| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/txfm_common.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| |
| static void aom_fdct4x4_helper(const int16_t *input, int stride, |
| int16x4_t *input_0, int16x4_t *input_1, |
| int16x4_t *input_2, int16x4_t *input_3) { |
| *input_0 = vshl_n_s16(vld1_s16(input + 0 * stride), 4); |
| *input_1 = vshl_n_s16(vld1_s16(input + 1 * stride), 4); |
| *input_2 = vshl_n_s16(vld1_s16(input + 2 * stride), 4); |
| *input_3 = vshl_n_s16(vld1_s16(input + 3 * stride), 4); |
| // If the very first value != 0, then add 1. |
| if (input[0] != 0) { |
| const int16x4_t one = vreinterpret_s16_s64(vdup_n_s64(1)); |
| *input_0 = vadd_s16(*input_0, one); |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| const int16x8_t input_01 = vcombine_s16(*input_0, *input_1); |
| const int16x8_t input_32 = vcombine_s16(*input_3, *input_2); |
| |
| // in_0 +/- in_3, in_1 +/- in_2 |
| const int16x8_t s_01 = vaddq_s16(input_01, input_32); |
| const int16x8_t s_32 = vsubq_s16(input_01, input_32); |
| |
| // step_0 +/- step_1, step_2 +/- step_3 |
| const int16x4_t s_0 = vget_low_s16(s_01); |
| const int16x4_t s_1 = vget_high_s16(s_01); |
| const int16x4_t s_2 = vget_high_s16(s_32); |
| const int16x4_t s_3 = vget_low_s16(s_32); |
| |
| // (s_0 +/- s_1) * cospi_16_64 |
| // Must expand all elements to s32. See 'needs32' comment in fwd_txfm.c. |
| const int32x4_t s_0_p_s_1 = vaddl_s16(s_0, s_1); |
| const int32x4_t s_0_m_s_1 = vsubl_s16(s_0, s_1); |
| const int32x4_t temp1 = vmulq_n_s32(s_0_p_s_1, (int32_t)cospi_16_64); |
| const int32x4_t temp2 = vmulq_n_s32(s_0_m_s_1, (int32_t)cospi_16_64); |
| |
| // fdct_round_shift |
| int16x4_t out_0 = vrshrn_n_s32(temp1, DCT_CONST_BITS); |
| int16x4_t out_2 = vrshrn_n_s32(temp2, DCT_CONST_BITS); |
| |
| // s_3 * cospi_8_64 + s_2 * cospi_24_64 |
| // s_3 * cospi_24_64 - s_2 * cospi_8_64 |
| const int32x4_t s_3_cospi_8_64 = vmull_n_s16(s_3, (int32_t)cospi_8_64); |
| const int32x4_t s_3_cospi_24_64 = vmull_n_s16(s_3, (int32_t)cospi_24_64); |
| |
| const int32x4_t temp3 = |
| vmlal_n_s16(s_3_cospi_8_64, s_2, (int32_t)cospi_24_64); |
| const int32x4_t temp4 = |
| vmlsl_n_s16(s_3_cospi_24_64, s_2, (int32_t)cospi_8_64); |
| |
| // fdct_round_shift |
| int16x4_t out_1 = vrshrn_n_s32(temp3, DCT_CONST_BITS); |
| int16x4_t out_3 = vrshrn_n_s32(temp4, DCT_CONST_BITS); |
| |
| // Only transpose the first pass |
| if (i == 0) { |
| transpose_elems_inplace_s16_4x4(&out_0, &out_1, &out_2, &out_3); |
| } |
| |
| *input_0 = out_0; |
| *input_1 = out_1; |
| *input_2 = out_2; |
| *input_3 = out_3; |
| } |
| } |
| |
| void aom_fdct4x4_neon(const int16_t *input, tran_low_t *final_output, |
| int stride) { |
| // input[M * stride] * 16 |
| int16x4_t input_0, input_1, input_2, input_3; |
| |
| aom_fdct4x4_helper(input, stride, &input_0, &input_1, &input_2, &input_3); |
| |
| // Not quite a rounding shift. Only add 1 despite shifting by 2. |
| const int16x8_t one = vdupq_n_s16(1); |
| int16x8_t out_01 = vcombine_s16(input_0, input_1); |
| int16x8_t out_23 = vcombine_s16(input_2, input_3); |
| out_01 = vshrq_n_s16(vaddq_s16(out_01, one), 2); |
| out_23 = vshrq_n_s16(vaddq_s16(out_23, one), 2); |
| store_s16q_to_tran_low(final_output + 0 * 8, out_01); |
| store_s16q_to_tran_low(final_output + 1 * 8, out_23); |
| } |
| |
| void aom_fdct4x4_lp_neon(const int16_t *input, int16_t *final_output, |
