24] = output[24];
step[25] = output[25];
temp = output[26] * cospi_24_64 + output[21] * -cospi_8_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
temp = output[27] * cospi_24_64 + output[20] * -cospi_8_64;
step[27] = (tran_low_t)fdct_round_shift(temp);
temp = output[28] * cospi_8_64 + output[19] * cospi_24_64;
step[28] = (tran_low_t)fdct_round_shift(temp);
temp = output[29] * cospi_8_64 + output[18] * cospi_24_64;
step[29] = (tran_low_t)fdct_round_shift(temp);
step[30] = output[30];
step[31] = output[31];
range_check(step, 32, 18);
// stage 5
temp = step[0] * cospi_16_64 + step[1] * cospi_16_64;
output[0] = (tran_low_t)fdct_round_shift(temp);
temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64;
output[1] = (tran_low_t)fdct_round_shift(temp);
temp = step[2] * cospi_24_64 + step[3] * cospi_8_64;
output[2] = (tran_low_t)fdct_round_shift(temp);
temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64;
output[3] = (tran_low_t)fdct_round_shift(temp);
output[4] = step[4] + step[5];
output[5] = step[4] - step[5];
output[6] = step[7] - step[6];
output[7] = step[7] + step[6];
output[8] = step[8];
temp = step[9] * -cospi_8_64 + step[14] * cospi_24_64;
output[9] = (tran_low_t)fdct_round_shift(temp);
temp = step[10] * -cospi_24_64 + step[13] * -cospi_8_64;
output[10] = (tran_low_t)fdct_round_shift(temp);
output[11] = step[11];
output[12] = step[12];
temp = step[13] * cospi_24_64 + step[10] * -cospi_8_64;
output[13] = (tran_low_t)fdct_round_shift(temp);
temp = step[14] * cospi_8_64 + step[9] * cospi_24_64;
output[14] = (tran_low_t)fdct_round_shift(temp);
output[15] = step[15];
output[16] = step[16] + step[19];
output[17] = step[17] + step[18];
output[18] = step[17] - step[18];
output[19] = step[16] - step[19];
output[20] = step[23] - step[20];
output[21] = step[22] - step[21];
output[22] = step[22] + step[21];
output[23] = step[23] + step[20];
output[24] = step[24] + step[27];
output[25] = step[25] + step[26];
output[26] = step[25] - step[26];
output[27] = step[24] - step[27];
output[28] = step[31] - step[28];
output[29] = step[30] - step[29];
output[30] = step[30] + step[29];
output[31] = step[31] + step[28];
range_check(output, 32, 18);
// stage 6
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
temp = output[4] * cospi_28_64 + output[7] * cospi_4_64;
step[4] = (tran_low_t)fdct_round_shift(temp);
temp = output[5] * cospi_12_64 + output[6] * cospi_20_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64;
step[7] = (tran_low_t)fdct_round_shift(temp);
step[8] = output[8] + output[9];
step[9] = output[8] - output[9];
step[10] = output[11] - output[10];
step[11] = output[11] + output[10];
step[12] = output[12] + output[13];
step[13] = output[12] - output[13];
step[14] = output[15] - output[14];
step[15] = output[15] + output[14];
step[16] = output[16];
temp = output[17] * -cospi_4_64 + output[30] * cospi_28_64;
step[17] = (tran_low_t)fdct_round_shift(temp);
temp = output[18] * -cospi_28_64 + output[29] * -cospi_4_64;
step[18] = (tran_low_t)fdct_round_shift(temp);
step[19] = output[19];
step[20] = output[20];
temp = output[21] * -cospi_20_64 + output[26] * cospi_12_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
temp = output[22] * -cospi_12_64 + output[25] * -cospi_20_64;
step[22] = (tran_low_t)fdct_round_shift(temp);
step[23] = output[23];
step[24] = output[24];
temp = output[25] * cospi_12_64 + output[22] * -cospi_20_64;
step[25] = (tran_low_t)fdct_round_shift(temp);
temp = output[26] * cospi_20_64 + output[21] * cospi_12_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
step[27] = output[27];
step[28] = output[28];
temp = output[29] * cospi_28_64 + output[18] * -cospi_4_64;
step[29] = (tran_low_t)fdct_round_shift(temp);
temp = output[30] * cospi_4_64 + output[17] * cospi_28_64;
step[30] = (tran_low_t)fdct_round_shift(temp);
step[31] = output[31];
range_check(step, 32, 18);
// stage 7
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
output[4] = step[4];
output[5] = step[5];
output[6] = step[6];
output[7] = step[7];
temp = step[8] * cospi_30_64 + step[15] * cospi_2_64;
output[8] = (tran_low_t)fdct_round_shift(temp);
temp = step[9] * cospi_14_64 + step[14] * cospi_18_64;
output[9] = (tran_low_t)fdct_round_shift(temp);
temp = step[10] * cospi_22_64 + step[13] * cospi_10_64;
output[10] = (tran_low_t)fdct_round_shift(temp);
temp = step[11] * cospi_6_64 + step[12] * cospi_26_64;
output[11] = (tran_low_t)fdct_round_shift(temp);
temp = step[12] * cospi_6_64 + step[11] * -cospi_26_64;
output[12] = (tran_low_t)fdct_round_shift(temp);
temp = step[13] * cospi_22_64 + step[10] * -cospi_10_64;
output[13] = (tran_low_t)fdct_round_shift(temp);
temp = step[14] * cospi_14_64 + step[9] * -cospi_18_64;
output[14] = (tran_low_t)fdct_round_shift(temp);
temp = step[15] * cospi_30_64 + step[8] * -cospi_2_64;
output[15] = (tran_low_t)fdct_round_shift(temp);
output[16] = step[16] + step[17];
output[17] = step[16] - step[17];
output[18] = step[19] - step[18];
output[19] = step[19] + step[18];
output[20] = step[20] + step[21];
output[21] = step[20] - step[21];
output[22] = step[23] - step[22];
output[23] = step[23] + step[22];
output[24] = step[24] + step[25];
output[25] = step[24] - step[25];
output[26] = step[27] - step[26];
output[27] = step[27] + step[26];
output[28] = step[28] + step[29];
output[29] = step[28] - step[29];
output[30] = step[31] - step[30];
output[31] = step[31] + step[30];
range_check(output, 32, 18);
// stage 8
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
step[8] = output[8];
step[9] = output[9];
step[10] = output[10];
step[11] = output[11];
step[12] = output[12];
step[13] = output[13];
step[14] = output[14];
step[15] = output[15];
temp = output[16] * cospi_31_64 + output[31] * cospi_1_64;
step[16] = (tran_low_t)fdct_round_shift(temp);
temp = output[17] * cospi_15_64 + output[30] * cospi_17_64;
step[17] = (tran_low_t)fdct_round_shift(temp);
temp = output[18] * cospi_23_64 + output[29] * cospi_9_64;
step[18] = (tran_low_t)fdct_round_shift(temp);
temp = output[19] * cospi_7_64 + output[28] * cospi_25_64;
step[19] = (tran_low_t)fdct_round_shift(temp);
temp = output[20] * cospi_27_64 + output[27] * cospi_5_64;
step[20] = (tran_low_t)fdct_round_shift(temp);
temp = output[21] * cospi_11_64 + output[26] * cospi_21_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
temp = output[22] * cospi_19_64 + output[25] * cospi_13_64;
step[22] = (tran_low_t)fdct_round_shift(temp);
temp = output[23] * cospi_3_64 + output[24] * cospi_29_64;
step[23] = (tran_low_t)fdct_round_shift(temp);
temp = output[24] * cospi_3_64 + output[23] * -cospi_29_64;
step[24] = (tran_low_t)fdct_round_shift(temp);
temp = output[25] * cospi_19_64 + output[22] * -cospi_13_64;
step[25] = (tran_low_t)fdct_round_shift(temp);
temp = output[26] * cospi_11_64 + output[21] * -cospi_21_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
temp = output[27] * cospi_27_64 + output[20] * -cospi_5_64;
step[27] = (tran_low_t)fdct_round_shift(temp);
temp = output[28] * cospi_7_64 + output[19] * -cospi_25_64;
step[28] = (tran_low_t)fdct_round_shift(temp);
temp = output[29] * cospi_23_64 + output[18] * -cospi_9_64;
step[29] = (tran_low_t)fdct_round_shift(temp);
temp = output[30] * cospi_15_64 + output[17] * -cospi_17_64;
step[30] = (tran_low_t)fdct_round_shift(temp);
temp = output[31] * cospi_31_64 + output[16] * -cospi_1_64;
step[31] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 32, 18);
// stage 9
output[0] = step[0];
output[1] = step[16];
output[2] = step[8];
output[3] = step[24];
output[4] = step[4];
output[5] = step[20];
output[6] = step[12];
output[7] = step[28];
output[8] = step[2];
output[9] = step[18];
output[10] = step[10];
output[11] = step[26];
output[12] = step[6];
output[13] = step[22];
output[14] = step[14];
output[15] = step[30];
output[16] = step[1];
output[17] = step[17];
output[18] = step[9];
output[19] = step[25];
output[20] = step[5];
output[21] = step[21];
output[22] = step[13];
output[23] = step[29];
output[24] = step[3];
output[25] = step[19];
output[26] = step[11];
output[27] = step[27];
output[28] = step[7];
output[29] = step[23];
output[30] = step[15];
output[31] = step[31];
range_check(output, 32, 18);
}
#ifndef AV1_DCT_GTEST
static void fadst4(const tran_low_t *input, tran_low_t *output) {
tran_high_t x0, x1, x2, x3;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
x0 = input[0];
x1 = input[1];
x2 = input[2];
x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_4_9 * x0;
s2 = sinpi_2_9 * x1;
s3 = sinpi_1_9 * x1;
s4 = sinpi_3_9 * x2;
s5 = sinpi_4_9 * x3;
s6 = sinpi_2_9 * x3;
s7 = x0 + x1 - x3;
x0 = s0 + s2 + s5;
x1 = sinpi_3_9 * s7;
x2 = s1 - s3 + s6;
x3 = s4;
s0 = x0 + x3;
s1 = x1;
s2 = x2 - x3;
s3 = x2 - x0 + x3;
// 1-D transform scaling factor is sqrt(2).
