blob: 60fc774b316d1c27d8358f5bc390fca0fca4bca7 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "av1/common/av1_txfm.h"
#include "./av1_rtcd.h"
using libaom_test::ACMRandom;
using libaom_test::FwdTxfm2dFunc;
using libaom_test::TYPE_TXFM;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::input_base;
using std::vector;
namespace {
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef ::testing::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam;
class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> {
public:
virtual void SetUp() {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
count_ = 500;
TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg);
amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_);
tx_width_ = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
tx_height_ = tx_size_high[fwd_txfm_flip_cfg.tx_size];
ud_flip_ = fwd_txfm_flip_cfg.ud_flip;
lr_flip_ = fwd_txfm_flip_cfg.lr_flip;
fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_];
txfm2d_size_ = tx_width_ * tx_height_;
input_ = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(input_[0]) * txfm2d_size_));
output_ = reinterpret_cast<int32_t *>(
aom_memalign(16, sizeof(output_[0]) * txfm2d_size_));
ref_input_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_));
ref_output_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_));
}
void RunFwdAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
double avg_abs_error = 0;
for (int ci = 0; ci < count_; ci++) {
for (int ni = 0; ni < txfm2d_size_; ++ni) {
input_[ni] = rnd.Rand16() % input_base;
ref_input_[ni] = static_cast<double>(input_[ni]);
output_[ni] = 0;
ref_output_[ni] = 0;
}
fwd_txfm_(input_, output_, tx_width_, tx_type_, bd);
if (lr_flip_ && ud_flip_) {
libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_);
} else if (lr_flip_) {
libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_);
} else if (ud_flip_) {
libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_);
}
libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_,
tx_size_);
double actual_max_error = 0;
for (int ni = 0; ni < txfm2d_size_; ++ni) {
ref_output_[ni] = round(ref_output_[ni]);
const double this_error =
fabs(output_[ni] - ref_output_[ni]) / amplify_factor_;
actual_max_error = AOMMAX(actual_max_error, this_error);
}
EXPECT_GE(max_error_, actual_max_error)
<< "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
if (actual_max_error > max_error_) { // exit early.
break;
}
avg_abs_error += compute_avg_abs_error<int32_t, double>(
output_, ref_output_, txfm2d_size_);
}
avg_abs_error /= amplify_factor_;
avg_abs_error /= count_;
EXPECT_GE(max_avg_error_, avg_abs_error)
<< "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
}
virtual void TearDown() {
aom_free(input_);
aom_free(output_);
aom_free(ref_input_);
aom_free(ref_output_);
}
private:
double max_error_;
double max_avg_error_;
int count_;
double amplify_factor_;
TX_TYPE tx_type_;
TX_SIZE tx_size_;
int tx_width_;
int tx_height_;
int txfm2d_size_;
FwdTxfm2dFunc fwd_txfm_;
int16_t *input_;
int32_t *output_;
double *ref_input_;
double *ref_output_;
int ud_flip_; // flip upside down
int lr_flip_; // flip left to right
};
vector<AV1FwdTxfm2dParam> GetTxfm2dParamList() {
vector<AV1FwdTxfm2dParam> param_list;
for (int t = 0; t < TX_TYPES; ++t) {
const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X4, 3, 0.5));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X8, 5, 0.5));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X16, 11, 1.2));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X32, 70, 6.1));
if (tx_type == DCT_DCT) { // Other types not supported by these tx sizes.
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X64, 64, 3.4));
}
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X8, 3.9, 0.57));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X4, 4.3, 0.68));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X16, 12, 0.92));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X8, 12, 1.1));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X32, 32, 4.1));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X16, 46, 6));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X16, 5, 0.6));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X4, 6, 0.9));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X32, 21, 1.2));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X8, 13, 1.7));
if (tx_type == DCT_DCT) { // Other types not supported by these tx sizes.
