| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AV1_COMMON_ONYXC_INT_H_ |
| #define AV1_COMMON_ONYXC_INT_H_ |
| |
| #include "./aom_config.h" |
| #include "./av1_rtcd.h" |
| #include "aom/internal/aom_codec_internal.h" |
| #include "aom_util/aom_thread.h" |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/frame_buffers.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/restoration.h" |
| #include "av1/common/tile_common.h" |
| #if CONFIG_BUFFER_MODEL |
| #include "av1/common/timing.h" |
| #endif |
| #include "av1/common/odintrin.h" |
| #include "av1/encoder/hash_motion.h" |
| #include "aom_dsp/grain_synthesis.h" |
| #include "aom_dsp/grain_table.h" |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #if defined(__clang__) && defined(__has_warning) |
| #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") |
| #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT |
| #endif |
| #elif defined(__GNUC__) && __GNUC__ >= 7 |
| #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT |
| #endif |
| |
| #ifndef AOM_FALLTHROUGH_INTENDED |
| #define AOM_FALLTHROUGH_INTENDED \ |
| do { \ |
| } while (0) |
| #endif |
| |
| #define CDEF_MAX_STRENGTHS 16 |
| |
| /* Constant values while waiting for the sequence header */ |
| #define FRAME_ID_LENGTH 15 |
| #define DELTA_FRAME_ID_LENGTH 14 |
| |
| #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) |
| // Extra frame context which is always kept at default values |
| #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) |
| #define PRIMARY_REF_BITS 3 |
| #define PRIMARY_REF_NONE 7 |
| |
| #define NUM_PING_PONG_BUFFERS 2 |
| |
| #define MAX_NUM_TEMPORAL_LAYERS 8 |
| #define MAX_NUM_SPATIAL_LAYERS 4 |
| /* clang-format off */ |
| // clang-format seems to think this is a pointer dereference and not a |
| // multiplication. |
| #define MAX_NUM_OPERATING_POINTS \ |
| MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS |
| /* clang-format on*/ |
| |
| // TODO(jingning): Turning this on to set up transform coefficient |
| // processing timer. |
| #define TXCOEFF_TIMER 0 |
| #define TXCOEFF_COST_TIMER 0 |
| |
| typedef enum { |
| SINGLE_REFERENCE = 0, |
| COMPOUND_REFERENCE = 1, |
| REFERENCE_MODE_SELECT = 2, |
| REFERENCE_MODES = 3, |
| } REFERENCE_MODE; |
| |
| typedef enum { |
| /** |
| * Frame context updates are disabled |
| */ |
| REFRESH_FRAME_CONTEXT_DISABLED, |
| /** |
| * Update frame context to values resulting from backward probability |
| * updates based on entropy/counts in the decoded frame |
| */ |
| REFRESH_FRAME_CONTEXT_BACKWARD, |
| } REFRESH_FRAME_CONTEXT_MODE; |
| |
| #define MFMV_STACK_SIZE 3 |
| typedef struct { |
| int_mv mfmv0; |
| uint8_t ref_frame_offset; |
| } TPL_MV_REF; |
| |
| typedef struct { |
| int_mv mv; |
| MV_REFERENCE_FRAME ref_frame; |
| } MV_REF; |
| |
| typedef struct { |
| int ref_count; |
| |
| unsigned int cur_frame_offset; |
| unsigned int ref_frame_offset[INTER_REFS_PER_FRAME]; |
| |
| MV_REF *mvs; |
| uint8_t *seg_map; |
| struct segmentation seg; |
| int mi_rows; |
| int mi_cols; |
| // Width and height give the size of the buffer (before any upscaling, unlike |
| // the sizes that can be derived from the buf structure) |
| int width; |
| int height; |
| WarpedMotionParams global_motion[REF_FRAMES]; |
| int showable_frame; // frame can be used as show existing frame in future |
| int film_grain_params_present; |
| aom_film_grain_t film_grain_params; |
| aom_codec_frame_buffer_t raw_frame_buffer; |
| YV12_BUFFER_CONFIG buf; |
| hash_table hash_table; |
| uint8_t intra_only; |
| FRAME_TYPE frame_type; |
| // The Following variables will only be used in frame parallel decode. |
| |
| // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means |
| // that no FrameWorker owns, or is decoding, this buffer. |
| AVxWorker *frame_worker_owner; |
| |
| // row and col indicate which position frame has been decoded to in real |
| // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX |
| // when the frame is fully decoded. |
| int row; |
| int col; |
| |
| // Inter frame reference frame delta for loop filter |
| int8_t ref_deltas[REF_FRAMES]; |
| |
| // 0 = ZERO_MV, MV |
| int8_t mode_deltas[MAX_MODE_LF_DELTAS]; |
| } RefCntBuffer; |
| |
| typedef struct BufferPool { |
| // Protect BufferPool from being accessed by several FrameWorkers at |
| // the same time during frame parallel decode. |
| // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t pool_mutex; |
| #endif |
| |
| // Private data associated with the frame buffer callbacks. |
| void *cb_priv; |
| |
| aom_get_frame_buffer_cb_fn_t get_fb_cb; |
| aom_release_frame_buffer_cb_fn_t release_fb_cb; |
| |
| RefCntBuffer frame_bufs[FRAME_BUFFERS]; |
| |
| // Frame buffers allocated internally by the codec. |
| InternalFrameBufferList int_frame_buffers; |
| } BufferPool; |
| |
| typedef struct { |
| int base_ctx_table[2 /*row*/][2 /*col*/][3 /*sig_map*/] |
| [BASE_CONTEXT_POSITION_NUM + 1]; |
| } LV_MAP_CTX_TABLE; |
| typedef int BASE_CTX_TABLE[2 /*col*/][3 /*sig_map*/] |
| [BASE_CONTEXT_POSITION_NUM + 1]; |
| |
| /* Initial version of sequence header structure */ |
| typedef struct SequenceHeader { |
| int num_bits_width; |
| int num_bits_height; |
| int max_frame_width; |
| int max_frame_height; |
| int frame_id_numbers_present_flag; |
| int frame_id_length; |
| int delta_frame_id_length; |
| BLOCK_SIZE sb_size; // Size of the superblock used for this frame |
