| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/sum_neon.h" |
| #include "aom_ports/mem.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| static inline void variance_4xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int h, |
| uint32_t *sse, int *sum) { |
| int16x8_t sum_s16 = vdupq_n_s16(0); |
| int32x4_t sse_s32 = vdupq_n_s32(0); |
| |
| // Number of rows we can process before 'sum_s16' overflows: |
| // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows. |
| assert(h <= 256); |
| |
| int i = h; |
| do { |
| uint8x8_t s = load_unaligned_u8(src, src_stride); |
| uint8x8_t r = load_unaligned_u8(ref, ref_stride); |
| int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); |
| |
| sum_s16 = vaddq_s16(sum_s16, diff); |
| |
| sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff)); |
| sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff)); |
| |
| src += 2 * src_stride; |
| ref += 2 * ref_stride; |
| i -= 2; |
| } while (i != 0); |
| |
| *sum = horizontal_add_s16x8(sum_s16); |
| *sse = (uint32_t)horizontal_add_s32x4(sse_s32); |
| } |
| |
| static inline void variance_8xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int h, |
| uint32_t *sse, int *sum) { |
| int16x8_t sum_s16 = vdupq_n_s16(0); |
| int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; |
| |
| // Number of rows we can process before 'sum_s16' overflows: |
| // 32767 / 255 ~= 128 |
| assert(h <= 128); |
| |
| int i = h; |
| do { |
| uint8x8_t s = vld1_u8(src); |
| uint8x8_t r = vld1_u8(ref); |
| int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); |
| |
| sum_s16 = vaddq_s16(sum_s16, diff); |
| |
| sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff)); |
| sse_s32[1] = |
| vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff)); |
| |
| src += src_stride; |
| ref += ref_stride; |
| } while (--i != 0); |
| |
| *sum = horizontal_add_s16x8(sum_s16); |
| *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); |
| } |
| |
| static inline void variance_16xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int h, |
| uint32_t *sse, int *sum) { |
| int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; |
| int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; |
| |
| // Number of rows we can process before 'sum_s16' accumulators overflow: |
| // 32767 / 255 ~= 128, so 128 16-wide rows. |
| assert(h <= 128); |
| |
| int i = h; |
| do { |
| uint8x16_t s = vld1q_u8(src); |
| uint8x16_t r = vld1q_u8(ref); |
| |
| int16x8_t diff_l = |
| vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); |
| int16x8_t diff_h = |
| vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); |
| |
| sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); |
| sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); |
| |
| sse_s32[0] = |
| vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); |
| sse_s32[1] = |
| vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); |
| sse_s32[0] = |
| vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); |
| sse_s32[1] = |
| vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); |
| |
| src += src_stride; |
| ref += ref_stride; |
| } while (--i != 0); |
| |
| *sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1])); |
| *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); |
| } |
| |
| static inline void variance_large_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| int w, int h, int h_limit, uint32_t *sse, |
| int *sum) { |
| int32x4_t sum_s32 = vdupq_n_s32(0); |
| int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; |
| |
| // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit |
| // accumulator overflows. After hitting this limit we accumulate into 32-bit |
| // elements. |
| int h_tmp = h > h_limit ? h_limit : h; |
| |
| int i = 0; |
| do { |
| int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; |
| do { |
| int j = 0; |
| do { |
| uint8x16_t s = vld1q_u8(src + j); |
| uint8x16_t r = vld1q_u8(ref + j); |
| |
| int16x8_t diff_l = |
| vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); |
| int16x8_t diff_h = |
| vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); |
| |
| sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); |
| sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); |
| |
| sse_s32[0] = |
| vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); |
| sse_s32[1] = |
| vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); |
| sse_s32[0] = |
| vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); |
| sse_s32[1] = |
| vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); |
| |
| j += 16; |
| } while (j < w); |
| |
| src += src_stride; |
| ref += ref_stride; |
| i++; |
| } while (i < h_tmp); |
| |
| sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]); |
| sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]); |
| |
| h_tmp += h_limit; |
| } while (i < h); |
| |
| *sum = horizontal_add_s32x4(sum_s32); |
