| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "./aom_scale_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "./aom_config.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/blend.h" |
| |
| #include "av1/common/blockd.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/obmc.h" |
| |
| #define USE_PRECOMPUTED_WEDGE_MASK 1 |
| #define USE_PRECOMPUTED_WEDGE_SIGN 1 |
| |
| // This function will determine whether or not to create a warped |
| // prediction. |
| static INLINE int allow_warp(const MB_MODE_INFO *const mbmi, |
| const WarpTypesAllowed *const warp_types, |
| const WarpedMotionParams *const gm_params, |
| int build_for_obmc, int x_scale, int y_scale, |
| WarpedMotionParams *final_warp_params) { |
| if (x_scale != SCALE_SUBPEL_SHIFTS || y_scale != SCALE_SUBPEL_SHIFTS) |
| return 0; |
| |
| *final_warp_params = default_warp_params; |
| |
| if (build_for_obmc) return 0; |
| |
| if (warp_types->local_warp_allowed && !mbmi->wm_params[0].invalid) { |
| memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params)); |
| return 1; |
| } else if (warp_types->global_warp_allowed && !gm_params->invalid) { |
| memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static INLINE void av1_make_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, const struct scale_factors *sf, |
| int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, |
| const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, |
| int ref, const MB_MODE_INFO *mi, int build_for_obmc, int xs, int ys, |
| const MACROBLOCKD *xd, int can_use_previous) { |
| (void)xd; |
| |
| // Make sure the selected motion mode is valid for this configuration |
| assert_motion_mode_valid(mi->motion_mode, xd->global_motion, xd, mi, |
| can_use_previous); |
| |
| assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
| |
| WarpedMotionParams final_warp_params; |
| const int do_warp = |
| (w >= 8 && h >= 8 && |
| allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], |
| build_for_obmc, xs, ys, &final_warp_params)); |
| if (do_warp && xd->cur_frame_force_integer_mv == 0) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const struct buf_2d *const pre_buf = &pd->pre[ref]; |
| av1_warp_plane(&final_warp_params, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| pre_buf->buf0, pre_buf->width, pre_buf->height, |
| pre_buf->stride, dst, p_col, p_row, w, h, dst_stride, |
| pd->subsampling_x, pd->subsampling_y, conv_params); |
| } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, |
| sf, w, h, conv_params, interp_filters, xs, ys, |
| xd->bd); |
| } else { |
| inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, |
| h, conv_params, interp_filters, xs, ys); |
| } |
| } |
| |
| #if USE_PRECOMPUTED_WEDGE_MASK |
| static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, |
| 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, |
| 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, |
| 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| |
| static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) { |
| if (shift >= 0) { |
| memcpy(dst + shift, src, width - shift); |
| memset(dst, src[0], shift); |
| } else { |
| shift = -shift; |
| memcpy(dst, src + shift, width - shift); |
| memset(dst + width - shift, src[width - 1], shift); |
| } |
| } |
| #endif // USE_PRECOMPUTED_WEDGE_MASK |
| |
| #if USE_PRECOMPUTED_WEDGE_SIGN |
| /* clang-format off */ |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| }; |
| /* clang-format on */ |
| #else |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]); |
| #endif // USE_PRECOMPUTED_WEDGE_SIGN |
| |
| // [negative][direction] |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| |
| // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound |
| // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); |
| |
| static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; |
| |
| static const wedge_code_type wedge_codebook_16_hgtw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_hltw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_heqw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], |
| wedge_masks[BLOCK_8X8] }, |
| { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], |
| wedge_masks[BLOCK_8X16] }, |
| { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], |
| wedge_masks[BLOCK_16X8] }, |
| { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], |
| wedge_masks[BLOCK_16X16] }, |
| { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], |
| wedge_masks[BLOCK_16X32] }, |
| { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], |
| wedge_masks[BLOCK_32X16] }, |
| { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], |
| wedge_masks[BLOCK_32X32] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], |
| wedge_masks[BLOCK_8X32] }, |
| { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], |
| wedge_masks[BLOCK_32X8] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| }; |
| |
| static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| wedge_params_lookup[sb_type].codebook + wedge_index; |
| int woff, hoff; |
| const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; |
| |
| assert(wedge_index >= 0 && |
| wedge_index < (1 << get_wedge_bits_lookup(sb_type))); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| master = wedge_mask_obl[neg ^ wsignflip][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| return master; |
| } |
| |
| static uint8_t *invert_mask(uint8_t *mask_inv_buffer, const uint8_t *const mask, |
| int h, int w, int stride) { |
| int i, j; |
| |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) { |
| mask_inv_buffer[i * stride + j] = |
| AOM_BLEND_A64_MAX_ALPHA - mask[i * stride + j]; |
| } |
| return mask_inv_buffer; |
| } |
| |
| const uint8_t *av1_get_compound_type_mask_inverse( |
| const INTERINTER_COMPOUND_DATA *const comp_data, uint8_t *mask_buffer, |
| int h, int w, int stride, BLOCK_SIZE sb_type) { |
| assert(is_masked_compound_type(comp_data->interinter_compound_type)); |
| (void)sb_type; |
| switch (comp_data->interinter_compound_type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| !comp_data->wedge_sign, sb_type); |
| case COMPOUND_DIFFWTD: |
| return invert_mask(mask_buffer, comp_data->seg_mask, h, w, stride); |
| default: assert(0); return NULL; |
| } |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { |
| assert(is_masked_compound_type(comp_data->interinter_compound_type)); |
| (void)sb_type; |
