| /* |
| * Copyright (c) 2022, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <smmintrin.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/flow_estimation/disflow.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| // Internal cross-check against C code |
| // If you set this to 1 and compile in debug mode, then the outputs of the two |
| // convolution stages will be checked against the plain C version of the code, |
| // and an assertion will be fired if the results differ. |
| #define CHECK_RESULTS 1 |
| |
| // Note: Max sum(+ve coefficients) = 1.125 * scale |
| static INLINE void get_cubic_kernel_dbl(double x, double *kernel) { |
| assert(0 <= x && x < 1); |
| double x2 = x * x; |
| double x3 = x2 * x; |
| kernel[0] = -0.5 * x + x2 - 0.5 * x3; |
| kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3; |
| kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3; |
| kernel[3] = -0.5 * x2 + 0.5 * x3; |
| } |
| |
| static INLINE void get_cubic_kernel_int(double x, int16_t *kernel) { |
| double kernel_dbl[4]; |
| get_cubic_kernel_dbl(x, kernel_dbl); |
| |
| kernel[0] = (int16_t)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS)); |
| kernel[1] = (int16_t)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS)); |
| kernel[2] = (int16_t)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS)); |
| kernel[3] = (int16_t)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS)); |
| } |
| |
| #if CHECK_RESULTS |
| static INLINE int get_cubic_value_int(const int *p, const int16_t *kernel) { |
| return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] + |
| kernel[3] * p[3]; |
| } |
| #endif // CHECK_RESULTS |
| |
| // Compare two regions of width x height pixels, one rooted at position |
| // (x, y) in src and the other at (x + u, y + v) in ref. |
| // This function returns the sum of squared pixel differences between |
| // the two regions. |
| // |
| // TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation |
| // instad of bicubic interpolation |
| static INLINE void compute_flow_error(const uint8_t *src, const uint8_t *ref, |
| int width, int height, int stride, int x, |
| int y, double u, double v, int16_t *dt) { |
| // This function is written to do 8x8 convolutions only |
| assert(DISFLOW_PATCH_SIZE == 8); |
| |
| // Split offset into integer and fractional parts, and compute cubic |
| // interpolation kernels |
| const int u_int = (int)floor(u); |
| const int v_int = (int)floor(v); |
| const double u_frac = u - floor(u); |
| const double v_frac = v - floor(v); |
| |
| int16_t h_kernel[4]; |
| int16_t v_kernel[4]; |
| get_cubic_kernel_int(u_frac, h_kernel); |
| get_cubic_kernel_int(v_frac, v_kernel); |
| |
| // Storage for intermediate values between the two convolution directions |
| int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]; |
| int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row |
| |
| // Clamp coordinates so that all pixels we fetch will remain within the |
| // allocated border region, but allow them to go far enough out that |
| // the border pixels' values do not change. |
| // Since we are calculating an 8x8 block, the bottom-right pixel |
| // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic |
| // interpolation has 4 taps, meaning that the output of pixel |
| // (x_w, y_w) depends on the pixels in the range |
| // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]). |
| // |
| // Thus the most extreme coordinates which will be fetched are |
| // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9). |
| const int x0 = clamp(x + u_int, -9, width); |
| const int y0 = clamp(y + v_int, -9, height); |
| |
| // Horizontal convolution |
| |
| // Prepare the kernel vectors |
| // We split the kernel into two vectors with kernel indices: |
| // 0, 1, 0, 1, 0, 1, 0, 1, and |
| // 2, 3, 2, 3, 2, 3, 2, 3 |
| __m128i h_kernel_01 = xx_set2_epi16(h_kernel[0], h_kernel[1]); |
| __m128i h_kernel_23 = xx_set2_epi16(h_kernel[2], h_kernel[3]); |
| |
| __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1)); |
| |
| for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) { |
| const int y_w = y0 + i; |
| const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)]; |
| int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; |
| |
| // Load this row of pixels. |
| // For an 8x8 patch, we need to load the 8 image pixels + 3 extras, |
| // for a total of 11 pixels. Here we load 16 pixels, but only use |
| // the first 11. |
| __m128i row = _mm_loadu_si128((__m128i *)ref_row); |
| |
| // Expand pixels to int16s |
| __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row); |
| __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4)); |
| |
| // Relevant multiply instruction |
| // This multiplies pointwise, then sums in pairs. |
| //_mm_madd_epi16(); |
| |
| // Compute first four outputs |
| // input pixels 0, 1, 1, 2, 2, 3, 3, 4 |
| // * kernel 0, 1, 0, 1, 0, 1, 0, 1 |
| __m128i px0 = |
| _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2)); |
| // input pixels 2, 3, 3, 4, 4, 5, 5, 6 |
| // * kernel 2, 3, 2, 3, 2, 3, 2, 3 |
| __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4), |
| _mm_srli_si128(px_0to7_i16, 6)); |
| // Convolve with kernel and sum 2x2 boxes to form first 4 outputs |
| __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01), |
| _mm_madd_epi16(px1, h_kernel_23)); |
| |
| __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h), |
| DISFLOW_INTERP_BITS - 6); |
| |
| // Compute second four outputs |
| __m128i px2 = |
| _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2)); |
| __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4), |
| _mm_srli_si128(px_4to10_i16, 6)); |
| __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01), |
| _mm_madd_epi16(px3, h_kernel_23)); |
| |
| // Round by just enough bits that the result is |
| // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32 |
| // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32 |
| // as it does now |
| // This means shifting down so we have 6 extra bits, for a maximum value |
| // of +18360, which can occur if u_frac == 0.5 and the input pixels are |