| *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); |
| } |
| |
| static inline void variance_32xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int h, |
| uint32_t *sse, int *sum) { |
| variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum); |
| } |
| |
| static inline void variance_64xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int h, |
| uint32_t *sse, int *sum) { |
| variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum); |
| } |
| |
| static inline void variance_128xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| int h, uint32_t *sse, int *sum) { |
| variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum); |
| } |
| |
| #define VARIANCE_WXH_NEON(w, h, shift) \ |
| unsigned int aom_variance##w##x##h##_neon( \ |
| const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ |
| unsigned int *sse) { \ |
| int sum; \ |
| variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \ |
| } |
| |
| VARIANCE_WXH_NEON(4, 4, 4) |
| VARIANCE_WXH_NEON(4, 8, 5) |
| |
| VARIANCE_WXH_NEON(8, 4, 5) |
| VARIANCE_WXH_NEON(8, 8, 6) |
| VARIANCE_WXH_NEON(8, 16, 7) |
| |
| VARIANCE_WXH_NEON(16, 8, 7) |
| VARIANCE_WXH_NEON(16, 16, 8) |
| VARIANCE_WXH_NEON(16, 32, 9) |
| |
| VARIANCE_WXH_NEON(32, 16, 9) |
| VARIANCE_WXH_NEON(32, 32, 10) |
| VARIANCE_WXH_NEON(32, 64, 11) |
| |
| VARIANCE_WXH_NEON(64, 32, 11) |
| VARIANCE_WXH_NEON(64, 64, 12) |
| VARIANCE_WXH_NEON(64, 128, 13) |
| |
| VARIANCE_WXH_NEON(128, 64, 13) |
| VARIANCE_WXH_NEON(128, 128, 14) |
| |
| #if !CONFIG_REALTIME_ONLY |
| VARIANCE_WXH_NEON(4, 16, 6) |
| VARIANCE_WXH_NEON(8, 32, 8) |
| VARIANCE_WXH_NEON(16, 4, 6) |
| VARIANCE_WXH_NEON(16, 64, 10) |
| VARIANCE_WXH_NEON(32, 8, 8) |
| VARIANCE_WXH_NEON(64, 16, 10) |
| #endif |
| |
| #undef VARIANCE_WXH_NEON |
| |
| // TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of |
| // AVX2. Also, implement the NEON for variance computation present in this |
| // function. |
| void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| uint32_t *sse8x8, int *sum8x8, |
| unsigned int *tot_sse, int *tot_sum, |
| uint32_t *var8x8) { |
| // Loop over four 8x8 blocks. Process one 8x32 block. |
| for (int k = 0; k < 4; k++) { |
| variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8, |
| &sse8x8[k], &sum8x8[k]); |
| } |
| |
| *tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3]; |
| *tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3]; |
| for (int i = 0; i < 4; i++) { |
| var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6); |
| } |
| } |
| |
| void aom_get_var_sse_sum_16x16_dual_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| uint32_t *sse16x16, |
| unsigned int *tot_sse, int *tot_sum, |
| uint32_t *var16x16) { |
| int sum16x16[2] = { 0 }; |
| // Loop over two 16x16 blocks. Process one 16x32 block. |
| for (int k = 0; k < 2; k++) { |
| variance_16xh_neon(src + (k * 16), src_stride, ref + (k * 16), ref_stride, |
| 16, &sse16x16[k], &sum16x16[k]); |
| } |
| |
| *tot_sse += sse16x16[0] + sse16x16[1]; |
| *tot_sum += sum16x16[0] + sum16x16[1]; |
| for (int i = 0; i < 2; i++) { |
| var16x16[i] = |
| sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8); |
| } |
| } |
| |
| static inline unsigned int mse8xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| unsigned int *sse, int h) { |
| uint8x8_t s[2], r[2]; |
| int16x4_t diff_lo[2], diff_hi[2]; |
| uint16x8_t diff[2]; |
| int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; |
| |
| int i = h; |
| do { |
| s[0] = vld1_u8(src); |
| src += src_stride; |
| s[1] = vld1_u8(src); |
| src += src_stride; |
| r[0] = vld1_u8(ref); |
| ref += ref_stride; |
| r[1] = vld1_u8(ref); |
| ref += ref_stride; |
| |
| diff[0] = vsubl_u8(s[0], r[0]); |
| diff[1] = vsubl_u8(s[1], r[1]); |
| |
| diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); |
| diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); |
| sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]); |
| sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]); |
| |
| diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); |
| diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); |
| sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]); |
| sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]); |
| |
| i -= 2; |
| } while (i != 0); |
| |
| sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]); |
| |
| *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); |
| return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); |
| } |
| |
| static inline unsigned int mse16xh_neon(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| unsigned int *sse, int h) { |
| uint8x16_t s[2], r[2]; |
| int16x4_t diff_lo[4], diff_hi[4]; |
| uint16x8_t diff[4]; |
| int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), |
| vdupq_n_s32(0) }; |
| |
| int i = h; |
| do { |
| s[0] = vld1q_u8(src); |
| src += src_stride; |
| s[1] = vld1q_u8(src); |
| src += src_stride; |