| switch (comp_data->interinter_compound_type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type); |
| case COMPOUND_DIFFWTD: return comp_data->seg_mask; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static void diffwtd_mask_d16(uint8_t *mask, int which_inverse, int mask_base, |
| const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, int h, |
| int w, ConvolveParams *conv_params, int bd) { |
| int round = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); |
| diff = ROUND_POWER_OF_TWO(diff, round); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_d16_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, int h, int w) { |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = |
| abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_c(uint8_t *mask, |
| DIFFWTD_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| int h, int w) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void diffwtd_mask_highbd( |
| uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| const unsigned int bd) { |
| assert(bd >= 8); |
| if (bd == 8) { |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } else { |
| const unsigned int bd_shift = bd - 8; |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_highbd_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, |
| int src0_stride, const uint8_t *src1, int src1_stride, int h, int w, |
| int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, |
| CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, |
| CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static void init_wedge_master_masks() { |
| int i, j; |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| const int stride = MASK_MASTER_STRIDE; |
| // Note: index [0] stores the masters, and [1] its complement. |
| #if USE_PRECOMPUTED_WEDGE_MASK |
| // Generate prototype by shifting the masters |
| int shift = h / 4; |
| for (i = 0; i < h; i += 2) { |
| shift_copy(wedge_master_oblique_even, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, |
| MASK_MASTER_SIZE); |
| shift--; |
| shift_copy(wedge_master_oblique_odd, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, |
| MASK_MASTER_SIZE); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| } |
| #else |
| static const double smoother_param = 2.85; |
| const int a[2] = { 2, 1 }; |
| const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); |
| for (i = 0; i < h; i++) { |
| for (j = 0; j < w; ++j) { |
| int x = (2 * j + 1 - w); |
| int y = (2 * i + 1 - h); |
| double d = (a[0] * x + a[1] * y) / asqrt; |
| const int msk = (int)rint((1.0 + tanh(d / smoother_param)) * 32); |
| wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j] = msk; |
| const int mskx = (int)rint((1.0 + tanh(x / smoother_param)) * 32); |
| wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j] = mskx; |
| } |
| } |
| #endif // USE_PRECOMPUTED_WEDGE_MASK |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; |
| wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; |
| const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; |
| wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - mskx; |
| } |
| } |
| } |
| |
| #if !USE_PRECOMPUTED_WEDGE_SIGN |
| // If the signs for the wedges for various blocksizes are |
| // inconsistent flip the sign flag. Do it only once for every |
| // wedge codebook. |
| static void init_wedge_signs() { |
| BLOCK_SIZE sb_type; |
| memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); |
| for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES_ALL; ++sb_type) { |
| const int bw = block_size_wide[sb_type]; |
| const int bh = block_size_high[sb_type]; |
| const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; |
| const int wbits = wedge_params.bits; |
| const int wtypes = 1 << wbits; |
| int i, w; |
| if (wbits) { |
| for (w = 0; w < wtypes; ++w) { |
| // Get the mask master, i.e. index [0] |
| const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); |
| int avg = 0; |
| for (i = 0; i < bw; ++i) avg += mask[i]; |
| for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE]; |
| avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1); |
| // Default sign of this wedge is 1 if the average < 32, 0 otherwise. |
| // If default sign is 1: |
| // If sign requested is 0, we need to flip the sign and return |
| // the complement i.e. index [1] instead. If sign requested is 1 |
| // we need to flip the sign and return index [0] instead. |
| // If default sign is 0: |
| // If sign requested is 0, we need to return index [0] the master |
| // if sign requested is 1, we need to return the complement index [1] |
| // instead. |
| wedge_params.signflip[w] = (avg < 32); |
| } |
| } |
| } |
| } |
| #endif // !USE_PRECOMPUTED_WEDGE_SIGN |
| |
| static void init_wedge_masks() { |
| uint8_t *dst = wedge_mask_buf; |
| BLOCK_SIZE bsize; |
| memset(wedge_masks, 0, sizeof(wedge_masks)); |
| for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const uint8_t *mask; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; |
| const int wbits = wedge_params->bits; |
| const int wtypes = 1 << wbits; |
| int w; |
| if (wbits == 0) continue; |
| for (w = 0; w < wtypes; ++w) { |
| mask = get_wedge_mask_inplace(w, 0, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, |
| bh); |
| wedge_params->masks[0][w] = dst; |
| dst += bw * bh; |
| |
| mask = get_wedge_mask_inplace(w, 1, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, |
| bh); |
| wedge_params->masks[1][w] = dst; |
| dst += bw * bh; |
| } |
| assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); |
| } |
| } |
| |
| // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 |
| void av1_init_wedge_masks() { |
| init_wedge_master_masks(); |
| #if !USE_PRECOMPUTED_WEDGE_SIGN |
| init_wedge_signs(); |
| #endif // !USE_PRECOMPUTED_WEDGE_SIGN |
| init_wedge_masks(); |
| } |
| |
| static void build_masked_compound_no_round( |
| uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, ConvolveParams *conv_params, MACROBLOCKD *xd) { |
| // Derive subsampling from h and w passed in. May be refactored to |
| // pass in subsampling factors directly. |
| const int subh = (2 << mi_size_high_log2[sb_type]) == h; |
| const int subw = (2 << mi_size_wide_log2[sb_type]) == w; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, block_size_wide[sb_type], |
| h, w, subh, subw, conv_params, xd->bd); |
| else |
| aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, block_size_wide[sb_type], h, |
| w, subh, subw, conv_params); |
| } |
| |
| static void build_masked_compound( |
| uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w) { |
| // Derive subsampling from h and w passed in. May be refactored to |
| // pass in subsampling factors directly. |
| const int subh = (2 << mi_size_high_log2[sb_type]) == h; |
| const int subw = (2 << mi_size_wide_log2[sb_type]) == w; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, |
| mask, block_size_wide[sb_type], h, w, subh, subw); |
| } |
| |
| static void build_masked_compound_highbd( |
| uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, |
| const uint8_t *src1_8, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, int bd) { |
| // Derive subsampling from h and w passed in. May be refactored to |
| // pass in subsampling factors directly. |
| const int subh = (2 << mi_size_high_log2[sb_type]) == h; |
| const int subw = (2 << mi_size_wide_log2[sb_type]) == w; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| // const uint8_t *mask = |
| // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); |
| aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, |
| src1_stride, mask, block_size_wide[sb_type], h, w, |
| subh, subw, bd); |
| } |
| |
| void av1_make_masked_inter_predictor( |
| const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, const struct scale_factors *sf, |
| int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, |
| int xs, int ys, int plane, const WarpTypesAllowed *warp_types, int p_col, |
| int p_row, int ref, MACROBLOCKD *xd, int can_use_previous) { |
| const MB_MODE_INFO *mi = xd->mi[0]; |
| (void)dst; |
| (void)dst_stride; |
| |
| const INTERINTER_COMPOUND_DATA comp_data = { mi->wedge_index, mi->wedge_sign, |
| mi->mask_type, xd->seg_mask, |
| mi->interinter_compound_type }; |
| |
| // We're going to call av1_make_inter_predictor to generate a prediction into |
| // a temporary buffer, then will blend that temporary buffer with that from |
| // the other reference. |
| // |
| #define INTER_PRED_BYTES_PER_PIXEL 2 |
| |
| DECLARE_ALIGNED(32, uint8_t, |
| tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]); |
| #undef INTER_PRED_BYTES_PER_PIXEL |
| |
| uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| ? CONVERT_TO_BYTEPTR(tmp_buf) |
| : tmp_buf; |
| |
| const int tmp_buf_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *org_dst = conv_params->dst; |
| int org_dst_stride = conv_params->dst_stride; |
| CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; |
| conv_params->dst = tmp_buf16; |
| conv_params->dst_stride = tmp_buf_stride; |
| assert(conv_params->do_average == 0); |
| |
| // This will generate a prediction in tmp_buf for the second reference |
| av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, |
| subpel_y, sf, w, h, conv_params, interp_filters, |
| warp_types, p_col, p_row, plane, ref, mi, 0, xs, ys, |
| xd, can_use_previous); |
| |
| if (!plane && comp_data.interinter_compound_type == COMPOUND_DIFFWTD) { |
| av1_build_compound_diffwtd_mask_d16( |
| comp_data.seg_mask, comp_data.mask_type, org_dst, org_dst_stride, |
| tmp_buf16, tmp_buf_stride, h, w, conv_params, xd->bd); |
| } |
| build_masked_compound_no_round(dst, dst_stride, org_dst, org_dst_stride, |
| tmp_buf16, tmp_buf_stride, &comp_data, |
| mi->sb_type, h, w, conv_params, xd); |
| } |
| |
| // TODO(sarahparker) av1_highbd_build_inter_predictor and |
| // av1_build_inter_predictor should be combined with |
| // av1_make_inter_predictor |
| void av1_highbd_build_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, |
| InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, |
| int p_row, int plane, enum mv_precision precision, int x, int y, |
| const MACROBLOCKD *xd, int can_use_previous) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); |
| mv.col += SCALE_EXTRA_OFF; |
| mv.row += SCALE_EXTRA_OFF; |
| const int subpel_x = mv.col & SCALE_SUBPEL_MASK; |
| const int subpel_y = mv.row & SCALE_SUBPEL_MASK; |
| ConvolveParams conv_params = get_conv_params(ref, 0, plane, xd->bd); |
| |
| src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + |
| (mv.col >> SCALE_SUBPEL_BITS); |
| |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, |
| sf, w, h, &conv_params, interp_filters, warp_types, |
| p_col, p_row, plane, ref, xd->mi[0], 0, |
| sf->x_step_q4, sf->y_step_q4, xd, can_use_previous); |
| } |
| |
| void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, const MV *src_mv, |
| const struct scale_factors *sf, int w, int h, |
| ConvolveParams *conv_params, |
| InterpFilters interp_filters, |
| const WarpTypesAllowed *warp_types, int p_col, |
| int p_row, int plane, int ref, |
| enum mv_precision precision, int x, int y, |
| const MACROBLOCKD *xd, int can_use_previous) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); |
| mv.col += SCALE_EXTRA_OFF; |
| mv.row += SCALE_EXTRA_OFF; |
| const int subpel_x = mv.col & SCALE_SUBPEL_MASK; |
| const int subpel_y = mv.row & SCALE_SUBPEL_MASK; |
| |
| src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + |
| (mv.col >> SCALE_SUBPEL_BITS); |
| |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, |
| sf, w, h, conv_params, interp_filters, warp_types, |
| p_col, p_row, plane, ref, xd->mi[0], 0, |
| sf->x_step_q4, sf->y_step_q4, xd, can_use_previous); |
| } |
| |
| typedef struct SubpelParams { |
| int xs; |
| int ys; |
| int subpel_x; |
| int subpel_y; |
| } SubpelParams; |
| |
| void av1_jnt_comp_weight_assign(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi, |
| int order_idx, int *fwd_offset, int *bck_offset, |
| int *use_jnt_comp_avg, int is_compound) { |
| assert(fwd_offset != NULL && bck_offset != NULL); |
| if (!is_compound || mbmi->compound_idx) { |
| *use_jnt_comp_avg = 0; |
| return; |
| } |
| |
| *use_jnt_comp_avg = 1; |
| const int bck_idx = cm->frame_refs[mbmi->ref_frame[0] - LAST_FRAME].idx; |
| const int fwd_idx = cm->frame_refs[mbmi->ref_frame[1] - LAST_FRAME].idx; |
| const int cur_frame_index = cm->cur_frame->cur_frame_offset; |
| int bck_frame_index = 0, fwd_frame_index = 0; |
| |
| if (bck_idx >= 0) { |
| bck_frame_index = cm->buffer_pool->frame_bufs[bck_idx].cur_frame_offset; |
| } |
| |
| if (fwd_idx >= 0) { |
| fwd_frame_index = cm->buffer_pool->frame_bufs[fwd_idx].cur_frame_offset; |
| } |
| |
| int d0 = clamp(abs(get_relative_dist(cm, fwd_frame_index, cur_frame_index)), |
| 0, MAX_FRAME_DISTANCE); |
| int d1 = clamp(abs(get_relative_dist(cm, cur_frame_index, bck_frame_index)), |
| 0, MAX_FRAME_DISTANCE); |
| |
| const int order = d0 <= d1; |