output[0] = (tran_low_t)fdct_round_shift(s0);
output[1] = (tran_low_t)fdct_round_shift(s1);
output[2] = (tran_low_t)fdct_round_shift(s2);
output[3] = (tran_low_t)fdct_round_shift(s3);
}
static void fadst8(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_high_t x0 = input[7];
tran_high_t x1 = input[0];
tran_high_t x2 = input[5];
tran_high_t x3 = input[2];
tran_high_t x4 = input[3];
tran_high_t x5 = input[4];
tran_high_t x6 = input[1];
tran_high_t x7 = input[6];
// stage 1
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = fdct_round_shift(s0 - s4);
x5 = fdct_round_shift(s1 - s5);
x6 = fdct_round_shift(s2 - s6);
x7 = fdct_round_shift(s3 - s7);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
s6 = -cospi_24_64 * x6 + cospi_8_64 * x7;
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
x0 = fdct_round_shift(s0 + s2);
x1 = fdct_round_shift(s1 + s3);
x2 = fdct_round_shift(s0 - s2);
x3 = fdct_round_shift(s1 - s3);
x4 = fdct_round_shift(s4 + s6);
x5 = fdct_round_shift(s5 + s7);
x6 = fdct_round_shift(s4 - s6);
x7 = fdct_round_shift(s5 - s7);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
x2 = fdct_round_shift(s2);
x3 = fdct_round_shift(s3);
x6 = fdct_round_shift(s6);
x7 = fdct_round_shift(s7);
output[0] = (tran_low_t)x0;
output[1] = (tran_low_t)-x4;
output[2] = (tran_low_t)x6;
output[3] = (tran_low_t)-x2;
output[4] = (tran_low_t)x3;
output[5] = (tran_low_t)-x7;
output[6] = (tran_low_t)x5;
output[7] = (tran_low_t)-x1;
}
static void fadst16(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
tran_high_t s9, s10, s11, s12, s13, s14, s15;
tran_high_t x0 = input[15];
tran_high_t x1 = input[0];
tran_high_t x2 = input[13];
tran_high_t x3 = input[2];
tran_high_t x4 = input[11];
tran_high_t x5 = input[4];
tran_high_t x6 = input[9];
tran_high_t x7 = input[6];
tran_high_t x8 = input[7];
tran_high_t x9 = input[8];
tran_high_t x10 = input[5];
tran_high_t x11 = input[10];
tran_high_t x12 = input[3];
tran_high_t x13 = input[12];
tran_high_t x14 = input[1];
tran_high_t x15 = input[14];
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = s0 + s8;
x1 = s1 + s9;
x2 = s2 + s10;
x3 = s3 + s11;
x4 = s4 + s12;
x5 = s5 + s13;
x6 = s6 + s14;
x7 = s7 + s15;
x8 = fdct_round_shift(s0 - s8);
x9 = fdct_round_shift(s1 - s9);
x10 = fdct_round_shift(s2 - s10);
x11 = fdct_round_shift(s3 - s11);
x12 = fdct_round_shift(s4 - s12);
x13 = fdct_round_shift(s5 - s13);
x14 = fdct_round_shift(s6 - s14);
x15 = fdct_round_shift(s7 - s15);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = -x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = -x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = fdct_round_shift(s0 - s4);
x5 = fdct_round_shift(s1 - s5);
x6 = fdct_round_shift(s2 - s6);
x7 = fdct_round_shift(s3 - s7);
x8 = s8 + s12;
x9 = s9 + s13;
x10 = s10 + s14;
x11 = s11 + s15;
x12 = fdct_round_shift(s8 - s12);
x13 = fdct_round_shift(s9 - s13);
x14 = fdct_round_shift(s10 - s14);
x15 = fdct_round_shift(s11 - s15);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = -x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = -x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = fdct_round_shift(s0 + s2);
x1 = fdct_round_shift(s1 + s3);
x2 = fdct_round_shift(s0 - s2);
x3 = fdct_round_shift(s1 - s3);
x4 = fdct_round_shift(s4 + s6);
x5 = fdct_round_shift(s5 + s7);
x6 = fdct_round_shift(s4 - s6);
x7 = fdct_round_shift(s5 - s7);
x8 = fdct_round_shift(s8 + s10);
x9 = fdct_round_shift(s9 + s11);
x10 = fdct_round_shift(s8 - s10);
x11 = fdct_round_shift(s9 - s11);
x12 = fdct_round_shift(s12 + s14);
x13 = fdct_round_shift(s13 + s15);
x14 = fdct_round_shift(s12 - s14);
x15 = fdct_round_shift(s13 - s15);
// stage 4
s2 = (-cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (-x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (-x10 + x11);
s14 = (-cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = fdct_round_shift(s2);
x3 = fdct_round_shift(s3);
x6 = fdct_round_shift(s6);
x7 = fdct_round_shift(s7);
x10 = fdct_round_shift(s10);
x11 = fdct_round_shift(s11);
x14 = fdct_round_shift(s14);
x15 = fdct_round_shift(s15);
output[0] = (tran_low_t)x0;
output[1] = (tran_low_t)-x8;
output[2] = (tran_low_t)x12;
output[3] = (tran_low_t)-x4;
output[4] = (tran_low_t)x6;
output[5] = (tran_low_t)x14;
output[6] = (tran_low_t)x10;
output[7] = (tran_low_t)x2;
output[8] = (tran_low_t)x3;
output[9] = (tran_low_t)x11;
output[10] = (tran_low_t)x15;
output[11] = (tran_low_t)x7;
output[12] = (tran_low_t)x5;
output[13] = (tran_low_t)-x13;
output[14] = (tran_low_t)x9;
output[15] = (tran_low_t)-x1;
}
// For use in lieu of ADST
static void fhalfright32(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[16];
for (i = 0; i < 16; ++i) {
output[16 + i] = input[i] * 4;
}
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 16] * Sqrt2);
}
fdct16(inputhalf, output);
// Note overall scaling factor is 4 times orthogonal
}
#if CONFIG_MRC_TX
static void get_masked_residual32(const int16_t **input, int *input_stride,
const uint8_t *pred, int pred_stride,
int16_t *masked_input,
TxfmParam *txfm_param) {
int n_masked_vals = 0;
uint8_t *mrc_mask;
uint8_t mask_tmp[32 * 32];
if ((txfm_param->is_inter && SIGNAL_MRC_MASK_INTER) ||
(!txfm_param->is_inter && SIGNAL_MRC_MASK_INTRA)) {
mrc_mask = txfm_param->mask;
n_masked_vals = get_mrc_diff_mask(*input, *input_stride, mrc_mask, 32, 32,
32, txfm_param->is_inter);
} else {
mrc_mask = mask_tmp;
n_masked_vals = get_mrc_pred_mask(pred, pred_stride, mrc_mask, 32, 32, 32,
txfm_param->is_inter);
}
// Do not use MRC_DCT if mask is invalid. DCT_DCT will be used instead.