| int stride) { |
| // input[M * stride] * 16 |
| int16x4_t input_0, input_1, input_2, input_3; |
| |
| aom_fdct4x4_helper(input, stride, &input_0, &input_1, &input_2, &input_3); |
| |
| // Not quite a rounding shift. Only add 1 despite shifting by 2. |
| const int16x8_t one = vdupq_n_s16(1); |
| int16x8_t out_01 = vcombine_s16(input_0, input_1); |
| int16x8_t out_23 = vcombine_s16(input_2, input_3); |
| out_01 = vshrq_n_s16(vaddq_s16(out_01, one), 2); |
| out_23 = vshrq_n_s16(vaddq_s16(out_23, one), 2); |
| vst1q_s16(final_output + 0 * 8, out_01); |
| vst1q_s16(final_output + 1 * 8, out_23); |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| void aom_fdct8x8_neon(const int16_t *input, int16_t *final_output, int stride) { |
| // stage 1 |
| int16x8_t input_0 = vshlq_n_s16(vld1q_s16(&input[0 * stride]), 2); |
| int16x8_t input_1 = vshlq_n_s16(vld1q_s16(&input[1 * stride]), 2); |
| int16x8_t input_2 = vshlq_n_s16(vld1q_s16(&input[2 * stride]), 2); |
| int16x8_t input_3 = vshlq_n_s16(vld1q_s16(&input[3 * stride]), 2); |
| int16x8_t input_4 = vshlq_n_s16(vld1q_s16(&input[4 * stride]), 2); |
| int16x8_t input_5 = vshlq_n_s16(vld1q_s16(&input[5 * stride]), 2); |
| int16x8_t input_6 = vshlq_n_s16(vld1q_s16(&input[6 * stride]), 2); |
| int16x8_t input_7 = vshlq_n_s16(vld1q_s16(&input[7 * stride]), 2); |
| for (int i = 0; i < 2; ++i) { |
| int16x8_t out_0, out_1, out_2, out_3, out_4, out_5, out_6, out_7; |
| const int16x8_t v_s0 = vaddq_s16(input_0, input_7); |
| const int16x8_t v_s1 = vaddq_s16(input_1, input_6); |
| const int16x8_t v_s2 = vaddq_s16(input_2, input_5); |
| const int16x8_t v_s3 = vaddq_s16(input_3, input_4); |
| const int16x8_t v_s4 = vsubq_s16(input_3, input_4); |
| const int16x8_t v_s5 = vsubq_s16(input_2, input_5); |
| const int16x8_t v_s6 = vsubq_s16(input_1, input_6); |
| const int16x8_t v_s7 = vsubq_s16(input_0, input_7); |
| // fdct4(step, step); |
| int16x8_t v_x0 = vaddq_s16(v_s0, v_s3); |
| int16x8_t v_x1 = vaddq_s16(v_s1, v_s2); |
| int16x8_t v_x2 = vsubq_s16(v_s1, v_s2); |
| int16x8_t v_x3 = vsubq_s16(v_s0, v_s3); |
| // fdct4(step, step); |
| int32x4_t v_t0_lo = vaddl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1)); |
| int32x4_t v_t0_hi = vaddl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1)); |
| int32x4_t v_t1_lo = vsubl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1)); |
| int32x4_t v_t1_hi = vsubl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1)); |
| int32x4_t v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_24_64); |
| int32x4_t v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_24_64); |
| int32x4_t v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_24_64); |
| int32x4_t v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_24_64); |
| v_t2_lo = vmlal_n_s16(v_t2_lo, vget_low_s16(v_x3), (int16_t)cospi_8_64); |
| v_t2_hi = vmlal_n_s16(v_t2_hi, vget_high_s16(v_x3), (int16_t)cospi_8_64); |
| v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x2), (int16_t)cospi_8_64); |
| v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x2), (int16_t)cospi_8_64); |
| v_t0_lo = vmulq_n_s32(v_t0_lo, (int32_t)cospi_16_64); |
| v_t0_hi = vmulq_n_s32(v_t0_hi, (int32_t)cospi_16_64); |
| v_t1_lo = vmulq_n_s32(v_t1_lo, (int32_t)cospi_16_64); |
| v_t1_hi = vmulq_n_s32(v_t1_hi, (int32_t)cospi_16_64); |
| { |
| const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS); |