| int mib_size; // Size of the superblock in units of MI blocks |
| int mib_size_log2; // Log 2 of above. |
| int order_hint_bits_minus1; |
| int force_screen_content_tools; // 0 - force off |
| // 1 - force on |
| // 2 - adaptive |
| int force_integer_mv; // 0 - Not to force. MV can be in 1/4 or 1/8 |
| // 1 - force to integer |
| // 2 - adaptive |
| int still_picture; // Video is a single frame still picture |
| int reduced_still_picture_hdr; // Use reduced header for still picture |
| int monochrome; // Monochorme video |
| int enable_filter_intra; // enables/disables filterintra |
| int enable_intra_edge_filter; // enables/disables corner/edge/upsampling |
| int enable_interintra_compound; // enables/disables interintra_compound |
| int enable_masked_compound; // enables/disables masked compound |
| int enable_dual_filter; // 0 - disable dual interpolation filter |
| // 1 - enable vert/horiz filter selection |
| int enable_order_hint; // 0 - disable order hint, and related tools |
| // jnt_comp, ref_frame_mvs, frame_sign_bias |
| // if 0, enable_jnt_comp and |
| // enable_ref_frame_mvs must be set zs 0. |
| int enable_jnt_comp; // 0 - disable joint compound modes |
| // 1 - enable it |
| int enable_ref_frame_mvs; // 0 - disable ref frame mvs |
| // 1 - enable it |
| int enable_warped_motion; // 0 - disable warped motion for sequence |
| // 1 - enable it for the sequence |
| int enable_superres; // 0 - Disable superres for the sequence, and disable |
| // transmitting per-frame superres enabled flag. |
| // 1 - Enable superres for the sequence, and also |
| // enable per-frame flag to denote if superres is |
| // enabled for that frame. |
| int enable_cdef; // To turn on/off CDEF |
| int enable_restoration; // To turn on/off loop restoration |
| int operating_point_idc[MAX_NUM_OPERATING_POINTS]; |
| int level[MAX_NUM_OPERATING_POINTS]; |
| int decoder_rate_model_param_present_flag[MAX_NUM_OPERATING_POINTS]; |
| #if !CONFIG_BUFFER_MODEL |
| int decode_to_display_rate_ratio[MAX_NUM_OPERATING_POINTS]; |
| int initial_display_delay[MAX_NUM_OPERATING_POINTS]; |
| int extra_frame_buffers[MAX_NUM_OPERATING_POINTS]; |
| #endif |
| } SequenceHeader; |
| |
| typedef struct AV1Common { |
| struct aom_internal_error_info error; |
| aom_color_primaries_t color_primaries; |
| aom_transfer_characteristics_t transfer_characteristics; |
| aom_matrix_coefficients_t matrix_coefficients; |
| aom_chroma_sample_position_t chroma_sample_position; |
| int color_range; |
| int width; |
| int height; |
| int render_width; |
| int render_height; |
| int last_width; |
| int last_height; |
| int timing_info_present; |
| #if !CONFIG_BUFFER_MODEL |
| uint32_t num_units_in_tick; |
| uint32_t time_scale; |
| int equal_picture_interval; |
| uint32_t num_ticks_per_picture; |
| #else |
| aom_timing_info_t timing_info; |
| int operating_points_decoder_model_cnt; |
| int decoder_model_info_present_flag; |
| int buffer_removal_delay_present; |
| aom_dec_model_info_t buffer_model; |
| aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; |
| aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1]; |
| int tu_presentation_delay_flag; |
| int64_t tu_presentation_delay; |
| #endif |
| |
| // TODO(jkoleszar): this implies chroma ss right now, but could vary per |
| // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to |
| // support additional planes. |
| int subsampling_x; |
| int subsampling_y; |
| |
| int largest_tile_id; |
| size_t largest_tile_size; |
| int context_update_tile_id; |
| |
| // Scale of the current frame with respect to itself. |
| struct scale_factors sf_identity; |
| |
| // Marks if we need to use 16bit frame buffers (1: yes, 0: no). |
| int use_highbitdepth; |
| YV12_BUFFER_CONFIG *frame_to_show; |
| RefCntBuffer *prev_frame; |
| |
| // TODO(hkuang): Combine this with cur_buf in macroblockd. |
| RefCntBuffer *cur_frame; |
| |
| int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ |
| |
| // Prepare ref_frame_map for the next frame. |
| // Only used in frame parallel decode. |
| int next_ref_frame_map[REF_FRAMES]; |
| |
| // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and |
| // roll new_fb_idx into it. |
| |
| // Each Inter frame can reference INTER_REFS_PER_FRAME buffers |
| RefBuffer frame_refs[INTER_REFS_PER_FRAME]; |
| int is_skip_mode_allowed; |
| int skip_mode_flag; |
| int ref_frame_idx_0; |
| int ref_frame_idx_1; |
| |
| int new_fb_idx; |
| |
| FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ |
| FRAME_TYPE frame_type; |
| |
| int show_frame; |
| int showable_frame; // frame can be used as show existing frame in future |
| int last_show_frame; |
| int show_existing_frame; |
| // Flag for a frame used as a reference - not written to the bitstream |
| int is_reference_frame; |
| int reset_decoder_state; |
| |
| // Flag signaling that the frame is encoded using only INTRA modes. |
| uint8_t intra_only; |
| uint8_t last_intra_only; |
| uint8_t disable_cdf_update; |
| int allow_high_precision_mv; |
| int cur_frame_force_integer_mv; // 0 the default in AOM, 1 only integer |
| |
| int allow_screen_content_tools; |
| int allow_intrabc; |
| int allow_warped_motion; |
| |
| // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in |
| // MB_MODE_INFO (8-pixel) units. |
| int MBs; |
| int mb_rows, mi_rows; |
| int mb_cols, mi_cols; |
| int mi_stride; |