if (!is_valid_mrc_mask(n_masked_vals, 32, 32)) {
*txfm_param->valid_mask = 0;
return;
}
int32_t sum = 0;
int16_t avg;
// Get the masked average of the prediction
for (int i = 0; i < 32; ++i) {
for (int j = 0; j < 32; ++j) {
sum += mrc_mask[i * 32 + j] * (*input)[i * (*input_stride) + j];
}
}
avg = sum / n_masked_vals;
// Replace all of the unmasked pixels in the prediction with the average
// of the masked pixels
for (int i = 0; i < 32; ++i) {
for (int j = 0; j < 32; ++j)
masked_input[i * 32 + j] =
(mrc_mask[i * 32 + j]) ? (*input)[i * (*input_stride) + j] : avg;
}
*input = masked_input;
*input_stride = 32;
*txfm_param->valid_mask = 1;
}
#endif // CONFIG_MRC_TX
#if CONFIG_LGT || CONFIG_LGT_FROM_PRED
static void flgt4(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
if (!lgtmtx) assert(0);
#if CONFIG_LGT_FROM_PRED
// For DCT/ADST, use butterfly implementations
if (lgtmtx[0] == DCT4) {
fdct4(input, output);
return;
} else if (lgtmtx[0] == ADST4) {
fadst4(input, output);
return;
}
#endif // CONFIG_LGT_FROM_PRED
// evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,4
tran_high_t s[4] = { 0 };
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j) s[j] += lgtmtx[j * 4 + i] * input[i];
for (int i = 0; i < 4; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]);
}
static void flgt8(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
if (!lgtmtx) assert(0);
#if CONFIG_LGT_FROM_PRED
// For DCT/ADST, use butterfly implementations
if (lgtmtx[0] == DCT8) {
fdct8(input, output);
return;
} else if (lgtmtx[0] == ADST8) {
fadst8(input, output);
return;
}
#endif // CONFIG_LGT_FROM_PRED
// evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,8
tran_high_t s[8] = { 0 };
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j) s[j] += lgtmtx[j * 8 + i] * input[i];
for (int i = 0; i < 8; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]);
}
#endif // CONFIG_LGT || CONFIG_LGT_FROM_PRED
#if CONFIG_LGT_FROM_PRED
static void flgt16up(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
if (lgtmtx[0] == DCT16) {
fdct16(input, output);
return;
} else if (lgtmtx[0] == ADST16) {
fadst16(input, output);
return;
} else if (lgtmtx[0] == DCT32) {
fdct32(input, output);
return;
} else if (lgtmtx[0] == ADST32) {
fhalfright32(input, output);
return;
} else {
assert(0);
}
}
typedef void (*FlgtFunc)(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx);
static FlgtFunc flgt_func[4] = { flgt4, flgt8, flgt16up, flgt16up };
typedef void (*GetLgtFunc)(const TxfmParam *txfm_param, int is_col,
const tran_high_t *lgtmtx[], int ntx);
static GetLgtFunc get_lgt_func[4] = { get_lgt4_from_pred, get_lgt8_from_pred,
get_lgt16up_from_pred,
get_lgt16up_from_pred };
// this inline function corresponds to the up scaling before the first
// transform in the av1_fht* functions
static INLINE tran_low_t fwd_upscale_wrt_txsize(const tran_high_t val,
const TX_SIZE tx_size) {
switch (tx_size) {
case TX_4X4: return (tran_low_t)val << 4;
case TX_8X8:
case TX_4X16:
case TX_16X4:
case TX_8X32:
case TX_32X8: return (tran_low_t)val << 2;
case TX_4X8:
case TX_8X4:
case TX_8X16:
case TX_16X8: return (tran_low_t)fdct_round_shift(val * 4 * Sqrt2);
default: assert(0); break;
}
return 0;
}
// This inline function corresponds to the bit shift after the second
// transform in the av1_fht* functions
static INLINE tran_low_t fwd_downscale_wrt_txsize(const tran_low_t val,
const TX_SIZE tx_size) {
switch (tx_size) {
case TX_4X4: return (val + 1) >> 2;
case TX_4X8:
case TX_8X4:
case TX_8X8:
case TX_4X16:
case TX_16X4: return (val + (val < 0)) >> 1;
case TX_8X16:
case TX_16X8: return val;
case TX_8X32:
case TX_32X8: return ROUND_POWER_OF_TWO_SIGNED(val, 2);
default: assert(0); break;
}
return 0;
}
void flgt2d_from_pred_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_SIZE tx_size = txfm_param->tx_size;
const int w = tx_size_wide[tx_size];
const int h = tx_size_high[tx_size];
const int wlog2 = tx_size_wide_log2[tx_size];
const int hlog2 = tx_size_high_log2[tx_size];
assert(w <= 8 || h <= 8);
int i, j;
tran_low_t out[256]; // max size: 8x32 and 32x8
tran_low_t temp_in[32], temp_out[32];
const tran_high_t *lgtmtx_col[1];
const tran_high_t *lgtmtx_row[1];
get_lgt_func[hlog2 - 2](txfm_param, 1, lgtmtx_col, w);
get_lgt_func[wlog2 - 2](txfm_param, 0, lgtmtx_row, h);
// For forward transforms, to be consistent with av1_fht functions, we apply
// short transform first and long transform second.
if (w < h) {
// Row transforms
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j)
temp_in[j] = fwd_upscale_wrt_txsize(input[i * stride + j], tx_size);
flgt_func[wlog2 - 2](temp_in, temp_out, lgtmtx_row[0]);
// right shift of 2 bits here in fht8x16 and fht16x8
for (j = 0; j < w; ++j)
out[j * h + i] = (tx_size == TX_16X8 || tx_size == TX_8X16)
? ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2)
: temp_out[j];
}
// Column transforms
for (i = 0; i < w; ++i) {
for (j = 0; j < h; ++j) temp_in[j] = out[j + i * h];
flgt_func[hlog2 - 2](temp_in, temp_out, lgtmtx_col[0]);
for (j = 0; j < h; ++j)
output[j * w + i] = fwd_downscale_wrt_txsize(temp_out[j], tx_size);
}
} else {
// Column transforms
for (i = 0; i < w; ++i) {
for (j = 0; j < h; ++j)
temp_in[j] = fwd_upscale_wrt_txsize(input[j * stride + i], tx_size);
flgt_func[hlog2 - 2](temp_in, temp_out, lgtmtx_col[0]);
// fht8x16 and fht16x8 have right shift of 2 bits here
for (j = 0; j < h; ++j)
out[j * w + i] = (tx_size == TX_16X8 || tx_size == TX_8X16)
? ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2)
: temp_out[j];
}
// Row transforms
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) temp_in[j] = out[j + i * w];
flgt_func[wlog2 - 2](temp_in, temp_out, lgtmtx_row[0]);
for (j = 0; j < w; ++j)
output[j + i * w] = fwd_downscale_wrt_txsize(temp_out[j], tx_size);
}
}
}
#endif // CONFIG_LGT_FROM_PRED
// TODO(sarahparker) these functions will be removed once the highbitdepth
// codepath works properly for rectangular transforms. They have almost
// identical versions in av1_fwd_txfm1d.c, but those are currently only
// being used for square transforms.
static void fidtx4(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 4; ++i) {
output[i] = (tran_low_t)fdct_round_shift(input[i] * Sqrt2);
}
}
static void fidtx8(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 8; ++i) {
output[i] = input[i] * 2;
}
}
static void fidtx16(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 16; ++i) {
output[i] = (tran_low_t)fdct_round_shift(input[i] * 2 * Sqrt2);
}
}
static void fidtx32(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 32; ++i) {
output[i] = input[i] * 4;
}
}
static void copy_block(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
int i;
for (i = 0; i < l; ++i) {
memcpy(dest + dest_stride * i, src + src_stride * i, w * sizeof(int16_t));
}
}
static void fliplr(int16_t *dest, int stride, int l, int w) {
int i, j;
for (i = 0; i < l; ++i) {
for (j = 0; j < w / 2; ++j) {
const int16_t tmp = dest[i * stride + j];
dest[i * stride + j] = dest[i * stride + w - 1 - j];
dest[i * stride + w - 1 - j] = tmp;
}
}
}
static void flipud(int16_t *dest, int stride, int l, int w) {
int i, j;
for (j = 0; j < w; ++j) {
for (i = 0; i < l / 2; ++i) {
const int16_t tmp = dest[i * stride + j];
dest[i * stride + j] = dest[(l - 1 - i) * stride + j];
dest[(l - 1 - i) * stride + j] = tmp;
}
}
}
static void fliplrud(int16_t *dest, int stride, int l, int w) {
int i, j;
for (i = 0; i < l / 2; ++i) {
for (j = 0; j < w; ++j) {
const int16_t tmp = dest[i * stride + j];
dest[i * stride + j] = dest[(l - 1 - i) * stride + w - 1 - j];
dest[(l - 1 - i) * stride + w - 1 - j] = tmp;
}
}
}
static void copy_fliplr(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
copy_block(src, src_stride, l, w, dest, dest_stride);
fliplr(dest, dest_stride, l, w);
}
static void copy_flipud(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
copy_block(src, src_stride, l, w, dest, dest_stride);
flipud(dest, dest_stride, l, w);
}
static void copy_fliplrud(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
copy_block(src, src_stride, l, w, dest, dest_stride);
fliplrud(dest, dest_stride, l, w);
}
static void maybe_flip_input(const int16_t **src, int *src_stride, int l, int w,
int16_t *buff, TX_TYPE tx_type) {
switch (tx_type) {
#if CONFIG_MRC_TX
case MRC_DCT:
#endif // CONFIG_MRC_TX
