blob: bf9562ccfc7bfd6dee44d54ba1bd7b911896c15c [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/tile_common.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/resize.h"
#include "aom_dsp/aom_dsp_common.h"
void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
av1_tile_set_row(tile, cm, row);
av1_tile_set_col(tile, cm, col);
}
// Find smallest k>=0 such that (blk_size << k) >= target
static int tile_log2(int blk_size, int target) {
int k;
for (k = 0; (blk_size << k) < target; k++) {
}
return k;
}
void av1_get_tile_limits(AV1_COMMON *const cm) {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int sb_size_log2 = cm->seq_params.mib_size_log2 + MI_SIZE_LOG2;
cm->max_tile_width_sb = MAX_TILE_WIDTH >> sb_size_log2;
int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2);
cm->min_log2_tile_cols = tile_log2(cm->max_tile_width_sb, sb_cols);
cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS));
cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS));
cm->min_log2_tiles = tile_log2(max_tile_area_sb, sb_cols * sb_rows);
cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols);
}
void av1_calculate_tile_cols(AV1_COMMON *const cm) {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int i;
if (cm->uniform_tile_spacing_flag) {
int start_sb;
int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols);
size_sb >>= cm->log2_tile_cols;
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_cols; i++) {
cm->tile_col_start_sb[i] = start_sb;
start_sb += size_sb;
}
cm->tile_cols = i;
cm->tile_col_start_sb[i] = sb_cols;
cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0);
cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows;
} else {
int max_tile_area_sb = (sb_rows * sb_cols);
int widest_tile_sb = 1;
cm->log2_tile_cols = tile_log2(1, cm->tile_cols);
for (i = 0; i < cm->tile_cols; i++) {
int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
widest_tile_sb = AOMMAX(widest_tile_sb, size_sb);
}
if (cm->min_log2_tiles) {
max_tile_area_sb >>= (cm->min_log2_tiles + 1);
}
cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1);
}
}
void av1_calculate_tile_rows(AV1_COMMON *const cm) {
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int start_sb, size_sb, i;
if (cm->uniform_tile_spacing_flag) {
size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows);
size_sb >>= cm->log2_tile_rows;
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_rows; i++) {
cm->tile_row_start_sb[i] = start_sb;
start_sb += size_sb;
}
cm->tile_rows = i;
cm->tile_row_start_sb[i] = sb_rows;
} else {
cm->log2_tile_rows = tile_log2(1, cm->tile_rows);
}
}
void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
assert(row < cm->tile_rows);
int mi_row_start = cm->tile_row_start_sb[row] << cm->seq_params.mib_size_log2;
int mi_row_end = cm->tile_row_start_sb[row + 1]
<< cm->seq_params.mib_size_log2;
tile->mi_row_start = mi_row_start;
tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows);
assert(tile->mi_row_end > tile->mi_row_start);
}
void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
assert(col < cm->tile_cols);
int mi_col_start = cm->tile_col_start_sb[col] << cm->seq_params.mib_size_log2;
int mi_col_end = cm->tile_col_start_sb[col + 1]
<< cm->seq_params.mib_size_log2;
tile->mi_col_start = mi_col_start;
tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols);
assert(tile->mi_col_end > tile->mi_col_start);
}
void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) {
BOUNDARY_TYPE *bi = cm->boundary_info;
int col;
for (col = 0; col < cm->mi_cols; ++col) {
*bi |= FRAME_ABOVE_BOUNDARY;
bi += 1;
}
bi = cm->boundary_info;
int row;
for (row = 0; row < cm->mi_rows; ++row) {
*bi |= FRAME_LEFT_BOUNDARY;
bi += cm->mi_stride;
}
bi = cm->boundary_info + (cm->mi_rows - 1) * cm->mi_stride;
for (col = 0; col < cm->mi_cols; ++col) {
*bi |= FRAME_BOTTOM_BOUNDARY;
bi += 1;
}
bi = cm->boundary_info + cm->mi_cols - 1;
for (row = 0; row < cm->mi_rows; ++row) {
*bi |= FRAME_RIGHT_BOUNDARY;
bi += cm->mi_stride;
}
}
int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) {
// Round the frame up to a whole number of max superblocks
mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2);
// Divide by the signalled number of tiles, rounding up to the multiple of
// the max superblock size. To do this, shift right (and round up) to get the
// tile size in max super-blocks and then shift left again to convert it to
// mi units.
const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2;
const int max_sb_tile_size =
ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift;
const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2;
// The actual number of tiles is the ceiling of the frame size in mi units
// divided by mi_size. This is at most 1 << log2_tile_num but might be
// strictly less if max_sb_tile_size got rounded up significantly.
if (ntiles) {
*ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size;
assert(*ntiles <= (1 << log2_tile_num));
}
return mi_tile_size;
}
AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm,
int is_uv) {
AV1PixelRect r;
// Calculate position in the Y plane
r.left = tile_info->mi_col_start * MI_SIZE;
r.right = tile_info->mi_col_end * MI_SIZE;
r.top = tile_info->mi_row_start * MI_SIZE;
r.bottom = tile_info->mi_row_end * MI_SIZE;
// If upscaling is enabled, the tile limits need scaling to match the
// upscaled frame where the restoration units live. To do this, scale up the
// top-left and bottom-right of the tile.
if (!av1_superres_unscaled(cm)) {
av1_calculate_unscaled_superres_size(&r.left, &r.top,
cm->superres_scale_denominator);
av1_calculate_unscaled_superres_size(&r.right, &r.bottom,
cm->superres_scale_denominator);
}
const int frame_w = cm->superres_upscaled_width;
const int frame_h = cm->superres_upscaled_height;
// Make sure we don't fall off the bottom-right of the frame.
r.right = AOMMIN(r.right, frame_w);
r.bottom = AOMMIN(r.bottom, frame_h);
// Convert to coordinates in the appropriate plane
const int ss_x = is_uv && cm->subsampling_x;
const int ss_y = is_uv && cm->subsampling_y;
r.left = ROUND_POWER_OF_TWO(r.left, ss_x);
r.right = ROUND_POWER_OF_TWO(r.right, ss_x);
r.top = ROUND_POWER_OF_TWO(r.top, ss_y);
r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y);
return r;
}