| |
| /* profile settings */ |
| TX_MODE tx_mode; |
| |
| #if CONFIG_ENTROPY_STATS |
| int coef_cdf_category; |
| #endif |
| |
| int base_qindex; |
| int y_dc_delta_q; |
| int u_dc_delta_q; |
| int v_dc_delta_q; |
| int u_ac_delta_q; |
| int v_ac_delta_q; |
| |
| int separate_uv_delta_q; |
| |
| // The dequantizers below are true dequntizers used only in the |
| // dequantization process. They have the same coefficient |
| // shift/scale as TX. |
| int16_t y_dequant_QTX[MAX_SEGMENTS][2]; |
| int16_t u_dequant_QTX[MAX_SEGMENTS][2]; |
| int16_t v_dequant_QTX[MAX_SEGMENTS][2]; |
| |
| // Global quant matrix tables |
| const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; |
| const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; |
| |
| // Local quant matrix tables for each frame |
| const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| |
| // Encoder |
| int using_qmatrix; |
| int qm_y; |
| int qm_u; |
| int qm_v; |
| int min_qmlevel; |
| int max_qmlevel; |
| |
| /* We allocate a MB_MODE_INFO struct for each macroblock, together with |
| an extra row on top and column on the left to simplify prediction. */ |
| int mi_alloc_size; |
| MB_MODE_INFO *mip; /* Base of allocated array */ |
| MB_MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ |
| |
| // TODO(agrange): Move prev_mi into encoder structure. |
| // prev_mip and prev_mi will only be allocated in encoder. |
| MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */ |
| MB_MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ |
| |
| // Separate mi functions between encoder and decoder. |
| int (*alloc_mi)(struct AV1Common *cm, int mi_size); |
| void (*free_mi)(struct AV1Common *cm); |
| void (*setup_mi)(struct AV1Common *cm); |
| |
| // Grid of pointers to 8x8 MB_MODE_INFO structs. Any 8x8 not in the visible |
| // area will be NULL. |
| MB_MODE_INFO **mi_grid_base; |
| MB_MODE_INFO **mi_grid_visible; |
| MB_MODE_INFO **prev_mi_grid_base; |
| MB_MODE_INFO **prev_mi_grid_visible; |
| |
| // Whether to use previous frames' motion vectors for prediction. |
| int allow_ref_frame_mvs; |
| |
| uint8_t *last_frame_seg_map; |
| uint8_t *current_frame_seg_map; |
| int seg_map_alloc_size; |
| |
| InterpFilter interp_filter; |
| |
| int switchable_motion_mode; |
| |
| loop_filter_info_n lf_info; |
| // The denominator of the superres scale; the numerator is fixed. |
| uint8_t superres_scale_denominator; |
| int superres_upscaled_width; |
| int superres_upscaled_height; |
| RestorationInfo rst_info[MAX_MB_PLANE]; |
| |
| // rst_end_stripe[i] is one more than the index of the bottom stripe |
| // for tile row i. |
| int rst_end_stripe[MAX_TILE_ROWS]; |
| |
| // Pointer to a scratch buffer used by self-guided restoration |
| int32_t *rst_tmpbuf; |
| |
| // Output of loop restoration |
| YV12_BUFFER_CONFIG rst_frame; |
| |
| // Flag signaling how frame contexts should be updated at the end of |
| // a frame decode |
| REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; |
| |
| int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */ |
| |
| struct loopfilter lf; |
| struct segmentation seg; |
| int coded_lossless; // frame is fully lossless at the coded resolution. |
| int all_lossless; // frame is fully lossless at the upscaled resolution. |
| |
| int reduced_tx_set_used; |
| |
| // Context probabilities for reference frame prediction |
| MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; |
| MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; |
| REFERENCE_MODE reference_mode; |
| |
| FRAME_CONTEXT *fc; /* this frame entropy */ |
| FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS |
| unsigned int frame_context_idx; /* Context to use/update */ |
| int fb_of_context_type[REF_FRAMES]; |
| int primary_ref_frame; |
| FRAME_COUNTS counts; |
| |
| unsigned int frame_offset; |
| |
| unsigned int current_video_frame; |
| BITSTREAM_PROFILE profile; |
| |
| // AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. |
| aom_bit_depth_t bit_depth; |
| aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer |
| |
| int error_resilient_mode; |
| int force_primary_ref_none; |
| |
| int tile_cols, tile_rows; |
| int last_tile_cols, last_tile_rows; |
| |
| int max_tile_width_sb; |
| int min_log2_tile_cols; |
| int max_log2_tile_cols; |
| int max_log2_tile_rows; |
| int min_log2_tile_rows; |
| int min_log2_tiles; |
| int max_tile_height_sb; |
| int uniform_tile_spacing_flag; |
| int log2_tile_cols; // only valid for uniform tiles |
| int log2_tile_rows; // only valid for uniform tiles |
| int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols |
| int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows |
| int tile_width, tile_height; // In MI units |
| |
| unsigned int large_scale_tile; |
| unsigned int single_tile_decoding; |
| |
| int byte_alignment; |
| int skip_loop_filter; |
| |
| // Private data associated with the frame buffer callbacks. |
| void *cb_priv; |
| aom_get_frame_buffer_cb_fn_t get_fb_cb; |
| aom_release_frame_buffer_cb_fn_t release_fb_cb; |
| |
| // Handles memory for the codec. |
| InternalFrameBufferList int_frame_buffers; |
| |
| // External BufferPool passed from outside. |
| BufferPool *buffer_pool; |
| |
| PARTITION_CONTEXT *above_seg_context; |
| ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; |
| TXFM_CONTEXT *above_txfm_context; |
| TXFM_CONTEXT *top_txfm_context[MAX_MB_PLANE]; |