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST: break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
copy_flipud(*src, *src_stride, l, w, buff, w);
*src = buff;
*src_stride = w;
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
copy_fliplr(*src, *src_stride, l, w, buff, w);
*src = buff;
*src_stride = w;
break;
case FLIPADST_FLIPADST:
copy_fliplrud(*src, *src_stride, l, w, buff, w);
*src = buff;
*src_stride = w;
break;
default: assert(0); break;
}
}
void av1_fht4x4_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
#if !CONFIG_DAALA_TX4
if (tx_type == DCT_DCT) {
aom_fdct4x4_c(input, output, stride);
return;
}
#endif
{
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX4
{ daala_fdct4, daala_fdct4 }, // DCT_DCT
{ daala_fdst4, daala_fdct4 }, // ADST_DCT
{ daala_fdct4, daala_fdst4 }, // DCT_ADST
{ daala_fdst4, daala_fdst4 }, // ADST_ADST
{ daala_fdst4, daala_fdct4 }, // FLIPADST_DCT
{ daala_fdct4, daala_fdst4 }, // DCT_FLIPADST
{ daala_fdst4, daala_fdst4 }, // FLIPADST_FLIPADST
{ daala_fdst4, daala_fdst4 }, // ADST_FLIPADST
{ daala_fdst4, daala_fdst4 }, // FLIPADST_ADST
{ daala_idtx4, daala_idtx4 }, // IDTX
{ daala_fdct4, daala_idtx4 }, // V_DCT
{ daala_idtx4, daala_fdct4 }, // H_DCT
{ daala_fdst4, daala_idtx4 }, // V_ADST
{ daala_idtx4, daala_fdst4 }, // H_ADST
{ daala_fdst4, daala_idtx4 }, // V_FLIPADST
{ daala_idtx4, daala_fdst4 }, // H_FLIPADST
#else
{ fdct4, fdct4 }, // DCT_DCT
{ fadst4, fdct4 }, // ADST_DCT
{ fdct4, fadst4 }, // DCT_ADST
{ fadst4, fadst4 }, // ADST_ADST
{ fadst4, fdct4 }, // FLIPADST_DCT
{ fdct4, fadst4 }, // DCT_FLIPADST
{ fadst4, fadst4 }, // FLIPADST_FLIPADST
{ fadst4, fadst4 }, // ADST_FLIPADST
{ fadst4, fadst4 }, // FLIPADST_ADST
{ fidtx4, fidtx4 }, // IDTX
{ fdct4, fidtx4 }, // V_DCT
{ fidtx4, fdct4 }, // H_DCT
{ fadst4, fidtx4 }, // V_ADST
{ fidtx4, fadst4 }, // H_ADST
{ fadst4, fidtx4 }, // V_FLIPADST
{ fidtx4, fadst4 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[4 * 4];
int i, j;
tran_low_t temp_in[4], temp_out[4];
int16_t flipped_input[4 * 4];
maybe_flip_input(&input, &stride, 4, 4, flipped_input, tx_type);
#if CONFIG_LGT
// Choose LGT adaptive to the prediction. We may apply different LGTs for
// different rows/columns, indicated by the pointers to 2D arrays
const tran_high_t *lgtmtx_col[1];
const tran_high_t *lgtmtx_row[1];
int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col);
int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row);
#endif
// Columns
for (i = 0; i < 4; ++i) {
/* A C99-safe upshift by 4 for both Daala and VPx TX. */
for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16;
#if !CONFIG_DAALA_TX4
if (i == 0 && temp_in[0]) temp_in[0] += 1;
#endif
#if CONFIG_LGT
if (use_lgt_col)
flgt4(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4];
#if CONFIG_LGT
if (use_lgt_row)
flgt4(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
#if CONFIG_DAALA_TX4
/* Daala TX has orthonormal scaling; shift down by only 1 to achieve
the usual VPx coefficient left-shift of 3. */
for (j = 0; j < 4; ++j) output[j + i * 4] = temp_out[j] >> 1;
#else
for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2;
#endif
}
}
}
void av1_fht4x8_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8
{ daala_fdct8, daala_fdct4 }, // DCT_DCT
{ daala_fdst8, daala_fdct4 }, // ADST_DCT
{ daala_fdct8, daala_fdst4 }, // DCT_ADST
{ daala_fdst8, daala_fdst4 }, // ADST_ADST
{ daala_fdst8, daala_fdct4 }, // FLIPADST_DCT
{ daala_fdct8, daala_fdst4 }, // DCT_FLIPADST
{ daala_fdst8, daala_fdst4 }, // FLIPADST_FLIPADST
{ daala_fdst8, daala_fdst4 }, // ADST_FLIPADST
{ daala_fdst8, daala_fdst4 }, // FLIPADST_ADST
{ daala_idtx8, daala_idtx4 }, // IDTX
{ daala_fdct8, daala_idtx4 }, // V_DCT
{ daala_idtx8, daala_fdct4 }, // H_DCT
{ daala_fdst8, daala_idtx4 }, // V_ADST
{ daala_idtx8, daala_fdst4 }, // H_ADST
{ daala_fdst8, daala_idtx4 }, // V_FLIPADST
{ daala_idtx8, daala_fdst4 }, // H_FLIPADST
#else
{ fdct8, fdct4 }, // DCT_DCT
{ fadst8, fdct4 }, // ADST_DCT
{ fdct8, fadst4 }, // DCT_ADST
{ fadst8, fadst4 }, // ADST_ADST
{ fadst8, fdct4 }, // FLIPADST_DCT
{ fdct8, fadst4 }, // DCT_FLIPADST
{ fadst8, fadst4 }, // FLIPADST_FLIPADST
{ fadst8, fadst4 }, // ADST_FLIPADST
{ fadst8, fadst4 }, // FLIPADST_ADST
{ fidtx8, fidtx4 }, // IDTX
{ fdct8, fidtx4 }, // V_DCT
{ fidtx8, fdct4 }, // H_DCT
{ fadst8, fidtx4 }, // V_ADST
{ fidtx8, fadst4 }, // H_ADST
{ fadst8, fidtx4 }, // V_FLIPADST
{ fidtx8, fadst4 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n2 = 8;
tran_low_t out[8 * 4];
tran_low_t temp_in[8], temp_out[8];
int i, j;
int16_t flipped_input[8 * 4];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[1];
const tran_high_t *lgtmtx_row[1];
int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col);
int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row);
#endif
// Multi-way scaling matrix (bits):
// LGT/AV1 row,col input+2.5, rowTX+.5, mid+0, colTX+1, out-1 == 3
// LGT row, Daala col input+3.5, rowTX+.5, mid+0, colTX+0, out-1 == 3
// Daala row, LGT col input+3, rowTX+0, mid+0, colTX+1, out-1 == 3
// Daala row,col input+4, rowTX+0, mid+0, colTX+0, out-1 == 3
// Rows
for (i = 0; i < n2; ++i) {
// Input scaling
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8
#if CONFIG_LGT
// Input scaling when LGT might be active (1-4 above)
temp_in[j] = use_lgt_row ?
(tran_low_t)fdct_round_shift(input[i * stride + j] * Sqrt2 *
(use_lgt_col ? 4 : 8)) :
input[i * stride + j] * (use_lgt_col ? 8 : 16));
#else
// Input scaling when LGT is not possible, Daala only (4 above)
temp_in[j] = input[i * stride + j] * 16;
#endif
#else
// Input scaling when Daala is not possible, LGT/AV1 only (1 above)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2);
#endif
}
// Row transform (AV1/LGT scale up .5 bit, Daala does not scale)
#if CONFIG_LGT
if (use_lgt_row)
flgt4(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
// No mid scaling
for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j];
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
// Column transform (AV1/LGT scale up 1 bit, Daala does not scale)
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
// Output scaling is always a downshift of 1
for (j = 0; j < n2; ++j)
output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht8x4_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8
{ daala_fdct4, daala_fdct8 }, // DCT_DCT
{ daala_fdst4, daala_fdct8 }, // ADST_DCT
{ daala_fdct4, daala_fdst8 }, // DCT_ADST
{ daala_fdst4, daala_fdst8 }, // ADST_ADST
{ daala_fdst4, daala_fdct8 }, // FLIPADST_DCT
{ daala_fdct4, daala_fdst8 }, // DCT_FLIPADST
{ daala_fdst4, daala_fdst8 }, // FLIPADST_FLIPADST
{ daala_fdst4, daala_fdst8 }, // ADST_FLIPADST
{ daala_fdst4, daala_fdst8 }, // FLIPADST_ADST
{ daala_idtx4, daala_idtx8 }, // IDTX
{ daala_fdct4, daala_idtx8 }, // V_DCT
{ daala_idtx4, daala_fdct8 }, // H_DCT
{ daala_fdst4, daala_idtx8 }, // V_ADST
{ daala_idtx4, daala_fdst8 }, // H_ADST
{ daala_fdst4, daala_idtx8 }, // V_FLIPADST
{ daala_idtx4, daala_fdst8 }, // H_FLIPADST
#else
{ fdct4, fdct8 }, // DCT_DCT
{ fadst4, fdct8 }, // ADST_DCT
{ fdct4, fadst8 }, // DCT_ADST
{ fadst4, fadst8 }, // ADST_ADST
{ fadst4, fdct8 }, // FLIPADST_DCT
{ fdct4, fadst8 }, // DCT_FLIPADST
{ fadst4, fadst8 }, // FLIPADST_FLIPADST
{ fadst4, fadst8 }, // ADST_FLIPADST
{ fadst4, fadst8 }, // FLIPADST_ADST
{ fidtx4, fidtx8 }, // IDTX
{ fdct4, fidtx8 }, // V_DCT
{ fidtx4, fdct8 }, // H_DCT
{ fadst4, fidtx8 }, // V_ADST
{ fidtx4, fadst8 }, // H_ADST
{ fadst4, fidtx8 }, // V_FLIPADST
{ fidtx4, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n2 = 8;
tran_low_t out[8 * 4];
tran_low_t temp_in[8], temp_out[8];
int i, j;
int16_t flipped_input[8 * 4];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[1];
const tran_high_t *lgtmtx_row[1];
int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col);
int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row);
#endif
// Multi-way scaling matrix (bits):
// LGT/AV1 row,col input+2.5, rowTX+1, mid+0, colTX+.5, out-1 == 3
// LGT row, Daala col input+3, rowTX+1, mid+0, colTX+0, out-1 == 3
// Daala row, LGT col input+3.5 rowTX+0, mid+0, colTX+.5, out-1 == 3
// Daala row,col input+4, rowTX+0, mid+0, colTX+0, out-1 == 3
// Columns
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8
#if CONFIG_LGT
// Input scaling when LGT might be active (1-4 above)
temp_in[j] = use_lgt_col ?