| const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS); |
| const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS); |
| const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS); |
| const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS); |
| const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS); |
| const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS); |
| const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS); |
| out_0 = vcombine_s16(a, c); // 00 01 02 03 40 41 42 43 |
| out_2 = vcombine_s16(e, g); // 20 21 22 23 60 61 62 63 |
| out_4 = vcombine_s16(b, d); // 04 05 06 07 44 45 46 47 |
| out_6 = vcombine_s16(f, h); // 24 25 26 27 64 65 66 67 |
| } |
| // Stage 2 |
| v_x0 = vsubq_s16(v_s6, v_s5); |
| v_x1 = vaddq_s16(v_s6, v_s5); |
| v_t0_lo = vmull_n_s16(vget_low_s16(v_x0), (int16_t)cospi_16_64); |
| v_t0_hi = vmull_n_s16(vget_high_s16(v_x0), (int16_t)cospi_16_64); |
| v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_16_64); |
| v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_16_64); |
| { |
| const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS); |
| const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS); |
| const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS); |
| const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS); |
| const int16x8_t ab = vcombine_s16(a, b); |
| const int16x8_t cd = vcombine_s16(c, d); |
| // Stage 3 |
| v_x0 = vaddq_s16(v_s4, ab); |
| v_x1 = vsubq_s16(v_s4, ab); |
| v_x2 = vsubq_s16(v_s7, cd); |
| v_x3 = vaddq_s16(v_s7, cd); |
| } |
| // Stage 4 |
| v_t0_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_4_64); |
| v_t0_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_4_64); |
| v_t0_lo = vmlal_n_s16(v_t0_lo, vget_low_s16(v_x0), (int16_t)cospi_28_64); |
| v_t0_hi = vmlal_n_s16(v_t0_hi, vget_high_s16(v_x0), (int16_t)cospi_28_64); |
| v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_12_64); |
| v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_12_64); |
| v_t1_lo = vmlal_n_s16(v_t1_lo, vget_low_s16(v_x2), (int16_t)cospi_20_64); |
| v_t1_hi = vmlal_n_s16(v_t1_hi, vget_high_s16(v_x2), (int16_t)cospi_20_64); |
| v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_12_64); |
| v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_12_64); |
| v_t2_lo = vmlsl_n_s16(v_t2_lo, vget_low_s16(v_x1), (int16_t)cospi_20_64); |
| v_t2_hi = vmlsl_n_s16(v_t2_hi, vget_high_s16(v_x1), (int16_t)cospi_20_64); |
| v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_28_64); |
| v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_28_64); |
| v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x0), (int16_t)cospi_4_64); |
| v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x0), (int16_t)cospi_4_64); |
| { |
| const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS); |
| const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS); |
| const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS); |
| const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS); |
| const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS); |
| const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS); |
| const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS); |
| const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS); |
| out_1 = vcombine_s16(a, c); // 10 11 12 13 50 51 52 53 |