| TXFM_CONTEXT left_txfm_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE]; |
| int above_context_alloc_cols; |
| WarpedMotionParams global_motion[REF_FRAMES]; |
| aom_film_grain_table_t *film_grain_table; |
| int film_grain_params_present; |
| aom_film_grain_t film_grain_params; |
| int cdef_pri_damping; |
| int cdef_sec_damping; |
| int nb_cdef_strengths; |
| int cdef_strengths[CDEF_MAX_STRENGTHS]; |
| int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; |
| int cdef_bits; |
| |
| int delta_q_present_flag; |
| // Resolution of delta quant |
| int delta_q_res; |
| int delta_lf_present_flag; |
| // Resolution of delta lf level |
| int delta_lf_res; |
| // This is a flag for number of deltas of loop filter level |
| // 0: use 1 delta, for y_vertical, y_horizontal, u, and v |
| // 1: use separate deltas for each filter level |
| int delta_lf_multi; |
| int num_tg; |
| SequenceHeader seq_params; |
| int current_frame_id; |
| int ref_frame_id[REF_FRAMES]; |
| int valid_for_referencing[REF_FRAMES]; |
| int invalid_delta_frame_id_minus1; |
| LV_MAP_CTX_TABLE coeff_ctx_table; |
| TPL_MV_REF *tpl_mvs; |
| int tpl_mvs_mem_size; |
| // TODO(jingning): This can be combined with sign_bias later. |
| int8_t ref_frame_side[REF_FRAMES]; |
| |
| int is_annexb; |
| |
| int frame_refs_short_signaling; |
| int temporal_layer_id; |
| int enhancement_layer_id; |
| int enhancement_layers_cnt; |
| |
| #if TXCOEFF_TIMER |
| int64_t cum_txcoeff_timer; |
| int64_t txcoeff_timer; |
| int txb_count; |
| #endif |
| |
| #if TXCOEFF_COST_TIMER |
| int64_t cum_txcoeff_cost_timer; |
| int64_t txcoeff_cost_timer; |
| int64_t txcoeff_cost_count; |
| #endif |
| const cfg_options_t *options; |
| } AV1_COMMON; |
| |
| // TODO(hkuang): Don't need to lock the whole pool after implementing atomic |
| // frame reference count. |
| static void lock_buffer_pool(BufferPool *const pool) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(&pool->pool_mutex); |
| #else |
| (void)pool; |
| #endif |
| } |
| |
| static void unlock_buffer_pool(BufferPool *const pool) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(&pool->pool_mutex); |
| #else |
| (void)pool; |
| #endif |
| } |
| |
| static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { |
| if (index < 0 || index >= REF_FRAMES) return NULL; |
| if (cm->ref_frame_map[index] < 0) return NULL; |
| assert(cm->ref_frame_map[index] < FRAME_BUFFERS); |
| return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; |
| } |
| |
| static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer( |
| const AV1_COMMON *const cm) { |
| return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; |
| } |
| |
| static INLINE int get_free_fb(AV1_COMMON *cm) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| int i; |
| |
| lock_buffer_pool(cm->buffer_pool); |
| for (i = 0; i < FRAME_BUFFERS; ++i) |
| if (frame_bufs[i].ref_count == 0) break; |
| |
| if (i != FRAME_BUFFERS) { |
| if (frame_bufs[i].buf.use_external_refernce_buffers) { |
| // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the |
| // external reference buffers. Restore the buffer pointers to point to the |
| // internally allocated memory. |
| YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; |
| ybf->y_buffer = ybf->store_buf_adr[0]; |
| ybf->u_buffer = ybf->store_buf_adr[1]; |
| ybf->v_buffer = ybf->store_buf_adr[2]; |
| ybf->use_external_refernce_buffers = 0; |
| } |
| |
| frame_bufs[i].ref_count = 1; |
| } else { |
| // Reset i to be INVALID_IDX to indicate no free buffer found. |
| i = INVALID_IDX; |
| } |
| |
| unlock_buffer_pool(cm->buffer_pool); |
| return i; |
| } |
| |
| static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { |
| const int ref_index = *idx; |
| |
| if (ref_index >= 0 && bufs[ref_index].ref_count > 0) |
| bufs[ref_index].ref_count--; |
| |
| *idx = new_idx; |
| |
| bufs[new_idx].ref_count++; |
| } |
| |
| static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { |
| return cm->frame_type == KEY_FRAME || cm->intra_only; |
| } |
| |
| static INLINE int frame_is_sframe(const AV1_COMMON *cm) { |
| return cm->frame_type == S_FRAME; |
| } |
| |
| static INLINE RefCntBuffer *get_prev_frame(const AV1_COMMON *const cm) { |
| if (cm->primary_ref_frame == PRIMARY_REF_NONE || |
| cm->frame_refs[cm->primary_ref_frame].idx == INVALID_IDX) { |
| return NULL; |
| } else { |
| return &cm->buffer_pool |
| ->frame_bufs[cm->frame_refs[cm->primary_ref_frame].idx]; |
| } |
| } |
| |
| // Returns 1 if this frame might allow mvs from some reference frame. |
| static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { |
| return !cm->error_resilient_mode && !cm->large_scale_tile && |
| cm->seq_params.enable_ref_frame_mvs && |
| cm->seq_params.enable_order_hint && !frame_is_intra_only(cm); |
| } |
| |
| // Returns 1 if this frame might use warped_motion |
| static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) { |
| return !cm->error_resilient_mode && !frame_is_intra_only(cm) && |
| cm->seq_params.enable_warped_motion; |
| } |
| |
| static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { |
| const int buf_rows = buf->mi_rows; |
| const int buf_cols = buf->mi_cols; |
| |
| if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) { |
| aom_free(buf->mvs); |
| buf->mi_rows = cm->mi_rows; |
| buf->mi_cols = cm->mi_cols; |
| CHECK_MEM_ERROR(cm, buf->mvs, |