(tran_low_t)fdct_round_shift(input[j * stride + i] * Sqrt2 *
(use_lgt_row ? 4 : 8)) :
input[j * stride + i] * (use_lgt_row ? 8 : 16));
#else
// Input scaling when LGT is not possible, Daala only (4 above)
temp_in[j] = input[j * stride + i] * 16;
#endif
#else
// Input scaling when Daala is not possible, AV1/LGT only (1 above)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2);
#endif
}
// Column transform (AV1/LGT scale up .5 bit, Daala does not scale)
#if CONFIG_LGT
if (use_lgt_col)
flgt4(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
// No scaling between transforms
for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j];
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
// Row transform (AV1/LGT scale up 1 bit, Daala does not scale)
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
// Output scaling is always a downshift of 1
for (j = 0; j < n2; ++j)
output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht4x16_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
{ fdct16, fdct4 }, // DCT_DCT
{ fadst16, fdct4 }, // ADST_DCT
{ fdct16, fadst4 }, // DCT_ADST
{ fadst16, fadst4 }, // ADST_ADST
{ fadst16, fdct4 }, // FLIPADST_DCT
{ fdct16, fadst4 }, // DCT_FLIPADST
{ fadst16, fadst4 }, // FLIPADST_FLIPADST
{ fadst16, fadst4 }, // ADST_FLIPADST
{ fadst16, fadst4 }, // FLIPADST_ADST
{ fidtx16, fidtx4 }, // IDTX
{ fdct16, fidtx4 }, // V_DCT
{ fidtx16, fdct4 }, // H_DCT
{ fadst16, fidtx4 }, // V_ADST
{ fidtx16, fadst4 }, // H_ADST
{ fadst16, fidtx4 }, // V_FLIPADST
{ fidtx16, fadst4 }, // H_FLIPADST
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n4 = 16;
tran_low_t out[16 * 4];
tran_low_t temp_in[16], temp_out[16];
int i, j;
int16_t flipped_input[16 * 4];
maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[1];
int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row);
#endif
// Rows
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4;
#if CONFIG_LGT
if (use_lgt_row)
flgt4(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.cols(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht16x4_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
{ fdct4, fdct16 }, // DCT_DCT
{ fadst4, fdct16 }, // ADST_DCT
{ fdct4, fadst16 }, // DCT_ADST
{ fadst4, fadst16 }, // ADST_ADST
{ fadst4, fdct16 }, // FLIPADST_DCT
{ fdct4, fadst16 }, // DCT_FLIPADST
{ fadst4, fadst16 }, // FLIPADST_FLIPADST
{ fadst4, fadst16 }, // ADST_FLIPADST
{ fadst4, fadst16 }, // FLIPADST_ADST
{ fidtx4, fidtx16 }, // IDTX
{ fdct4, fidtx16 }, // V_DCT
{ fidtx4, fdct16 }, // H_DCT
{ fadst4, fidtx16 }, // V_ADST
{ fidtx4, fadst16 }, // H_ADST
{ fadst4, fidtx16 }, // V_FLIPADST
{ fidtx4, fadst16 }, // H_FLIPADST
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n4 = 16;
tran_low_t out[16 * 4];
tran_low_t temp_in[16], temp_out[16];
int i, j;
int16_t flipped_input[16 * 4];
maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[1];
int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col);
#endif
// Columns
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4;
#if CONFIG_LGT
if (use_lgt_col)
flgt4(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.rows(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[j + i * n4] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht8x16_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
{ daala_fdct16, daala_fdct8 }, // DCT_DCT
{ daala_fdst16, daala_fdct8 }, // ADST_DCT
{ daala_fdct16, daala_fdst8 }, // DCT_ADST
{ daala_fdst16, daala_fdst8 }, // ADST_ADST
{ daala_fdst16, daala_fdct8 }, // FLIPADST_DCT
{ daala_fdct16, daala_fdst8 }, // DCT_FLIPADST
{ daala_fdst16, daala_fdst8 }, // FLIPADST_FLIPADST
{ daala_fdst16, daala_fdst8 }, // ADST_FLIPADST
{ daala_fdst16, daala_fdst8 }, // FLIPADST_ADST
{ daala_idtx16, daala_idtx8 }, // IDTX
{ daala_fdct16, daala_idtx8 }, // V_DCT
{ daala_idtx16, daala_fdct8 }, // H_DCT
{ daala_fdst16, daala_idtx8 }, // V_ADST
{ daala_idtx16, daala_fdst8 }, // H_ADST
{ daala_fdst16, daala_idtx8 }, // V_FLIPADST
{ daala_idtx16, daala_fdst8 }, // H_FLIPADST
#else
{ fdct16, fdct8 }, // DCT_DCT
{ fadst16, fdct8 }, // ADST_DCT
{ fdct16, fadst8 }, // DCT_ADST
{ fadst16, fadst8 }, // ADST_ADST
{ fadst16, fdct8 }, // FLIPADST_DCT
{ fdct16, fadst8 }, // DCT_FLIPADST
{ fadst16, fadst8 }, // FLIPADST_FLIPADST
{ fadst16, fadst8 }, // ADST_FLIPADST
{ fadst16, fadst8 }, // FLIPADST_ADST
{ fidtx16, fidtx8 }, // IDTX
{ fdct16, fidtx8 }, // V_DCT
{ fidtx16, fdct8 }, // H_DCT
{ fadst16, fidtx8 }, // V_ADST
{ fidtx16, fadst8 }, // H_ADST
{ fadst16, fidtx8 }, // V_FLIPADST
{ fidtx16, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n2 = 16;
tran_low_t out[16 * 8];
tran_low_t temp_in[16], temp_out[16];
int i, j;
int16_t flipped_input[16 * 8];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[1];
int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row);
#endif
// Multi-way scaling matrix (bits):
// LGT/AV1 row, AV1 col input+2.5, rowTX+1, mid-2, colTX+1.5, out+0 == 3
// LGT row, Daala col input+3, rowTX+1, mid+0, colTX+0, out-1 == 3
// Daala row, LGT col N/A (no 16-point LGT)
// Daala row, col input+4, rowTX+0, mid+0, colTX+0, out-1 == 3
// Rows
for (i = 0; i < n2; ++i) {
// Input scaling
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
#if CONFIG_LGT
// Input scaling when LGT might be active (cases 2, 4 above)
temp_in[j] = input[i * stride + j] * (use_lgt_row ? 2 : 4) * 4;
#else
// Input scaling when LGT is not possible, Daala only (case 4 above)
temp_in[j] = input[i * stride + j] * 16;
#endif
#else
// Input scaling when Daala is not possible, LGT/AV1 only (case 1 above)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2);
#endif
}
// Row transform (AV1/LGT scale up 1 bit, Daala does not scale)
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
// Mid scaling
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
// mid scaling: only cases 2 and 4 possible
out[j * n2 + i] = temp_out[j];
#else
// mid scaling: only case 1 possible
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
#endif
}
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
// Column transform (AV1/LGT scale up 1.5 bits, Daala does not scale)
ht.cols(temp_in, temp_out);
for (j = 0; j < n2; ++j) {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
// Output scaling (cases 2 and 3 above)
output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
#else
// Output scaling (case 1 above)
output[i + j * n] = temp_out[j];
#endif
}
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht16x8_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
{ daala_fdct8, daala_fdct16 }, // DCT_DCT
{ daala_fdst8, daala_fdct16 }, // ADST_DCT
{ daala_fdct8, daala_fdst16 }, // DCT_ADST
{ daala_fdst8, daala_fdst16 }, // ADST_ADST
{ daala_fdst8, daala_fdct16 }, // FLIPADST_DCT
{ daala_fdct8, daala_fdst16 }, // DCT_FLIPADST
{ daala_fdst8, daala_fdst16 }, // FLIPADST_FLIPADST
{ daala_fdst8, daala_fdst16 }, // ADST_FLIPADST
{ daala_fdst8, daala_fdst16 }, // FLIPADST_ADST
{ daala_idtx8, daala_idtx16 }, // IDTX
{ daala_fdct8, daala_idtx16 }, // V_DCT
{ daala_idtx8, daala_fdct16 }, // H_DCT
{ daala_fdst8, daala_idtx16 }, // V_ADST
{ daala_idtx8, daala_fdst16 }, // H_ADST
{ daala_fdst8, daala_idtx16 }, // V_FLIPADST
{ daala_idtx8, daala_fdst16 }, // H_FLIPADST
#else
{ fdct8, fdct16 }, // DCT_DCT
{ fadst8, fdct16 }, // ADST_DCT
{ fdct8, fadst16 }, // DCT_ADST
{ fadst8, fadst16 }, // ADST_ADST
{ fadst8, fdct16 }, // FLIPADST_DCT
{ fdct8, fadst16 }, // DCT_FLIPADST
{ fadst8, fadst16 }, // FLIPADST_FLIPADST
{ fadst8, fadst16 }, // ADST_FLIPADST
{ fadst8, fadst16 }, // FLIPADST_ADST
{ fidtx8, fidtx16 }, // IDTX
{ fdct8, fidtx16 }, // V_DCT
{ fidtx8, fdct16 }, // H_DCT
{ fadst8, fidtx16 }, // V_ADST
{ fidtx8, fadst16 }, // H_ADST
{ fadst8, fidtx16 }, // V_FLIPADST
{ fidtx8, fadst16 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n2 = 16;
tran_low_t out[16 * 8];
tran_low_t temp_in[16], temp_out[16];
int i, j;
int16_t flipped_input[16 * 8];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[1];