| |
| if (d0 == 0 || d1 == 0) { |
| *fwd_offset = quant_dist_lookup_table[order_idx][3][order]; |
| *bck_offset = quant_dist_lookup_table[order_idx][3][1 - order]; |
| return; |
| } |
| |
| int i; |
| for (i = 0; i < 3; ++i) { |
| int c0 = quant_dist_weight[i][order]; |
| int c1 = quant_dist_weight[i][!order]; |
| int d0_c0 = d0 * c0; |
| int d1_c1 = d1 * c1; |
| if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break; |
| } |
| |
| *fwd_offset = quant_dist_lookup_table[order_idx][i][order]; |
| *bck_offset = quant_dist_lookup_table[order_idx][i][1 - order]; |
| } |
| |
| static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, const MB_MODE_INFO *mi, |
| int build_for_obmc, int bw, int bh, |
| int mi_x, int mi_y) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| int is_compound = has_second_ref(mi); |
| int ref; |
| const int is_intrabc = is_intrabc_block(mi); |
| assert(IMPLIES(is_intrabc, !is_compound)); |
| int is_global[2] = { 0, 0 }; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| } |
| |
| const BLOCK_SIZE bsize = mi->sb_type; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) || |
| (block_size_high[bsize] < 8 && ss_y); |
| |
| if (is_intrabc) sub8x8_inter = 0; |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for |
| // the top-left corner of the prediction source - the correct top-left corner |
| // is at (pre_x, pre_y). |
| const int row_start = |
| (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; |
| const int col_start = |
| (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| sub8x8_inter = sub8x8_inter && !build_for_obmc; |
| if (sub8x8_inter) { |
| for (int row = row_start; row <= 0 && sub8x8_inter; ++row) { |
| for (int col = col_start; col <= 0; ++col) { |
| const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; |
| if (!is_inter_block(this_mbmi)) sub8x8_inter = 0; |
| if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0; |
| } |
| } |
| } |
| |
| if (sub8x8_inter) { |
| // block size |
| const int b4_w = block_size_wide[bsize] >> ss_x; |
| const int b4_h = block_size_high[bsize] >> ss_y; |
| const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); |
| const int b8_w = block_size_wide[plane_bsize] >> ss_x; |
| const int b8_h = block_size_high[plane_bsize] >> ss_y; |
| assert(!is_compound); |
| |
| const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; |
| |
| int row = row_start; |
| for (int y = 0; y < b8_h; y += b4_h) { |
| int col = col_start; |
| for (int x = 0; x < b8_w; x += b4_w) { |
| MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; |
| is_compound = has_second_ref(this_mbmi); |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, tmp_dst[8 * 8]); |
| int tmp_dst_stride = 8; |
| assert(bw < 8 || bh < 8); |
| ConvolveParams conv_params = get_conv_params_no_round( |
| 0, 0, plane, tmp_dst, tmp_dst_stride, is_compound, xd->bd); |
| conv_params.use_jnt_comp_avg = 0; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; |
| |
| ref = 0; |
| const RefBuffer *ref_buf = |
| &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; |
| |
| pd->pre[ref].buf0 = |
| (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; |
| pd->pre[ref].buf = |
| pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y, |
| ref_buf->buf->uv_stride, |
| &ref_buf->sf); |
| pd->pre[ref].width = ref_buf->buf->uv_crop_width; |
| pd->pre[ref].height = ref_buf->buf->uv_crop_height; |
| pd->pre[ref].stride = ref_buf->buf->uv_stride; |
| |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : &ref_buf->sf; |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| |
| const MV mv = this_mbmi->mv[ref].as_mv; |
| |
| uint8_t *pre; |
| int xs, ys, subpel_x, subpel_y; |
| const int is_scaled = av1_is_scaled(sf); |
| WarpTypesAllowed warp_types; |
| warp_types.global_warp_allowed = is_global[ref]; |
| warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; |
| |
| if (is_scaled) { |
| int ssx = pd->subsampling_x; |
| int ssy = pd->subsampling_y; |
| int orig_pos_y = (pre_y + y) << SUBPEL_BITS; |
| orig_pos_y += mv.row * (1 << (1 - ssy)); |
| int orig_pos_x = (pre_x + x) << SUBPEL_BITS; |
| orig_pos_x += mv.col * (1 << (1 - ssx)); |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + |
| (pos_x >> SCALE_SUBPEL_BITS); |
| subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| xs = ys = SCALE_SUBPEL_SHIFTS; |
| subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| pre = pre_buf->buf + |
| (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + |
| (x + (mv_q4.col >> SUBPEL_BITS)); |
| } |
| |
| conv_params.ref = ref; |
| conv_params.do_average = ref; |
| if (is_masked_compound_type(mi->interinter_compound_type)) { |
| // masked compound type has its own average mechanism |
| conv_params.do_average = 0; |
| } |
| |
| av1_make_inter_predictor( |
| pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, |
| b4_w, b4_h, &conv_params, this_mbmi->interp_filters, &warp_types, |
| (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, |
| plane, ref, mi, build_for_obmc, xs, ys, xd, |
| cm->allow_warped_motion); |
| |
| ++col; |
| } |
| ++row; |
| } |
| |
| for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; |
| return; |
| } |
| |
| { |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf; |
| uint8_t *pre[2]; |
| SubpelParams subpel_params[2]; |
| DECLARE_ALIGNED(32, uint16_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| const MV mv = mi->mv[ref].as_mv; |
| |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| // Note: The various inputs here have different units: |
| // * mi_x/mi_y are in units of luma pixels |
| // * mv is in units of 1/8 luma pixels |
| // Here we unify these into a q4-format position within the current |
| // plane, then project into the reference frame |
| int ssx = pd->subsampling_x; |
| int ssy = pd->subsampling_y; |
| int orig_pos_y = pre_y << SUBPEL_BITS; |
| orig_pos_y += mv.row * (1 << (1 - ssy)); |
| int orig_pos_x = pre_x << SUBPEL_BITS; |
| orig_pos_x += mv.col * (1 << (1 - ssx)); |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| // Clamp against the reference frame borders, with enough extension |
| // that we don't force the reference block to be partially onscreen. |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| pre[ref] = pre_buf->buf0 + |
| (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + |
| (pos_x >> SCALE_SUBPEL_BITS); |
| subpel_params[ref].subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params[ref].subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params[ref].xs = sf->x_step_q4; |