| (MV_REF *)aom_calloc( |
| ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1), |
| sizeof(*buf->mvs))); |
| aom_free(buf->seg_map); |
| CHECK_MEM_ERROR(cm, buf->seg_map, |
| (uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols, |
| sizeof(*buf->seg_map))); |
| } |
| |
| const int mem_size = |
| ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1); |
| int realloc = cm->tpl_mvs == NULL; |
| if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size; |
| |
| if (realloc) { |
| aom_free(cm->tpl_mvs); |
| CHECK_MEM_ERROR(cm, cm->tpl_mvs, |
| (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs))); |
| cm->tpl_mvs_mem_size = mem_size; |
| } |
| } |
| |
| static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) { |
| return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); |
| } |
| |
| static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) { |
| return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); |
| } |
| |
| void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm); |
| |
| static INLINE int av1_num_planes(const AV1_COMMON *cm) { |
| return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE; |
| } |
| |
| static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd, |
| tran_low_t *dqcoeff) { |
| const int num_planes = av1_num_planes(cm); |
| for (int i = 0; i < num_planes; ++i) { |
| xd->plane[i].dqcoeff = dqcoeff; |
| xd->above_context[i] = cm->above_context[i]; |
| if (xd->plane[i].plane_type == PLANE_TYPE_Y) { |
| memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX, |
| sizeof(cm->y_dequant_QTX)); |
| memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix)); |
| |
| } else { |
| if (i == AOM_PLANE_U) { |
| memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX, |
| sizeof(cm->u_dequant_QTX)); |
| memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix, |
| sizeof(cm->u_iqmatrix)); |
| } else { |
| memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX, |
| sizeof(cm->v_dequant_QTX)); |
| memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix, |
| sizeof(cm->v_iqmatrix)); |
| } |
| } |
| } |
| xd->fc = cm->fc; |
| xd->above_seg_context = cm->above_seg_context; |
| xd->above_txfm_context = cm->above_txfm_context; |
| xd->mi_stride = cm->mi_stride; |
| xd->error_info = &cm->error; |
| cfl_init(&xd->cfl, cm); |
| } |
| |
| static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col, |
| const int num_planes) { |
| int i; |
| int row_offset = mi_row; |
| int col_offset = mi_col; |
| for (i = 0; i < num_planes; ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| // Offset the buffer pointer |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) |
| row_offset = mi_row - 1; |
| if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) |
| col_offset = mi_col - 1; |
| int above_idx = col_offset << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); |
| int left_idx = (row_offset & MAX_MIB_MASK) |
| << (MI_SIZE_LOG2 - tx_size_high_log2[0]); |
| pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; |
| pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; |
| } |
| } |
| |
| static INLINE int calc_mi_size(int len) { |
| // len is in mi units. Align to a multiple of SBs. |
| return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2); |
| } |
| |
| static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, |
| const int num_planes) { |
| int i; |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; |
| xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; |
| |
| xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); |
| xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); |
| } |
| } |
| |
| static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, |
| int mi_row, int bh, int mi_col, int bw, |
| int mi_rows, int mi_cols) { |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; |
| |
| // Are edges available for intra prediction? |
| xd->up_available = (mi_row > tile->mi_row_start); |
| |
| const int ss_x = xd->plane[1].subsampling_x; |
| const int ss_y = xd->plane[1].subsampling_y; |
| |
| xd->left_available = (mi_col > tile->mi_col_start); |
| xd->chroma_up_available = xd->up_available; |
| xd->chroma_left_available = xd->left_available; |
| if (ss_x && bw < mi_size_wide[BLOCK_8X8]) |
| xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; |
| if (ss_y && bh < mi_size_high[BLOCK_8X8]) |
| xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; |
| if (xd->up_available) { |
| xd->above_mbmi = xd->mi[-xd->mi_stride]; |
| } else { |
| xd->above_mbmi = NULL; |
| } |
| |
| if (xd->left_available) { |
| xd->left_mbmi = xd->mi[-1]; |
| } else { |
| xd->left_mbmi = NULL; |
| } |
| |
| const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) && |
| ((mi_col & 0x01) || !(bw & 0x01) || !ss_x); |
| if (chroma_ref) { |
| // To help calculate the "above" and "left" chroma blocks, note that the |
| // current block may cover multiple luma blocks (eg, if partitioned into |
| // 4x4 luma blocks). |
| // First, find the top-left-most luma block covered by this chroma block |
| MB_MODE_INFO **base_mi = |
| &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)]; |
| |
| // Then, we consider the luma region covered by the left or above 4x4 chroma |
| // prediction. We want to point to the chroma reference block in that |
| // region, which is the bottom-right-most mi unit. |
| // This leads to the following offsets: |