int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col);
#endif
// Multi-way scaling matrix (bits):
// LGT/AV1 col, AV1 row input+2.5, colTX+1, mid-2, rowTX+1.5, out+0 == 3
// LGT col, Daala row input+3, colTX+1, mid+0, rowTX+0, out-1 == 3
// Daala col, LGT row N/A (no 16-point LGT)
// Daala col, row input+4, colTX+0, mid+0, rowTX+0, out-1 == 3
// Columns
for (i = 0; i < n2; ++i) {
// Input scaling
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
#if CONFIG_LGT
// Input scaling when LGT might be active (1, 2 above)
temp_in[j] = input[j * stride + i] * 4 * (use_lgt_col ? 2 : 4);
#else
// Input scaling when LGT is not possible, Daala only (4 above)
temp_in[j] = input[j * stride + i] * 16;
#endif
#else
// Input scaling when Daala is not possible, AV1/LGT only (1 above)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2);
#endif
}
// Column transform (AV1/LGT scale up 1 bit, Daala does not scale)
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
// Mid scaling
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
// scaling cases 2 and 4 above
out[j * n2 + i] = temp_out[j];
#else
// Scaling case 1 above
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
#endif
}
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
// Row transform (AV1 scales up 1.5 bits, Daala does not scale)
ht.rows(temp_in, temp_out);
for (j = 0; j < n2; ++j) {
#if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16
// Output scaing cases 2 and 4 above
output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
#else
// Ouptut scaling case 1 above
output[j + i * n2] = temp_out[j];
#endif
}
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht8x32_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
{ fdct32, fdct8 }, // DCT_DCT
{ fhalfright32, fdct8 }, // ADST_DCT
{ fdct32, fadst8 }, // DCT_ADST
{ fhalfright32, fadst8 }, // ADST_ADST
{ fhalfright32, fdct8 }, // FLIPADST_DCT
{ fdct32, fadst8 }, // DCT_FLIPADST
{ fhalfright32, fadst8 }, // FLIPADST_FLIPADST
{ fhalfright32, fadst8 }, // ADST_FLIPADST
{ fhalfright32, fadst8 }, // FLIPADST_ADST
{ fidtx32, fidtx8 }, // IDTX
{ fdct32, fidtx8 }, // V_DCT
{ fidtx32, fdct8 }, // H_DCT
{ fhalfright32, fidtx8 }, // V_ADST
{ fidtx32, fadst8 }, // H_ADST
{ fhalfright32, fidtx8 }, // V_FLIPADST
{ fidtx32, fadst8 }, // H_FLIPADST
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n4 = 32;
tran_low_t out[32 * 8];
tran_low_t temp_in[32], temp_out[32];
int i, j;
int16_t flipped_input[32 * 8];
maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[1];
int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row);
#endif
// Rows
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4;
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.cols(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[i + j * n] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht32x8_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
{ fdct8, fdct32 }, // DCT_DCT
{ fadst8, fdct32 }, // ADST_DCT
{ fdct8, fhalfright32 }, // DCT_ADST
{ fadst8, fhalfright32 }, // ADST_ADST
{ fadst8, fdct32 }, // FLIPADST_DCT
{ fdct8, fhalfright32 }, // DCT_FLIPADST
{ fadst8, fhalfright32 }, // FLIPADST_FLIPADST
{ fadst8, fhalfright32 }, // ADST_FLIPADST
{ fadst8, fhalfright32 }, // FLIPADST_ADST
{ fidtx8, fidtx32 }, // IDTX
{ fdct8, fidtx32 }, // V_DCT
{ fidtx8, fdct32 }, // H_DCT
{ fadst8, fidtx32 }, // V_ADST
{ fidtx8, fhalfright32 }, // H_ADST
{ fadst8, fidtx32 }, // V_FLIPADST
{ fidtx8, fhalfright32 }, // H_FLIPADST
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n4 = 32;
tran_low_t out[32 * 8];
tran_low_t temp_in[32], temp_out[32];
int i, j;
int16_t flipped_input[32 * 8];
maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[1];
int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col);
#endif
// Columns
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4;
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.rows(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[j + i * n4] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht16x32_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32
{ daala_fdct32, daala_fdct16 }, // DCT_DCT
{ daala_fdst32, daala_fdct16 }, // ADST_DCT
{ daala_fdct32, daala_fdst16 }, // DCT_ADST
{ daala_fdst32, daala_fdst16 }, // ADST_ADST
{ daala_fdst32, daala_fdct16 }, // FLIPADST_DCT
{ daala_fdct32, daala_fdst16 }, // DCT_FLIPADST
{ daala_fdst32, daala_fdst16 }, // FLIPADST_FLIPADST
{ daala_fdst32, daala_fdst16 }, // ADST_FLIPADST
{ daala_fdst32, daala_fdst16 }, // FLIPADST_ADST
{ daala_idtx32, daala_idtx16 }, // IDTX
{ daala_fdct32, daala_idtx16 }, // V_DCT
{ daala_idtx32, daala_fdct16 }, // H_DCT
{ daala_fdst32, daala_idtx16 }, // V_ADST
{ daala_idtx32, daala_fdst16 }, // H_ADST
{ daala_fdst32, daala_idtx16 }, // V_FLIPADST
{ daala_idtx32, daala_fdst16 }, // H_FLIPADST
#else
{ fdct32, fdct16 }, // DCT_DCT
{ fhalfright32, fdct16 }, // ADST_DCT
{ fdct32, fadst16 }, // DCT_ADST
{ fhalfright32, fadst16 }, // ADST_ADST
{ fhalfright32, fdct16 }, // FLIPADST_DCT
{ fdct32, fadst16 }, // DCT_FLIPADST
{ fhalfright32, fadst16 }, // FLIPADST_FLIPADST
{ fhalfright32, fadst16 }, // ADST_FLIPADST
{ fhalfright32, fadst16 }, // FLIPADST_ADST
{ fidtx32, fidtx16 }, // IDTX
{ fdct32, fidtx16 }, // V_DCT
{ fidtx32, fdct16 }, // H_DCT
{ fhalfright32, fidtx16 }, // V_ADST
{ fidtx32, fadst16 }, // H_ADST
{ fhalfright32, fidtx16 }, // V_FLIPADST
{ fidtx32, fadst16 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 16;
const int n2 = 32;
tran_low_t out[32 * 16];
tran_low_t temp_in[32], temp_out[32];
int i, j;
int16_t flipped_input[32 * 16];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
// Rows
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32
temp_in[j] = input[i * stride + j] * 16;
#else
temp_in[j] =
(tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2);
#endif
}
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
#else
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4);
#endif
}
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.cols(temp_in, temp_out);
for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j];
}
// Note: overall scale factor of transform is 4 times unitary
}
void av1_fht32x16_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32
{ daala_fdct16, daala_fdct32 }, // DCT_DCT
{ daala_fdst16, daala_fdct32 }, // ADST_DCT
{ daala_fdct16, daala_fdst32 }, // DCT_ADST
{ daala_fdst16, daala_fdst32 }, // ADST_ADST
{ daala_fdst16, daala_fdct32 }, // FLIPADST_DCT
{ daala_fdct16, daala_fdst32 }, // DCT_FLIPADST
{ daala_fdst16, daala_fdst32 }, // FLIPADST_FLIPADST
{ daala_fdst16, daala_fdst32 }, // ADST_FLIPADST
{ daala_fdst16, daala_fdst32 }, // FLIPADST_ADST
{ daala_idtx16, daala_idtx32 }, // IDTX
{ daala_fdct16, daala_idtx32 }, // V_DCT
{ daala_idtx16, daala_fdct32 }, // H_DCT
{ daala_fdst16, daala_idtx32 }, // V_ADST
{ daala_idtx16, daala_fdst32 }, // H_ADST
{ daala_fdst16, daala_idtx32 }, // V_FLIPADST
{ daala_idtx16, daala_fdst32 }, // H_FLIPADST
#else
{ fdct16, fdct32 }, // DCT_DCT
{ fadst16, fdct32 }, // ADST_DCT
{ fdct16, fhalfright32 }, // DCT_ADST
{ fadst16, fhalfright32 }, // ADST_ADST
{ fadst16, fdct32 }, // FLIPADST_DCT
{ fdct16, fhalfright32 }, // DCT_FLIPADST
{ fadst16, fhalfright32 }, // FLIPADST_FLIPADST
{ fadst16, fhalfright32 }, // ADST_FLIPADST
{ fadst16, fhalfright32 }, // FLIPADST_ADST
{ fidtx16, fidtx32 }, // IDTX
{ fdct16, fidtx32 }, // V_DCT
{ fidtx16, fdct32 }, // H_DCT
{ fadst16, fidtx32 }, // V_ADST
{ fidtx16, fhalfright32 }, // H_ADST
{ fadst16, fidtx32 }, // V_FLIPADST
{ fidtx16, fhalfright32 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 16;
const int n2 = 32;
tran_low_t out[32 * 16];
tran_low_t temp_in[32], temp_out[32];
int i, j;
int16_t flipped_input[32 * 16];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
// Columns
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32
temp_in[j] = input[j * stride + i] * 16;
#else
temp_in[j] =
(tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2);
#endif