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X64, 136, 3.5));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X32, 136, 5.7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X64, 30, 2.0));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X16, 36, 4.7));
}
}
return param_list;
}
INSTANTIATE_TEST_CASE_P(C, AV1FwdTxfm2d,
::testing::ValuesIn(GetTxfm2dParamList()));
TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); }
TEST(AV1FwdTxfm2d, CfgTest) {
for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
int bd = libaom_test::bd_arr[bd_idx];
int8_t low_range = libaom_test::low_range_arr[bd_idx];
int8_t high_range = libaom_test::high_range_arr[bd_idx];
for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if ((tx_size_wide[tx_size] == 64 || tx_size_high[tx_size] == 64) &&
(tx_type != DCT_DCT && tx_type != IDTX && tx_type != V_DCT &&
tx_type != H_DCT)) {
continue;
}
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(static_cast<TX_TYPE>(tx_type),
static_cast<TX_SIZE>(tx_size), &cfg);
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd);
libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col,
cfg.cos_bit_col, low_range,
high_range);
libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row,
cfg.cos_bit_row, low_range,
high_range);
}
}
}
}
#if HAVE_SSE2 && defined(__SSE2__)
#include "av1/common/x86/av1_txfm_sse2.h"
FwdTxfm2dFunc fwd_func_sse2_list[TX_SIZES_ALL][2] = {
{ av1_fwd_txfm2d_4x4_c, av1_lowbd_fwd_txfm2d_4x4_sse2 }, // TX_4X4
{ av1_fwd_txfm2d_8x8_c, av1_lowbd_fwd_txfm2d_8x8_sse2 }, // TX_8X8
{ av1_fwd_txfm2d_16x16_c, av1_lowbd_fwd_txfm2d_16x16_sse2 }, // TX_16X16
{ av1_fwd_txfm2d_32x32_c, av1_lowbd_fwd_txfm2d_32x32_sse2 }, // TX_32X32
{ NULL, NULL }, // TX_64X64
{ av1_fwd_txfm2d_4x8_c, av1_lowbd_fwd_txfm2d_4x8_sse2 }, // TX_4X8
{ av1_fwd_txfm2d_8x4_c, av1_lowbd_fwd_txfm2d_8x4_sse2 }, // TX_8X4
{ av1_fwd_txfm2d_8x16_c, av1_lowbd_fwd_txfm2d_8x16_sse2 }, // TX_8X16
{ av1_fwd_txfm2d_16x8_c, av1_lowbd_fwd_txfm2d_16x8_sse2 }, // TX_16X8
{ av1_fwd_txfm2d_16x32_c, av1_lowbd_fwd_txfm2d_16x32_sse2 }, // TX_16X32
{ av1_fwd_txfm2d_32x16_c, av1_lowbd_fwd_txfm2d_32x16_sse2 }, // TX_32X16
{ NULL, NULL }, // TX_32X64
{ NULL, NULL }, // TX_64X32
{ av1_fwd_txfm2d_4x16_c, av1_lowbd_fwd_txfm2d_4x16_sse2 }, // TX_4X16
{ av1_fwd_txfm2d_16x4_c, av1_lowbd_fwd_txfm2d_16x4_sse2 }, // TX_16X4
{ av1_fwd_txfm2d_8x32_c, av1_lowbd_fwd_txfm2d_8x32_sse2 }, // TX_8X32
{ av1_fwd_txfm2d_32x8_c, av1_lowbd_fwd_txfm2d_32x8_sse2 }, // TX_32X8
{ NULL, NULL }, // TX_16X64
{ NULL, NULL }, // TX_64X16
};
TEST(av1_fwd_txfm2d_sse2, match) {
const int bd = 8;
for (int tx_size = TX_4X4; tx_size < TX_SIZES_ALL; ++tx_size) {
const int rows = tx_size_high[tx_size];
const int cols = tx_size_wide[tx_size];
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if ((rows >= 32 || cols >= 32) && tx_type != DCT_DCT && tx_type != IDTX &&
tx_type != V_DCT && tx_type != H_DCT) {
// No ADST for large size transforms.
continue;
}
FwdTxfm2dFunc ref_func = fwd_func_sse2_list[tx_size][0];
FwdTxfm2dFunc target_func = fwd_func_sse2_list[tx_size][1];
if (ref_func != NULL && target_func != NULL) {
DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 };
DECLARE_ALIGNED(16, int32_t, output[64 * 64]) = { 0 };
DECLARE_ALIGNED(16, int32_t, ref_output[64 * 64]) = { 0 };
int input_stride = 64;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int cnt = 0; cnt < 500; ++cnt) {
if (cnt == 0) {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = (1 << bd) - 1;
}
}
} else {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
}
}
}
ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd);
target_func(input, output, input_stride, (TX_TYPE)tx_type, bd);
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
ASSERT_EQ(ref_output[r * cols + c], output[r * cols + c])
<< "[" << r << "," << c << "]"
<< " tx_size: " << tx_size << " tx_type: " << tx_type;
}
}
}
}
}
}
}
#endif // HAVE_SSE2
} // namespace