| MB_MODE_INFO *chroma_above_mi = |
| xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL; |
| xd->chroma_above_mbmi = chroma_above_mi; |
| |
| MB_MODE_INFO *chroma_left_mi = |
| xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL; |
| xd->chroma_left_mbmi = chroma_left_mi; |
| } |
| |
| xd->n8_h = bh; |
| xd->n8_w = bw; |
| xd->is_sec_rect = 0; |
| if (xd->n8_w < xd->n8_h) { |
| // Only mark is_sec_rect as 1 for the last block. |
| // For PARTITION_VERT_4, it would be (0, 0, 0, 1); |
| // For other partitions, it would be (0, 1). |
| if (!((mi_col + xd->n8_w) & (xd->n8_h - 1))) xd->is_sec_rect = 1; |
| } |
| |
| if (xd->n8_w > xd->n8_h) |
| if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; |
| } |
| |
| static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi) { |
| const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[above]; |
| const int left_ctx = intra_mode_context[left]; |
| return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; |
| } |
| |
| static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| BLOCK_SIZE bsize) { |
| PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; |
| PARTITION_CONTEXT *const left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| memset(above_ctx, partition_context_lookup[subsize].above, bw); |
| memset(left_ctx, partition_context_lookup[subsize].left, bh); |
| } |
| |
| static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int subsampling_x, int subsampling_y) { |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && |
| ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); |
| return ref_pos; |
| } |
| |
| static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x, |
| int subsampling_y) { |
| BLOCK_SIZE bs = bsize; |
| switch (bsize) { |
| case BLOCK_4X4: |
| if (subsampling_x == 1 && subsampling_y == 1) |
| bs = BLOCK_8X8; |
| else if (subsampling_x == 1) |
| bs = BLOCK_8X4; |
| else if (subsampling_y == 1) |
| bs = BLOCK_4X8; |
| break; |
| case BLOCK_4X8: |
| if (subsampling_x == 1 && subsampling_y == 1) |
| bs = BLOCK_8X8; |
| else if (subsampling_x == 1) |
| bs = BLOCK_8X8; |
| else if (subsampling_y == 1) |
| bs = BLOCK_4X8; |
| break; |
| case BLOCK_8X4: |
| if (subsampling_x == 1 && subsampling_y == 1) |
| bs = BLOCK_8X8; |
| else if (subsampling_x == 1) |
| bs = BLOCK_8X4; |
| else if (subsampling_y == 1) |
| bs = BLOCK_8X8; |
| break; |
| case BLOCK_4X16: |
| if (subsampling_x == 1 && subsampling_y == 1) |
| bs = BLOCK_8X16; |
| else if (subsampling_x == 1) |
| bs = BLOCK_8X16; |
| else if (subsampling_y == 1) |
| bs = BLOCK_4X16; |
| break; |
| case BLOCK_16X4: |
| if (subsampling_x == 1 && subsampling_y == 1) |
| bs = BLOCK_16X8; |
| else if (subsampling_x == 1) |
| bs = BLOCK_16X4; |
| else if (subsampling_y == 1) |
| bs = BLOCK_16X8; |
| break; |
| default: break; |
| } |
| return bs; |
| } |
| |
| static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, |
| size_t element) { |
| assert(cdf != NULL); |
| return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; |
| } |
| |
| static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, |
| const aom_cdf_prob *const in, |
| BLOCK_SIZE bsize) { |
| (void)bsize; |
| out[0] = CDF_PROB_TOP; |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ); |
| out[0] -= cdf_element_prob(in, PARTITION_SPLIT); |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); |
| out[0] -= cdf_element_prob(in, PARTITION_VERT_A); |
| if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); |
| out[0] = AOM_ICDF(out[0]); |
| out[1] = AOM_ICDF(CDF_PROB_TOP); |
| } |
| |
| static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, |
| const aom_cdf_prob *const in, |
| BLOCK_SIZE bsize) { |
| (void)bsize; |
| out[0] = CDF_PROB_TOP; |
| out[0] -= cdf_element_prob(in, PARTITION_VERT); |
| out[0] -= cdf_element_prob(in, PARTITION_SPLIT); |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); |
| out[0] -= cdf_element_prob(in, PARTITION_VERT_A); |
| out[0] -= cdf_element_prob(in, PARTITION_VERT_B); |
| if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); |
| out[0] = AOM_ICDF(out[0]); |
| out[1] = AOM_ICDF(CDF_PROB_TOP); |
| } |
| |
| static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| BLOCK_SIZE bsize, |
| PARTITION_TYPE partition) { |
| if (bsize >= BLOCK_8X8) { |
| const int hbs = mi_size_wide[bsize] / 2; |
| BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| switch (partition) { |
| case PARTITION_SPLIT: |
| if (bsize != BLOCK_8X8) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case PARTITION_NONE: |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| break; |
| case PARTITION_HORZ_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); |
| break; |
| case PARTITION_HORZ_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); |
| break; |
| case PARTITION_VERT_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); |
| break; |
| case PARTITION_VERT_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); |
| break; |
| default: assert(0 && "Invalid partition type"); |
| } |
| } |
| } |
| |
| static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; |
| const PARTITION_CONTEXT *left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| // Minimum partition point is 8x8. Offset the bsl accordingly. |
| const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; |
| int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; |