}
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j) {
#if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
#else
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4);
#endif
}
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.rows(temp_in, temp_out);
for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j];
}
// Note: overall scale factor of transform is 4 times unitary
}
void av1_fht8x8_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
#if !CONFIG_DAALA_TX8
if (tx_type == DCT_DCT) {
aom_fdct8x8_c(input, output, stride);
return;
}
#endif
{
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX8
{ daala_fdct8, daala_fdct8 }, // DCT_DCT
{ daala_fdst8, daala_fdct8 }, // ADST_DCT
{ daala_fdct8, daala_fdst8 }, // DCT_ADST
{ daala_fdst8, daala_fdst8 }, // ADST_ADST
{ daala_fdst8, daala_fdct8 }, // FLIPADST_DCT
{ daala_fdct8, daala_fdst8 }, // DCT_FLIPADST
{ daala_fdst8, daala_fdst8 }, // FLIPADST_FLIPADST
{ daala_fdst8, daala_fdst8 }, // ADST_FLIPADST
{ daala_fdst8, daala_fdst8 }, // FLIPADST_ADST
{ daala_idtx8, daala_idtx8 }, // IDTX
{ daala_fdct8, daala_idtx8 }, // V_DCT
{ daala_idtx8, daala_fdct8 }, // H_DCT
{ daala_fdst8, daala_idtx8 }, // V_ADST
{ daala_idtx8, daala_fdst8 }, // H_ADST
{ daala_fdst8, daala_idtx8 }, // V_FLIPADST
{ daala_idtx8, daala_fdst8 }, // H_FLIPADST
#else
{ fdct8, fdct8 }, // DCT_DCT
{ fadst8, fdct8 }, // ADST_DCT
{ fdct8, fadst8 }, // DCT_ADST
{ fadst8, fadst8 }, // ADST_ADST
{ fadst8, fdct8 }, // FLIPADST_DCT
{ fdct8, fadst8 }, // DCT_FLIPADST
{ fadst8, fadst8 }, // FLIPADST_FLIPADST
{ fadst8, fadst8 }, // ADST_FLIPADST
{ fadst8, fadst8 }, // FLIPADST_ADST
{ fidtx8, fidtx8 }, // IDTX
{ fdct8, fidtx8 }, // V_DCT
{ fidtx8, fdct8 }, // H_DCT
{ fadst8, fidtx8 }, // V_ADST
{ fidtx8, fadst8 }, // H_ADST
{ fadst8, fidtx8 }, // V_FLIPADST
{ fidtx8, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[64];
int i, j;
tran_low_t temp_in[8], temp_out[8];
int16_t flipped_input[8 * 8];
maybe_flip_input(&input, &stride, 8, 8, flipped_input, tx_type);
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[1];
const tran_high_t *lgtmtx_row[1];
int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col);
int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row);
#endif
// Columns
for (i = 0; i < 8; ++i) {
#if CONFIG_DAALA_TX8
for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 16;
#else
for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4;
#endif
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[0]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j];
}
// Rows
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8];
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[0]);
else
#endif
ht.rows(temp_in, temp_out);
#if CONFIG_DAALA_TX8
for (j = 0; j < 8; ++j)
output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
#else
for (j = 0; j < 8; ++j)
output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
#endif
}
}
}
/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
pixel. */
void av1_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) {
int i;
tran_high_t a1, b1, c1, d1, e1;
const int16_t *ip_pass0 = input;
const tran_low_t *ip = NULL;
tran_low_t *op = output;
for (i = 0; i < 4; i++) {
a1 = ip_pass0[0 * stride];
b1 = ip_pass0[1 * stride];
c1 = ip_pass0[2 * stride];
d1 = ip_pass0[3 * stride];
a1 += b1;
d1 = d1 - c1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= c1;
d1 += b1;
op[0] = (tran_low_t)a1;
op[4] = (tran_low_t)c1;
op[8] = (tran_low_t)d1;
op[12] = (tran_low_t)b1;
ip_pass0++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0];
b1 = ip[1];
c1 = ip[2];
d1 = ip[3];
a1 += b1;
d1 -= c1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= c1;
d1 += b1;
op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR);
op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR);
op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR);
op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR);
ip += 4;
op += 4;
}
}
void av1_fht16x16_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX16
{ daala_fdct16, daala_fdct16 }, // DCT_DCT
{ daala_fdst16, daala_fdct16 }, // ADST_DCT
{ daala_fdct16, daala_fdst16 }, // DCT_ADST
{ daala_fdst16, daala_fdst16 }, // ADST_ADST
{ daala_fdst16, daala_fdct16 }, // FLIPADST_DCT
{ daala_fdct16, daala_fdst16 }, // DCT_FLIPADST
{ daala_fdst16, daala_fdst16 }, // FLIPADST_FLIPADST
{ daala_fdst16, daala_fdst16 }, // ADST_FLIPADST
{ daala_fdst16, daala_fdst16 }, // FLIPADST_ADST
{ daala_idtx16, daala_idtx16 }, // IDTX
{ daala_fdct16, daala_idtx16 }, // V_DCT
{ daala_idtx16, daala_fdct16 }, // H_DCT
{ daala_fdst16, daala_idtx16 }, // V_ADST
{ daala_idtx16, daala_fdst16 }, // H_ADST
{ daala_fdst16, daala_idtx16 }, // V_FLIPADST
{ daala_idtx16, daala_fdst16 }, // H_FLIPADST
#else
{ fdct16, fdct16 }, // DCT_DCT
{ fadst16, fdct16 }, // ADST_DCT
{ fdct16, fadst16 }, // DCT_ADST
{ fadst16, fadst16 }, // ADST_ADST
{ fadst16, fdct16 }, // FLIPADST_DCT
{ fdct16, fadst16 }, // DCT_FLIPADST
{ fadst16, fadst16 }, // FLIPADST_FLIPADST
{ fadst16, fadst16 }, // ADST_FLIPADST
{ fadst16, fadst16 }, // FLIPADST_ADST
{ fidtx16, fidtx16 }, // IDTX
{ fdct16, fidtx16 }, // V_DCT
{ fidtx16, fdct16 }, // H_DCT
{ fadst16, fidtx16 }, // V_ADST
{ fidtx16, fadst16 }, // H_ADST
{ fadst16, fidtx16 }, // V_FLIPADST
{ fidtx16, fadst16 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[256];
int i, j;
tran_low_t temp_in[16], temp_out[16];
int16_t flipped_input[16 * 16];
maybe_flip_input(&input, &stride, 16, 16, flipped_input, tx_type);
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
#if CONFIG_DAALA_TX16
temp_in[j] = input[j * stride + i] * 16;
#else
temp_in[j] = input[j * stride + i] * 4;
#endif
}
ht.cols(temp_in, temp_out);
for (j = 0; j < 16; ++j) {
#if CONFIG_DAALA_TX16
out[j * 16 + i] = temp_out[j];
#else
out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
#endif
}
}
// Rows
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16];
ht.rows(temp_in, temp_out);
for (j = 0; j < 16; ++j) {
#if CONFIG_DAALA_TX16
output[j + i * 16] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
#else
output[j + i * 16] = temp_out[j];
#endif
}
}
}
void av1_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output,
int stride) {
av1_fwht4x4_c(input, output, stride);
}
void av1_fht32x32_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX32
{ daala_fdct32, daala_fdct32 }, // DCT_DCT
{ daala_fdst32, daala_fdct32 }, // ADST_DCT
{ daala_fdct32, daala_fdst32 }, // DCT_ADST
{ daala_fdst32, daala_fdst32 }, // ADST_ADST
{ daala_fdst32, daala_fdct32 }, // FLIPADST_DCT
{ daala_fdct32, daala_fdst32 }, // DCT_FLIPADST
{ daala_fdst32, daala_fdst32 }, // FLIPADST_FLIPADST
{ daala_fdst32, daala_fdst32 }, // ADST_FLIPADST
{ daala_fdst32, daala_fdst32 }, // FLIPADST_ADST
{ daala_idtx32, daala_idtx32 }, // IDTX
{ daala_fdct32, daala_idtx32 }, // V_DCT
{ daala_idtx32, daala_fdct32 }, // H_DCT
{ daala_fdst32, daala_idtx32 }, // V_ADST
{ daala_idtx32, daala_fdst32 }, // H_ADST
{ daala_fdst32, daala_idtx32 }, // V_FLIPADST
{ daala_idtx32, daala_fdst32 }, // H_FLIPADST
#else
{ fdct32, fdct32 }, // DCT_DCT
{ fhalfright32, fdct32 }, // ADST_DCT
{ fdct32, fhalfright32 }, // DCT_ADST
{ fhalfright32, fhalfright32 }, // ADST_ADST
{ fhalfright32, fdct32 }, // FLIPADST_DCT
{ fdct32, fhalfright32 }, // DCT_FLIPADST
{ fhalfright32, fhalfright32 }, // FLIPADST_FLIPADST
{ fhalfright32, fhalfright32 }, // ADST_FLIPADST
{ fhalfright32, fhalfright32 }, // FLIPADST_ADST
{ fidtx32, fidtx32 }, // IDTX
{ fdct32, fidtx32 }, // V_DCT
{ fidtx32, fdct32 }, // H_DCT
{ fhalfright32, fidtx32 }, // V_ADST
{ fidtx32, fhalfright32 }, // H_ADST
{ fhalfright32, fidtx32 }, // V_FLIPADST
{ fidtx32, fhalfright32 }, // H_FLIPADST
#endif
#if CONFIG_MRC_TX
{ fdct32, fdct32 }, // MRC_TX
#endif // CONFIG_MRC_TX
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[1024];
int i, j;
tran_low_t temp_in[32], temp_out[32];
int16_t flipped_input[32 * 32];
maybe_flip_input(&input, &stride, 32, 32, flipped_input, tx_type);