| out_3 = vcombine_s16(e, g); // 30 31 32 33 70 71 72 73 |
| out_5 = vcombine_s16(b, d); // 14 15 16 17 54 55 56 57 |
| out_7 = vcombine_s16(f, h); // 34 35 36 37 74 75 76 77 |
| } |
| // transpose 8x8 |
| { |
| // 00 01 02 03 40 41 42 43 |
| // 10 11 12 13 50 51 52 53 |
| // 20 21 22 23 60 61 62 63 |
| // 30 31 32 33 70 71 72 73 |
| // 04 05 06 07 44 45 46 47 |
| // 14 15 16 17 54 55 56 57 |
| // 24 25 26 27 64 65 66 67 |
| // 34 35 36 37 74 75 76 77 |
| const int32x4x2_t r02_s32 = |
| vtrnq_s32(vreinterpretq_s32_s16(out_0), vreinterpretq_s32_s16(out_2)); |
| const int32x4x2_t r13_s32 = |
| vtrnq_s32(vreinterpretq_s32_s16(out_1), vreinterpretq_s32_s16(out_3)); |
| const int32x4x2_t r46_s32 = |
| vtrnq_s32(vreinterpretq_s32_s16(out_4), vreinterpretq_s32_s16(out_6)); |
| const int32x4x2_t r57_s32 = |
| vtrnq_s32(vreinterpretq_s32_s16(out_5), vreinterpretq_s32_s16(out_7)); |
| const int16x8x2_t r01_s16 = |
| vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[0]), |
| vreinterpretq_s16_s32(r13_s32.val[0])); |
| const int16x8x2_t r23_s16 = |
| vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[1]), |
| vreinterpretq_s16_s32(r13_s32.val[1])); |
| const int16x8x2_t r45_s16 = |
| vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[0]), |
| vreinterpretq_s16_s32(r57_s32.val[0])); |
| const int16x8x2_t r67_s16 = |
| vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[1]), |
| vreinterpretq_s16_s32(r57_s32.val[1])); |
| input_0 = r01_s16.val[0]; |
| input_1 = r01_s16.val[1]; |
| input_2 = r23_s16.val[0]; |
| input_3 = r23_s16.val[1]; |
| input_4 = r45_s16.val[0]; |
| input_5 = r45_s16.val[1]; |
| input_6 = r67_s16.val[0]; |
| input_7 = r67_s16.val[1]; |
| // 00 10 20 30 40 50 60 70 |
| // 01 11 21 31 41 51 61 71 |
| // 02 12 22 32 42 52 62 72 |
| // 03 13 23 33 43 53 63 73 |
| // 04 14 24 34 44 54 64 74 |
| // 05 15 25 35 45 55 65 75 |
| // 06 16 26 36 46 56 66 76 |
| // 07 17 27 37 47 57 67 77 |
| } |
| } // for |
| { |
| // from aom_dct_sse2.c |
| // Post-condition (division by two) |
| // division of two 16 bits signed numbers using shifts |
| // n / 2 = (n - (n >> 15)) >> 1 |
| const int16x8_t sign_in0 = vshrq_n_s16(input_0, 15); |
| const int16x8_t sign_in1 = vshrq_n_s16(input_1, 15); |
| const int16x8_t sign_in2 = vshrq_n_s16(input_2, 15); |
| const int16x8_t sign_in3 = vshrq_n_s16(input_3, 15); |
| const int16x8_t sign_in4 = vshrq_n_s16(input_4, 15); |
| const int16x8_t sign_in5 = vshrq_n_s16(input_5, 15); |
| const int16x8_t sign_in6 = vshrq_n_s16(input_6, 15); |
| const int16x8_t sign_in7 = vshrq_n_s16(input_7, 15); |
| input_0 = vhsubq_s16(input_0, sign_in0); |
| input_1 = vhsubq_s16(input_1, sign_in1); |
| input_2 = vhsubq_s16(input_2, sign_in2); |
| input_3 = vhsubq_s16(input_3, sign_in3); |
| input_4 = vhsubq_s16(input_4, sign_in4); |
| input_5 = vhsubq_s16(input_5, sign_in5); |
| input_6 = vhsubq_s16(input_6, sign_in6); |
| input_7 = vhsubq_s16(input_7, sign_in7); |
| // store results |
| vst1q_s16(&final_output[0 * 8], input_0); |
| vst1q_s16(&final_output[1 * 8], input_1); |
| vst1q_s16(&final_output[2 * 8], input_2); |
| vst1q_s16(&final_output[3 * 8], input_3); |
| vst1q_s16(&final_output[4 * 8], input_4); |
| vst1q_s16(&final_output[5 * 8], input_5); |
| vst1q_s16(&final_output[6 * 8], input_6); |
| vst1q_s16(&final_output[7 * 8], input_7); |
| } |
| } |
| #endif // CONFIG_INTERNAL_STATS |