| |
| assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]); |
| assert(bsl >= 0); |
| |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| } |
| |
| // Return the number of elements in the partition CDF when |
| // partitioning the (square) block with luma block size of bsize. |
| static INLINE int partition_cdf_length(BLOCK_SIZE bsize) { |
| if (bsize <= BLOCK_8X8) |
| return PARTITION_TYPES; |
| else if (bsize == BLOCK_128X128) |
| return EXT_PARTITION_TYPES - 2; |
| else |
| return EXT_PARTITION_TYPES; |
| } |
| |
| static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane) { |
| int max_blocks_wide = block_size_wide[bsize]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| if (xd->mb_to_right_edge < 0) |
| max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); |
| |
| // Scale the width in the transform block unit. |
| return max_blocks_wide >> tx_size_wide_log2[0]; |
| } |
| |
| static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane) { |
| int max_blocks_high = block_size_high[bsize]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| if (xd->mb_to_bottom_edge < 0) |
| max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); |
| |
| // Scale the width in the transform block unit. |
| return max_blocks_high >> tx_size_wide_log2[0]; |
| } |
| |
| static INLINE int max_intra_block_width(const MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize, int plane, |
| TX_SIZE tx_size) { |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) |
| << tx_size_wide_log2[0]; |
| return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); |
| } |
| |
| static INLINE int max_intra_block_height(const MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize, int plane, |
| TX_SIZE tx_size) { |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane) |
| << tx_size_high_log2[0]; |
| return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); |
| } |
| |
| static INLINE void av1_zero_above_context(AV1_COMMON *const cm, |
| int mi_col_start, int mi_col_end) { |
| const int num_planes = av1_num_planes(cm); |
| const int width = mi_col_end - mi_col_start; |
| const int aligned_width = |
| ALIGN_POWER_OF_TWO(width, cm->seq_params.mib_size_log2); |
| |
| const int offset_y = mi_col_start << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); |
| const int width_y = aligned_width << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); |
| const int offset_uv = offset_y >> cm->subsampling_x; |
| const int width_uv = width_y >> cm->subsampling_x; |
| |
| av1_zero_array(cm->above_context[0] + offset_y, width_y); |
| if (num_planes > 1) { |
| if (cm->above_context[1] && cm->above_context[2]) { |
| av1_zero_array(cm->above_context[1] + offset_uv, width_uv); |
| av1_zero_array(cm->above_context[2] + offset_uv, width_uv); |
| } else { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid value of planes"); |
| } |
| } |
| |
| av1_zero_array(cm->above_seg_context + mi_col_start, aligned_width); |
| |
| memset(cm->above_txfm_context + (mi_col_start << TX_UNIT_WIDE_LOG2), |
| tx_size_wide[TX_SIZES_LARGEST], |
| (aligned_width << TX_UNIT_WIDE_LOG2) * sizeof(TXFM_CONTEXT)); |
| } |
| |
| static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { |
| av1_zero(xd->left_context); |
| av1_zero(xd->left_seg_context); |
| |
| memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], |
| sizeof(xd->left_txfm_context_buffer)); |
| } |
| |
| // Disable array-bounds checks as the TX_SIZE enum contains values larger than |
| // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround |
| // infeasible. The assert is enough for static analysis and this or other tools |
| // asan, valgrind would catch oob access at runtime. |
| #if defined(__GNUC__) && __GNUC__ >= 4 |
| #pragma GCC diagnostic ignored "-Warray-bounds" |
| #endif |
| |
| #if defined(__GNUC__) && __GNUC__ >= 4 |
| #pragma GCC diagnostic warning "-Warray-bounds" |
| #endif |
| |
| static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { |
| int i; |
| for (i = 0; i < len; ++i) txfm_ctx[i] = txs; |
| } |
| |
| static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip, |
| const MACROBLOCKD *xd) { |
| uint8_t bw = tx_size_wide[tx_size]; |
| uint8_t bh = tx_size_high[tx_size]; |
| |
| if (skip) { |
| bw = n8_w * MI_SIZE; |
| bh = n8_h * MI_SIZE; |
| } |
| |
| set_txfm_ctx(xd->above_txfm_context, bw, n8_w << TX_UNIT_WIDE_LOG2); |
| set_txfm_ctx(xd->left_txfm_context, bh, n8_h << TX_UNIT_HIGH_LOG2); |
| } |
| |
| static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, |
| TXFM_CONTEXT *left_ctx, |
| TX_SIZE tx_size, TX_SIZE txb_size) { |
| BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; |
| int bh = mi_size_high[bsize] << TX_UNIT_HIGH_LOG2; |
| int bw = mi_size_wide[bsize] << TX_UNIT_WIDE_LOG2; |
| uint8_t txw = tx_size_wide[tx_size]; |
| uint8_t txh = tx_size_high[tx_size]; |
| int i; |
| for (i = 0; i < bh; ++i) left_ctx[i] = txh; |
| for (i = 0; i < bw; ++i) above_ctx[i] = txw; |
| } |
| |
| static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { |
| switch (tx_dim) { |
| case 128: |
| case 64: return TX_64X64; break; |
| case 32: return TX_32X32; break; |
| case 16: return TX_16X16; break; |
| case 8: return TX_8X8; break; |
| default: return TX_4X4; |
| } |
| } |
| |
| static INLINE TX_SIZE get_tx_size(int width, int height) { |
| if (width == height) { |
| return get_sqr_tx_size(width); |