#if CONFIG_MRC_TX
if (tx_type == MRC_DCT) {
int16_t masked_input[32 * 32];
get_masked_residual32(&input, &stride, txfm_param->dst, txfm_param->stride,
masked_input, txfm_param);
}
#endif // CONFIG_MRC_TX
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
#if CONFIG_DAALA_TX32
temp_in[j] = input[j * stride + i] * 16;
#else
temp_in[j] = input[j * stride + i] * 4;
#endif
}
ht.cols(temp_in, temp_out);
for (j = 0; j < 32; ++j) {
#if CONFIG_DAALA_TX32
out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
#else
out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4);
#endif
}
}
// Rows
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) temp_in[j] = out[j + i * 32];
ht.rows(temp_in, temp_out);
for (j = 0; j < 32; ++j) {
output[j + i * 32] = temp_out[j];
}
}
}
#if CONFIG_TX64X64
#if !CONFIG_DAALA_TX64
static void fidtx64(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 64; ++i)
output[i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2);
}
// For use in lieu of ADST
static void fhalfright64(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[32];
for (i = 0; i < 32; ++i) {
output[32 + i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2);
}
// Multiply input by sqrt(2)
for (i = 0; i < 32; ++i) {
inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 32] * Sqrt2);
}
fdct32(inputhalf, output);
// Note overall scaling factor is 2 times unitary
}
static void fdct64_col(const tran_low_t *input, tran_low_t *output) {
int32_t in[64], out[64];
int i;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_fdct64_new(in, out, fwd_cos_bit_col_dct_64, fwd_stage_range_col_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
static void fdct64_row(const tran_low_t *input, tran_low_t *output) {
int32_t in[64], out[64];
int i;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_fdct64_new(in, out, fwd_cos_bit_row_dct_64, fwd_stage_range_row_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
#endif
void av1_fht64x64_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
#if CONFIG_DAALA_TX64
{ daala_fdct64, daala_fdct64 }, // DCT_DCT
{ daala_fdst64, daala_fdct64 }, // ADST_DCT
{ daala_fdct64, daala_fdst64 }, // DCT_ADST
{ daala_fdst64, daala_fdst64 }, // ADST_ADST
{ daala_fdst64, daala_fdct64 }, // FLIPADST_DCT
{ daala_fdct64, daala_fdst64 }, // DCT_FLIPADST
{ daala_fdst64, daala_fdst64 }, // FLIPADST_FLIPADST
{ daala_fdst64, daala_fdst64 }, // ADST_FLIPADST
{ daala_fdst64, daala_fdst64 }, // FLIPADST_ADST
{ daala_idtx64, daala_idtx64 }, // IDTX
{ daala_fdct64, daala_idtx64 }, // V_DCT
{ daala_idtx64, daala_fdct64 }, // H_DCT
{ daala_fdst64, daala_idtx64 }, // V_ADST
{ daala_idtx64, daala_fdst64 }, // H_ADST
{ daala_fdst64, daala_idtx64 }, // V_FLIPADST
{ daala_idtx64, daala_fdst64 }, // H_FLIPADST
#else
{ fdct64_col, fdct64_row }, // DCT_DCT
{ fhalfright64, fdct64_row }, // ADST_DCT
{ fdct64_col, fhalfright64 }, // DCT_ADST
{ fhalfright64, fhalfright64 }, // ADST_ADST
{ fhalfright64, fdct64_row }, // FLIPADST_DCT
{ fdct64_col, fhalfright64 }, // DCT_FLIPADST
{ fhalfright64, fhalfright64 }, // FLIPADST_FLIPADST
{ fhalfright64, fhalfright64 }, // ADST_FLIPADST
{ fhalfright64, fhalfright64 }, // FLIPADST_ADST
{ fidtx64, fidtx64 }, // IDTX
{ fdct64_col, fidtx64 }, // V_DCT
{ fidtx64, fdct64_row }, // H_DCT
{ fhalfright64, fidtx64 }, // V_ADST
{ fidtx64, fhalfright64 }, // H_ADST
{ fhalfright64, fidtx64 }, // V_FLIPADST
{ fidtx64, fhalfright64 }, // H_FLIPADST
#endif // CONFIG_DAALA_TX64
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[4096];
int i, j;
tran_low_t temp_in[64], temp_out[64];
int16_t flipped_input[64 * 64];
maybe_flip_input(&input, &stride, 64, 64, flipped_input, tx_type);
// Columns
for (i = 0; i < 64; ++i) {
#if CONFIG_DAALA_TX64
for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i] * 16;
ht.cols(temp_in, temp_out);
for (j = 0; j < 64; ++j)
out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 3;
#else
for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 64; ++j)
out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
#endif
}
// Rows
for (i = 0; i < 64; ++i) {
for (j = 0; j < 64; ++j) temp_in[j] = out[j + i * 64];
ht.rows(temp_in, temp_out);
for (j = 0; j < 64; ++j)
#if CONFIG_DAALA_TX64
output[j + i * 64] = temp_out[j];
#else
output[j + i * 64] =
(tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
#endif
}
// Zero out top-right 32x32 area.
for (int row = 0; row < 32; ++row) {
memset(output + row * 64 + 32, 0, 32 * sizeof(*output));
}
// Zero out the bottom 64x32 area.
memset(output + 32 * 64, 0, 32 * 64 * sizeof(*output));
}
void av1_fht64x32_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
{ fdct32, fdct64_row }, // DCT_DCT
{ fhalfright32, fdct64_row }, // ADST_DCT
{ fdct32, fhalfright64 }, // DCT_ADST
{ fhalfright32, fhalfright64 }, // ADST_ADST
{ fhalfright32, fdct64_row }, // FLIPADST_DCT
{ fdct32, fhalfright64 }, // DCT_FLIPADST
{ fhalfright32, fhalfright64 }, // FLIPADST_FLIPADST
{ fhalfright32, fhalfright64 }, // ADST_FLIPADST
{ fhalfright32, fhalfright64 }, // FLIPADST_ADST
{ fidtx32, fidtx64 }, // IDTX
{ fdct32, fidtx64 }, // V_DCT
{ fidtx32, fdct64_row }, // H_DCT
{ fhalfright32, fidtx64 }, // V_ADST
{ fidtx32, fhalfright64 }, // H_ADST
{ fhalfright32, fidtx64 }, // V_FLIPADST
{ fidtx32, fhalfright64 }, // H_FLIPADST
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[2048];
int i, j;
tran_low_t temp_in[64], temp_out[64];
const int n = 32;
const int n2 = 64;
int16_t flipped_input[32 * 64];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
// Columns
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] = (tran_low_t)fdct_round_shift(input[j * stride + i] * Sqrt2);
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j)
out[j * n2 + i] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.rows(temp_in, temp_out);
for (j = 0; j < n2; ++j)
output[j + i * n2] =
(tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Zero out right 32x32 area.
for (int row = 0; row < n; ++row) {
memset(output + row * n2 + n, 0, n * sizeof(*output));
}
}
void av1_fht32x64_c(const int16_t *input, tran_low_t *output, int stride,
TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d FHT[] = {
{ fdct64_row, fdct32 }, // DCT_DCT
{ fhalfright64, fdct32 }, // ADST_DCT
{ fdct64_row, fhalfright32 }, // DCT_ADST
{ fhalfright64, fhalfright32 }, // ADST_ADST
{ fhalfright64, fdct32 }, // FLIPADST_DCT
{ fdct64_row, fhalfright32 }, // DCT_FLIPADST
{ fhalfright64, fhalfright32 }, // FLIPADST_FLIPADST
{ fhalfright64, fhalfright32 }, // ADST_FLIPADST
{ fhalfright64, fhalfright32 }, // FLIPADST_ADST
{ fidtx64, fidtx32 }, // IDTX
{ fdct64_row, fidtx32 }, // V_DCT
{ fidtx64, fdct32 }, // H_DCT
{ fhalfright64, fidtx32 }, // V_ADST
{ fidtx64, fhalfright32 }, // H_ADST
{ fhalfright64, fidtx32 }, // V_FLIPADST
{ fidtx64, fhalfright32 }, // H_FLIPADST
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[32 * 64];
int i, j;
tran_low_t temp_in[64], temp_out[64];
const int n = 32;
const int n2 = 64;
int16_t flipped_input[32 * 64];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
// Rows
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] = (tran_low_t)fdct_round_shift(input[i * stride + j] * Sqrt2);
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j)
out[j * n2 + i] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.cols(temp_in, temp_out);
for (j = 0; j < n2; ++j)
output[i + j * n] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Zero out the bottom 32x32 area.
memset(output + n * n, 0, n * n * sizeof(*output));
}
#endif // CONFIG_TX64X64
// Forward identity transform.
void av1_fwd_idtx_c(const int16_t *src_diff, tran_low_t *coeff, int stride,
int bsx, int bsy, TX_TYPE tx_type) {
int r, c;
const int pels = bsx * bsy;
const int shift = 3 - ((pels > 256) + (pels > 1024));
if (tx_type == IDTX) {
for (r = 0; r < bsy; ++r) {
for (c = 0; c < bsx; ++c) coeff[c] = src_diff[c] * (1 << shift);
src_diff += stride;
coeff += bsx;
}
}
}
#endif // !AV1_DCT_GTEST