| subpel_params[ref].ys = sf->y_step_q4; |
| } else { |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| subpel_params[ref].subpel_x = (mv_q4.col & SUBPEL_MASK) |
| << SCALE_EXTRA_BITS; |
| subpel_params[ref].subpel_y = (mv_q4.row & SUBPEL_MASK) |
| << SCALE_EXTRA_BITS; |
| subpel_params[ref].xs = SCALE_SUBPEL_SHIFTS; |
| subpel_params[ref].ys = SCALE_SUBPEL_SHIFTS; |
| pre[ref] = pre_buf->buf + (mv_q4.row >> SUBPEL_BITS) * pre_buf->stride + |
| (mv_q4.col >> SUBPEL_BITS); |
| } |
| } |
| |
| ConvolveParams conv_params = get_conv_params_no_round( |
| 0, 0, plane, tmp_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset, |
| &conv_params.bck_offset, |
| &conv_params.use_jnt_comp_avg, is_compound); |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| WarpTypesAllowed warp_types; |
| warp_types.global_warp_allowed = is_global[ref]; |
| warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; |
| conv_params.ref = ref; |
| conv_params.do_average = ref; |
| if (is_masked_compound_type(mi->interinter_compound_type)) { |
| // masked compound type has its own average mechanism |
| conv_params.do_average = 0; |
| } |
| |
| if (ref && is_masked_compound_type(mi->interinter_compound_type)) |
| av1_make_masked_inter_predictor( |
| pre[ref], pre_buf->stride, dst, dst_buf->stride, |
| subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, bw, |
| bh, &conv_params, mi->interp_filters, subpel_params[ref].xs, |
| subpel_params[ref].ys, plane, &warp_types, |
| mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, ref, xd, |
| cm->allow_warped_motion); |
| else |
| av1_make_inter_predictor( |
| pre[ref], pre_buf->stride, dst, dst_buf->stride, |
| subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, bw, |
| bh, &conv_params, mi->interp_filters, &warp_types, |
| mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref, |
| mi, build_for_obmc, subpel_params[ref].xs, subpel_params[ref].ys, |
| xd, cm->allow_warped_motion); |
| } |
| } |
| } |
| |
| static void build_inter_predictors_for_planes(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int plane_from, int plane_to) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = pd->width; |
| const int bh = pd->height; |
| |
| if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, |
| pd->subsampling_y)) |
| continue; |
| |
| build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y); |
| } |
| } |
| |
| void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0); |
| |
| if (is_interintra_pred(xd->mi[0])) { |
| BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL }, |
| { xd->plane[0].dst.stride, 0, 0 } }; |
| if (!ctx) ctx = &default_ctx; |
| av1_build_interintra_predictors_sby(cm, xd, xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride, ctx, bsize); |
| } |
| } |
| |
| void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1, |
| MAX_MB_PLANE - 1); |
| |
| if (is_interintra_pred(xd->mi[0])) { |
| BUFFER_SET default_ctx = { |
| { NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, |
| { 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride } |
| }; |
| if (!ctx) ctx = &default_ctx; |
| av1_build_interintra_predictors_sbuv( |
| cm, xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, |
| xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize); |
| } |
| } |
| |
| void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize) { |
| const int num_planes = av1_num_planes(cm); |
| av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); |
| if (num_planes > 1) |
| av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize); |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const int plane_start, const int plane_end) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, NULL, pd->subsampling_x, pd->subsampling_y); |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf, |
| const int num_planes) { |
| if (src != NULL) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i], |
| src->crop_widths[is_uv], src->crop_heights[is_uv], |
| src->strides[is_uv], mi_row, mi_col, sf, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| } |
| } |
| |
| // obmc_mask_N[overlap_position] |
| static const uint8_t obmc_mask_1[1] = { 64 }; |
| |
| static const uint8_t obmc_mask_2[2] = { 45, 64 }; |
| |
| static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; |
| |
| static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; |
| |
| static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, |
| 56, 58, 60, 61, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, |
| 45, 47, 48, 50, 51, 52, 53, 55, |
| 56, 57, 58, 59, 60, 60, 61, 62, |
| 64, 64, 64, 64, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_64[64] = { |
| 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, |
| 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, |
| 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, |
| 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| |
| const uint8_t *av1_get_obmc_mask(int length) { |
| switch (length) { |
| case 1: return obmc_mask_1; |
| case 2: return obmc_mask_2; |
| case 4: return obmc_mask_4; |
| case 8: return obmc_mask_8; |
| case 16: return obmc_mask_16; |
| case 32: return obmc_mask_32; |
| case 64: return obmc_mask_64; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc, |
| uint8_t mi_hw, MB_MODE_INFO *mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)xd; |
| (void)rel_mi_rc; |
| (void)mi_hw; |
| (void)mi; |
| ++*(int *)fun_ctxt; |
| (void)num_planes; |
| } |
| |
| void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| mbmi->overlappable_neighbors[0] = 0; |
| mbmi->overlappable_neighbors[1] = 0; |
| |
| if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return; |
| |
| foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr, |
| &mbmi->overlappable_neighbors[0]); |
| foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr, |
| &mbmi->overlappable_neighbors[1]); |
| } |
| |
| // HW does not support < 4x4 prediction. To limit the bandwidth requirement, if |
| // block-size of current plane is smaller than 8x8, always only blend with the |
| // left neighbor(s) (skip blending with the above side). |
| #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable |
| |
| int skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd, |
| int dir) { |
| assert(is_motion_variation_allowed_bsize(bsize)); |
| |
| BLOCK_SIZE bsize_plane = |
| ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y]; |
| switch (bsize_plane) { |
| #if DISABLE_CHROMA_U8X8_OBMC |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return 1; break; |
| #else |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return dir == 0; break; |
| #endif |
| default: return 0; |
| } |
| } |
| |
| void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->interinter_compound_type = COMPOUND_AVERAGE; |
| |
| return; |
| } |
| |
| struct obmc_inter_pred_ctxt { |
| uint8_t **adjacent; |
| int *adjacent_stride; |
| }; |
| |
| static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col, |
| uint8_t above_mi_width, |
| MB_MODE_INFO *above_mi, |
| void *fun_ctxt, |
| const int num_planes) { |
| (void)above_mi; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| const int overlap = |
| AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; |
| |
| if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint8_t *const dst = &pd->dst.buf[plane_col]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col]; |
| const uint8_t *const mask = av1_get_obmc_mask(bh); |
| |
| if (is_hbd) |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw, xd->bd); |
| else |
| aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, |
| mask, bh, bw); |
| } |
| } |
| |
| static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row, |
| uint8_t left_mi_height, |
| MB_MODE_INFO *left_mi, |
| void *fun_ctxt, |
| const int num_planes) { |
| (void)left_mi; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| const int overlap = |
| AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; |
| const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y; |
| const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; |
| |
| if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; |
| const uint8_t *const mask = av1_get_obmc_mask(bw); |
| |
| if (is_hbd) |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw, xd->bd); |
| else |
| aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, |
| mask, bh, bw); |
| } |
| } |
| |
| // This function combines motion compensated predictions that are generated by |
| // top/left neighboring blocks' inter predictors with the regular inter |
| // prediction. We assume the original prediction (bmc) is stored in |
| // xd->plane[].dst.buf |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint8_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]) { |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| |
| // handle above row |
| struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; |
| foreach_overlappable_nb_above(cm, xd, mi_col, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| build_obmc_inter_pred_above, &ctxt_above); |
| |
| // handle left column |
| struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; |
| foreach_overlappable_nb_left(cm, xd, mi_row, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| build_obmc_inter_pred_left, &ctxt_left); |
| } |
| |
| struct build_prediction_ctxt { |
| const AV1_COMMON *cm; |
| int mi_row; |
| int mi_col; |
| uint8_t **tmp_buf; |
| int *tmp_width; |
| int *tmp_height; |
| int *tmp_stride; |
| int mb_to_far_edge; |
| }; |
| |
| static INLINE void build_prediction_by_above_pred( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, |
| MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { |
| const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); |
| struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; |
| const int above_mi_col = ctxt->mi_col + rel_mi_col; |
| |
| MB_MODE_INFO backup_mbmi = *above_mbmi; |
| modify_neighbor_predictor_for_obmc(above_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, |
| NULL, pd->subsampling_x, pd->subsampling_y); |
| } |
| |
| const int num_refs = 1 + has_second_ref(above_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; |
| |
| const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col, |
| &ref_buf->sf, num_planes); |
| } |
| |
| xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); |
| xd->mb_to_right_edge = ctxt->mb_to_far_edge + |
| (xd->n8_w - rel_mi_col - above_mi_width) * MI_SIZE * 8; |
| |
| int mi_x = above_mi_col << MI_SIZE_LOG2; |
| int mi_y = ctxt->mi_row << MI_SIZE_LOG2; |
| |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; |
| int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, |
| block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); |
| |
| if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| build_inter_predictors(ctxt->cm, xd, j, above_mbmi, 1, bw, bh, mi_x, mi_y); |
| } |
| *above_mbmi = backup_mbmi; |
| } |
| |
| void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]) { |
| if (!xd->up_available) return; |
| |
| // Adjust mb_to_bottom_edge to have the correct value for the OBMC |
| // prediction block. This is half the height of the original block, |
| // except for 128-wide blocks, where we only use a height of 32. |
| int this_height = xd->n8_h * MI_SIZE; |
| int pred_height = AOMMIN(this_height / 2, 32); |
| xd->mb_to_bottom_edge += (this_height - pred_height) * 8; |
| |
| struct build_prediction_ctxt ctxt = { cm, mi_row, |
| mi_col, tmp_buf, |
| tmp_width, tmp_height, |
| tmp_stride, xd->mb_to_right_edge }; |
| BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| foreach_overlappable_nb_above(cm, xd, mi_col, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| build_prediction_by_above_pred, &ctxt); |
| |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = ctxt.mb_to_far_edge; |
| xd->mb_to_bottom_edge -= (this_height - pred_height) * 8; |
| } |
| |
| static INLINE void build_prediction_by_left_pred( |
| MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, |
| MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { |
| const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type); |
| struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; |
| const int left_mi_row = ctxt->mi_row + rel_mi_row; |
| |
| MB_MODE_INFO backup_mbmi = *left_mbmi; |
| modify_neighbor_predictor_for_obmc(left_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, |
| NULL, pd->subsampling_x, pd->subsampling_y); |
| } |
| |
| const int num_refs = 1 + has_second_ref(left_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; |
| |
| const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col, |
| &ref_buf->sf, num_planes); |
| } |
| |
| xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row); |
| xd->mb_to_bottom_edge = |
| ctxt->mb_to_far_edge + |