| r[0] = vld1q_u8(ref); |
| ref += ref_stride; |
| r[1] = vld1q_u8(ref); |
| ref += ref_stride; |
| |
| diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0])); |
| diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0])); |
| diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1])); |
| diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1])); |
| |
| diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); |
| diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); |
| sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]); |
| sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]); |
| |
| diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2])); |
| diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3])); |
| sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]); |
| sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]); |
| |
| diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); |
| diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); |
| sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]); |
| sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]); |
| |
| diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2])); |
| diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3])); |
| sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]); |
| sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]); |
| |
| i -= 2; |
| } while (i != 0); |
| |
| sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]); |
| sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]); |
| sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]); |
| |
| *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); |
| return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); |
| } |
| |
| #define MSE_WXH_NEON(w, h) \ |
| unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \ |
| const uint8_t *ref, int ref_stride, \ |
| unsigned int *sse) { \ |
| return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h); \ |
| } |
| |
| MSE_WXH_NEON(8, 8) |
| MSE_WXH_NEON(8, 16) |
| |
| MSE_WXH_NEON(16, 8) |
| MSE_WXH_NEON(16, 16) |
| |
| #undef MSE_WXH_NEON |
| |
| static inline uint64x2_t mse_accumulate_u16_u8_8x2(uint64x2_t sum, |
| uint16x8_t s0, uint16x8_t s1, |
| uint8x8_t d0, uint8x8_t d1) { |
| int16x8_t e0 = vreinterpretq_s16_u16(vsubw_u8(s0, d0)); |
| int16x8_t e1 = vreinterpretq_s16_u16(vsubw_u8(s1, d1)); |
| |
| int32x4_t mse = vmull_s16(vget_low_s16(e0), vget_low_s16(e0)); |
| mse = vmlal_s16(mse, vget_high_s16(e0), vget_high_s16(e0)); |
| mse = vmlal_s16(mse, vget_low_s16(e1), vget_low_s16(e1)); |
| mse = vmlal_s16(mse, vget_high_s16(e1), vget_high_s16(e1)); |
| |
| return vpadalq_u32(sum, vreinterpretq_u32_s32(mse)); |
| } |
| |
| static uint64x2_t mse_wxh_16bit(uint8_t *dst, int dstride, const uint16_t *src, |
| int sstride, int w, int h) { |
| assert((w == 8 || w == 4) && (h == 8 || h == 4)); |
| |
| uint64x2_t sum = vdupq_n_u64(0); |
| |
| if (w == 8) { |
| do { |
| uint8x8_t d0 = vld1_u8(dst + 0 * dstride); |
| uint8x8_t d1 = vld1_u8(dst + 1 * dstride); |
| uint16x8_t s0 = vld1q_u16(src + 0 * sstride); |
| uint16x8_t s1 = vld1q_u16(src + 1 * sstride); |
| |
| sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1); |
| |
| dst += 2 * dstride; |
| src += 2 * sstride; |
| h -= 2; |
| } while (h != 0); |
| } else { |
| do { |
| uint8x8_t d0 = load_unaligned_u8_4x2(dst + 0 * dstride, dstride); |
| uint8x8_t d1 = load_unaligned_u8_4x2(dst + 2 * dstride, dstride); |
| uint16x8_t s0 = load_unaligned_u16_4x2(src + 0 * sstride, sstride); |
| uint16x8_t s1 = load_unaligned_u16_4x2(src + 2 * sstride, sstride); |
| |
| sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1); |
| |
| dst += 4 * dstride; |
| src += 4 * sstride; |
| h -= 4; |
| } while (h != 0); |
| } |
| |
| return sum; |
| } |
| |
| // Computes mse for a given block size. This function gets called for specific |
| // block sizes, which are 8x8, 8x4, 4x8 and 4x4. |
| uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, |
| int sstride, int w, int h) { |
| return horizontal_add_u64x2(mse_wxh_16bit(dst, dstride, src, sstride, w, h)); |
| } |
| |
| uint32_t aom_get_mb_ss_neon(const int16_t *a) { |
| int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; |
| |
| for (int i = 0; i < 256; i = i + 8) { |
| int16x8_t a_s16 = vld1q_s16(a + i); |
| |
| sse[0] = vmlal_s16(sse[0], vget_low_s16(a_s16), vget_low_s16(a_s16)); |
| sse[1] = vmlal_s16(sse[1], vget_high_s16(a_s16), vget_high_s16(a_s16)); |
| } |
| |
| return horizontal_add_s32x4(vaddq_s32(sse[0], sse[1])); |
| } |
| |
| uint64_t aom_mse_16xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, |
| int w, int h) { |
| uint64x2_t sum = vdupq_n_u64(0); |
| |
| int num_blks = 16 / w; |
| do { |
| sum = vaddq_u64(sum, mse_wxh_16bit(dst, dstride, src, w, w, h)); |
| dst += w; |
| src += w * h; |
| } while (--num_blks != 0); |
| |
| return horizontal_add_u64x2(sum); |
| } |