| } |
| if (width < height) { |
| if (width + width == height) { |
| switch (width) { |
| case 4: return TX_4X8; break; |
| case 8: return TX_8X16; break; |
| case 16: return TX_16X32; break; |
| case 32: return TX_32X64; break; |
| } |
| } else { |
| switch (width) { |
| case 4: return TX_4X16; break; |
| case 8: return TX_8X32; break; |
| case 16: return TX_16X64; break; |
| } |
| } |
| } else { |
| if (height + height == width) { |
| switch (height) { |
| case 4: return TX_8X4; break; |
| case 8: return TX_16X8; break; |
| case 16: return TX_32X16; break; |
| case 32: return TX_64X32; break; |
| } |
| } else { |
| switch (height) { |
| case 4: return TX_16X4; break; |
| case 8: return TX_32X8; break; |
| case 16: return TX_64X16; break; |
| } |
| } |
| } |
| assert(0); |
| return TX_4X4; |
| } |
| |
| static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx, |
| TXFM_CONTEXT *left_ctx, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| const uint8_t txw = tx_size_wide[tx_size]; |
| const uint8_t txh = tx_size_high[tx_size]; |
| const int above = *above_ctx < txw; |
| const int left = *left_ctx < txh; |
| int category = TXFM_PARTITION_CONTEXTS; |
| |
| // dummy return, not used by others. |
| if (tx_size <= TX_4X4) return 0; |
| |
| TX_SIZE max_tx_size = |
| get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); |
| |
| if (max_tx_size >= TX_8X8) { |
| category = |
| (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + |
| (TX_SIZES - 1 - max_tx_size) * 2; |
| } |
| if (category == TXFM_PARTITION_CONTEXTS) return category; |
| return category * 3 + above + left; |
| } |
| |
| // Compute the next partition in the direction of the sb_type stored in the mi |
| // array, starting with bsize. |
| static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID; |
| |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| MB_MODE_INFO **mi = cm->mi_grid_visible + offset; |
| const BLOCK_SIZE subsize = mi[0]->sb_type; |
| |
| if (subsize == bsize) return PARTITION_NONE; |
| |
| const int bhigh = mi_size_high[bsize]; |
| const int bwide = mi_size_wide[bsize]; |
| const int sshigh = mi_size_high[subsize]; |
| const int sswide = mi_size_wide[subsize]; |
| |
| if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows && |
| mi_col + bhigh / 2 < cm->mi_cols) { |
| // In this case, the block might be using an extended partition |
| // type. |
| const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; |
| const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride]; |
| |
| if (sswide == bwide) { |
| // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or |
| // PARTITION_HORZ_B. To distinguish the latter two, check if the lower |
| // half was split. |
| if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; |
| assert(sshigh * 2 == bhigh); |
| |
| if (mbmi_below->sb_type == subsize) |
| return PARTITION_HORZ; |
| else |
| return PARTITION_HORZ_B; |
| } else if (sshigh == bhigh) { |
| // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or |
| // PARTITION_VERT_B. To distinguish the latter two, check if the right |
| // half was split. |
| if (sswide * 4 == bwide) return PARTITION_VERT_4; |
| assert(sswide * 2 == bhigh); |
| |
| if (mbmi_right->sb_type == subsize) |
| return PARTITION_VERT; |
| else |
| return PARTITION_VERT_B; |
| } else { |
| // Smaller width and smaller height. Might be PARTITION_SPLIT or could be |
| // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both |
| // dimensions, we immediately know this is a split (which will recurse to |
| // get to subsize). Otherwise look down and to the right. With |
| // PARTITION_VERT_A, the right block will have height bhigh; with |
| // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise |
| // it's PARTITION_SPLIT. |
| if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; |
| |
| if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A; |
| if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A; |
| |
| return PARTITION_SPLIT; |
| } |
| } |
| const int vert_split = sswide < bwide; |
| const int horz_split = sshigh < bhigh; |
| const int split_idx = (vert_split << 1) | horz_split; |
| assert(split_idx != 0); |
| |
| static const PARTITION_TYPE base_partitions[4] = { |
| PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT |
| }; |
| |
| return base_partitions[split_idx]; |
| } |
| |
| static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) { |
| cm->seq_params.frame_id_numbers_present_flag = use; |
| } |
| |
| static INLINE void set_sb_size(SequenceHeader *const seq_params, |
| BLOCK_SIZE sb_size) { |
| seq_params->sb_size = sb_size; |
| seq_params->mib_size = mi_size_wide[seq_params->sb_size]; |
| seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size]; |
| } |
| |
| // Returns true if the frame is fully lossless at the coded resolution. |
| // Note: If super-resolution is used, such a frame will still NOT be lossless at |
| // the upscaled resolution. |
| static INLINE int is_coded_lossless(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int coded_lossless = 1; |
| if (cm->seg.enabled) { |
| for (int i = 0; i < MAX_SEGMENTS; ++i) { |
| if (!xd->lossless[i]) { |
| coded_lossless = 0; |
| break; |
| } |
| } |
| } else { |
| coded_lossless = xd->lossless[0]; |
| } |
| return coded_lossless; |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AV1_COMMON_ONYXC_INT_H_ |