| (xd->n8_h - rel_mi_row - left_mi_height) * MI_SIZE * 8; |
| |
| int mi_x = ctxt->mi_col << MI_SIZE_LOG2; |
| int mi_y = left_mi_row << MI_SIZE_LOG2; |
| |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, |
| block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); |
| int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y; |
| |
| if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| build_inter_predictors(ctxt->cm, xd, j, left_mbmi, 1, bw, bh, mi_x, mi_y); |
| } |
| *left_mbmi = backup_mbmi; |
| } |
| |
| void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]) { |
| if (!xd->left_available) return; |
| |
| // Adjust mb_to_right_edge to have the correct value for the OBMC |
| // prediction block. This is half the width of the original block, |
| // except for 128-wide blocks, where we only use a width of 32. |
| int this_width = xd->n8_w * MI_SIZE; |
| int pred_width = AOMMIN(this_width / 2, 32); |
| xd->mb_to_right_edge += (this_width - pred_width) * 8; |
| |
| struct build_prediction_ctxt ctxt = { cm, mi_row, |
| mi_col, tmp_buf, |
| tmp_width, tmp_height, |
| tmp_stride, xd->mb_to_bottom_edge }; |
| BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| foreach_overlappable_nb_left(cm, xd, mi_row, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| build_prediction_by_left_pred, &ctxt); |
| |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_right_edge -= (this_width - pred_width) * 8; |
| xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; |
| } |
| |
| void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| const int num_planes = av1_num_planes(cm); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; |
| int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); |
| dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); |
| dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); |
| dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); |
| dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); |
| } else { |
| dst_buf1[0] = tmp_buf1; |
| dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; |
| dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = tmp_buf2; |
| dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; |
| dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; |
| } |
| av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, |
| dst_width1, dst_height1, dst_stride1); |
| av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, |
| dst_width2, dst_height2, dst_stride2); |
| av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm), |
| mi_row, mi_col, 0, num_planes); |
| av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, |
| dst_buf2, dst_stride2); |
| } |
| |
| /* clang-format off */ |
| static const uint8_t ii_weights1d[MAX_SB_SIZE] = { |
| 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, |
| 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, |
| 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, |
| 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
| }; |
| static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { |
| 32, 16, 16, 16, 8, 8, 8, 4, |
| 4, 4, 2, 2, 2, 1, 1, 1, |
| 8, 8, 4, 4, 2, 2 |
| }; |
| /* clang-format on */ |
| |
| static void build_smooth_interintra_mask(uint8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, |
| INTERINTRA_MODE mode) { |
| int i, j; |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_SMOOTH_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) |
| mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, 32, bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| } |
| } |
| |
| static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, |
| int wedge_index, int wedge_sign, |
| BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint8_t *comppred, int compstride, |
| const uint8_t *interpred, int interstride, |
| const uint8_t *intrapred, int intrastride) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (use_wedge_interintra) { |
| if (is_interintra_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subw = 2 * mi_size_wide[bsize] == bw; |
| const int subh = 2 * mi_size_high[bsize] == bh; |
| aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, |
| interpred, interstride, mask, block_size_wide[bsize], |
| bh, bw, subh, subw); |
| } |
| return; |
| } |
| |
| uint8_t mask[MAX_SB_SQUARE]; |
| build_smooth_interintra_mask(mask, bw, plane_bsize, mode); |
| aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, |
| interstride, mask, bw, bh, bw, 0, 0); |
| } |
| |
| static void combine_interintra_highbd( |
| INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, |
| int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint8_t *comppred8, int compstride, const uint8_t *interpred8, |
| int interstride, const uint8_t *intrapred8, int intrastride, int bd) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (use_wedge_interintra) { |
| if (is_interintra_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subh = 2 * mi_size_high[bsize] == bh; |
| const int subw = 2 * mi_size_wide[bsize] == bw; |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, |
| block_size_wide[bsize], bh, bw, subh, subw, bd); |
| } |
| return; |
| } |
| |
| uint8_t mask[MAX_SB_SQUARE]; |
| build_smooth_interintra_mask(mask, bw, plane_bsize, mode); |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, bw, bh, bw, 0, 0, |
| bd); |
| } |
| |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int plane, |
| BUFFER_SET *ctx, uint8_t *dst, |
| int dst_stride) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); |
| PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; |
| xd->mi[0]->angle_delta[PLANE_TYPE_Y] = 0; |
| xd->mi[0]->angle_delta[PLANE_TYPE_UV] = 0; |
| xd->mi[0]->filter_intra_mode_info.use_filter_intra = 0; |
| xd->mi[0]->use_intrabc = 0; |
| |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, |
| get_max_rect_tx_size(plane_bsize), mode, 0, 0, |
| FILTER_INTRA_MODES, ctx->plane[plane], |
| ctx->stride[plane], dst, dst_stride, 0, 0, plane); |
| } |
| |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride) { |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| combine_interintra_highbd( |
| xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, |
| xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign, |
| bsize, plane_bsize, xd->plane[plane].dst.buf, |
| xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, |
| intra_stride, xd->bd); |
| return; |
| } |
| combine_interintra( |
| xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, |
| xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign, |
| bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, |
| inter_pred, inter_stride, intra_pred, intra_stride); |
| } |
| |
| void av1_build_interintra_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *ypred, int ystride, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra( |
| cm, xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, 0, ypred, ystride, |
| CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); |
| return; |
| } |
| { |
| DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, ctx, |
| intrapredictor, MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor, |
| MAX_SB_SIZE); |
| } |
| } |
| |
| void av1_build_interintra_predictors_sbc(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *upred, int ustride, |
| BUFFER_SET *ctx, int plane, |
| BLOCK_SIZE bsize) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra( |
| cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor), |
| MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, upred, ustride, |
| CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); |
| } else { |
| DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, |
| uintrapredictor, MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor, |
| MAX_SB_SIZE); |
| } |
| } |
| |
| void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *upred, uint8_t *vpred, |
| int ustride, int vstride, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize) { |
| av1_build_interintra_predictors_sbc(cm, xd, upred, ustride, ctx, 1, bsize); |
| av1_build_interintra_predictors_sbc(cm, xd, vpred, vstride, ctx, 2, bsize); |
| } |
| |
| void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *ypred, uint8_t *upred, |
| uint8_t *vpred, int ystride, int ustride, |
| int vstride, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize) { |
| av1_build_interintra_predictors_sby(cm, xd, ypred, ystride, ctx, bsize); |
| av1_build_interintra_predictors_sbuv(cm, xd, upred, vpred, ustride, vstride, |
| ctx, bsize); |
| } |
| |
| // Builds the inter-predictor for the single ref case |
| // for use in the encoder to search the wedges efficiently. |
| static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, |
| int bw, int bh, int x, int y, |
| int w, int h, int mi_x, int mi_y, |
| int ref, uint8_t *const ext_dst, |
| int ext_dst_stride, |
| int can_use_previous) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const MB_MODE_INFO *mi = xd->mi[0]; |
| |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| uint8_t *const dst = |
| (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst) |
| : ext_dst) + |
| ext_dst_stride * y + x; |
| const MV mv = mi->mv[ref].as_mv; |
| uint8_t *pre; |
| int xs, ys, subpel_x, subpel_y; |
| const int is_scaled = av1_is_scaled(sf); |
| ConvolveParams conv_params = get_conv_params(ref, 0, plane, xd->bd); |
| WarpTypesAllowed warp_types; |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; |
| warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype); |
| warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; |
| |
| if (is_scaled) { |
| int ssx = pd->subsampling_x; |
| int ssy = pd->subsampling_y; |
| int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS); |
| orig_pos_y += mv.row * (1 << (1 - ssy)); |
| int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS); |
| orig_pos_x += mv.col * (1 << (1 - ssx)); |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + |
| (pos_x >> SCALE_SUBPEL_BITS); |
| subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| xs = ys = SCALE_SUBPEL_SHIFTS; |
| subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + |
| (x + (mv_q4.col >> SUBPEL_BITS)); |
| } |
| |
| av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x, |
| subpel_y, sf, w, h, &conv_params, mi->interp_filters, |
| &warp_types, (mi_x >> pd->subsampling_x) + x, |
| (mi_y >> pd->subsampling_y) + y, plane, ref, mi, 0, |
| xs, ys, xd, can_use_previous); |
| } |
| |
| void av1_build_inter_predictors_for_planes_single_buf( |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, |
| int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3], |
| int can_use_previous) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, &xd->plane[plane]); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| build_inter_predictors_single_buf(xd, plane, bw, bh, 0, 0, bw, bh, mi_x, |
| mi_y, ref, ext_dst[plane], |
| ext_dst_stride[plane], can_use_previous); |
| } |
| } |
| |
| static void build_wedge_inter_predictor_from_buf( |
| MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0, |
| int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_compound = has_second_ref(mbmi); |
| MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
| const INTERINTER_COMPOUND_DATA comp_data = { mbmi->wedge_index, |
| mbmi->wedge_sign, |
| mbmi->mask_type, xd->seg_mask, |
| mbmi->interinter_compound_type }; |
| |
| if (is_compound && is_masked_compound_type(mbmi->interinter_compound_type)) { |
| if (!plane && comp_data.interinter_compound_type == COMPOUND_DIFFWTD) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| av1_build_compound_diffwtd_mask_highbd( |
| comp_data.seg_mask, comp_data.mask_type, |
| CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd); |
| else |
| av1_build_compound_diffwtd_mask(comp_data.seg_mask, comp_data.mask_type, |
| ext_dst0, ext_dst_stride0, ext_dst1, |
| ext_dst_stride1, h, w); |
| } |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_masked_compound_highbd( |
| dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data, |
| mbmi->sb_type, h, w, xd->bd); |
| else |
| build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, |
| ext_dst1, ext_dst_stride1, &comp_data, |
| mbmi->sb_type, h, w); |
| } else { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, |
| xd->bd); |
| else |
| aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, |
| 0, NULL, 0, w, h); |
| } |
| } |
| |
| void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane_from, int plane_to, |
| uint8_t *ext_dst0[3], |
| int ext_dst_stride0[3], |
| uint8_t *ext_dst1[3], |
| int ext_dst_stride1[3]) { |
| int plane; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, &xd->plane[plane]); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| build_wedge_inter_predictor_from_buf( |
| xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane], |
| ext_dst1[plane], ext_dst_stride1[plane]); |
| } |
| } |