| // {0, 255, 255, 0}. |
| __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h), |
| DISFLOW_INTERP_BITS - 6); |
| |
| _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1)); |
| |
| #if CHECK_RESULTS && !defined(NDEBUG) |
| // Cross-check |
| for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) { |
| const int x_w = x0 + j; |
| int arr[4]; |
| |
| arr[0] = (int)ref[y_w * stride + (x_w - 1)]; |
| arr[1] = (int)ref[y_w * stride + (x_w + 0)]; |
| arr[2] = (int)ref[y_w * stride + (x_w + 1)]; |
| arr[3] = (int)ref[y_w * stride + (x_w + 2)]; |
| |
| // Apply kernel and round, keeping 6 extra bits of precision. |
| // |
| // 6 is the maximum allowable number of extra bits which will avoid |
| // the intermediate values overflowing an int16_t. The most extreme |
| // intermediate value occurs when: |
| // * The input pixels are [0, 255, 255, 0] |
| // * u_frac = 0.5 |
| // In this case, the un-scaled output is 255 * 1.125 = 286.875. |
| // As an integer with 6 fractional bits, that is 18360, which fits |
| // in an int16_t. But with 7 fractional bits it would be 36720, |
| // which is too large. |
| const int c_value = ROUND_POWER_OF_TWO(get_cubic_value_int(arr, h_kernel), |
| DISFLOW_INTERP_BITS - 6); |
| (void)c_value; // Suppress warnings |
| assert(tmp_row[j] == c_value); |
| } |
| #endif // CHECK_RESULTS |
| } |
| |
| // Vertical convolution |
| const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2; |
| __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1)); |
| |
| __m128i v_kernel_01 = xx_set2_epi16(v_kernel[0], v_kernel[1]); |
| __m128i v_kernel_23 = xx_set2_epi16(v_kernel[2], v_kernel[3]); |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) { |
| int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; |
| |
| // Load 4 rows of 8 x 16-bit values |
| __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); |
| __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); |
| __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); |
| __m128i px3 = |
| _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE)); |
| |
| // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... , |
| // but each multiply expands its output to 32 bits. So we need to be |
| // a little clever about how we do this |
| __m128i sum0 = _mm_add_epi32( |
| _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01), |
| _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23)); |
| __m128i sum1 = _mm_add_epi32( |
| _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01), |
| _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23)); |
| |
| __m128i sum0_rounded = |
| _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits); |
| __m128i sum1_rounded = |
| _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits); |
| |
| __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded); |
| __m128i src_pixels_u8 = |
| _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]); |
| __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3); |
| |
| // Calculate delta from the target patch |
| __m128i err = _mm_sub_epi16(warped, src_pixels); |
| _mm_storeu_si128((__m128i *)&dt[i * DISFLOW_PATCH_SIZE], err); |
| |
| #if CHECK_RESULTS |
| for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) { |
| int16_t *p = &tmp[i * DISFLOW_PATCH_SIZE + j]; |
| int arr[4] = { p[-DISFLOW_PATCH_SIZE], p[0], p[DISFLOW_PATCH_SIZE], |
| p[2 * DISFLOW_PATCH_SIZE] }; |
| const int result = get_cubic_value_int(arr, v_kernel); |
| |
| // Apply kernel and round. |
| // This time, we have to round off the 6 extra bits which were kept |
| // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits |
| // of precision to match the scale of the dx and dy arrays. |
| const int c_warped = ROUND_POWER_OF_TWO(result, round_bits); |
| const int c_src_px = src[(x + j) + (y + i) * stride] << 3; |
| const int c_err = c_warped - c_src_px; |
| (void)c_err; |
| assert(dt[i * DISFLOW_PATCH_SIZE + j] == c_err); |
| } |
| #endif // CHECK_RESULTS |
| } |
| } |
| |
| static INLINE void sobel_filter_x(const uint8_t *src, int src_stride, |
| int16_t *dst, int dst_stride) { |
| int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; |
| int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; |
| const int taps = 3; |
| |
| // Horizontal filter |
| // As the kernel is simply {1, 0, -1}, we implement this as simply |
| // out[x] = image[x-1] - image[x+1] |
| // rather than doing a "proper" convolution operation |
| for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) { |
| const uint8_t *src_row = src + y * src_stride; |
| int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; |
| |
| // Load pixels and expand to 16 bits |
| __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1)); |
| __m128i px0 = _mm_cvtepu8_epi16(row); |
| __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); |
| |
| __m128i out = _mm_sub_epi16(px0, px2); |
| |
| // Store to intermediate array |
| _mm_storeu_si128((__m128i *)tmp_row, out); |
| |
| #if CHECK_RESULTS |
| // Cross-check |
| static const int16_t h_kernel[3] = { 1, 0, -1 }; |
| for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { |
| int sum = 0; |
| for (int k = 0; k < taps; ++k) { |
| sum += h_kernel[k] * src_row[x + k - 1]; |
| } |
| (void)sum; |
| assert(tmp_row[x] == sum); |
| } |
| #endif // CHECK_RESULTS |
| } |
| |
| // Vertical filter |
| // Here the kernel is {1, 2, 1}, which can be implemented |
| // with simple sums rather than multiplies and adds. |
| // In order to minimize dependency chains, we evaluate in the order |
| // (image[y - 1] + image[y + 1]) + (image[y] << 1) |
| // This way, the first addition and the shift can happen in parallel |
| for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) { |
| const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; |
| int16_t *dst_row = dst + y * dst_stride; |
| |
| __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); |
| __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); |
| __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); |
| |
| __m128i out = |
| _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1)); |
| |
| _mm_storeu_si128((__m128i *)dst_row, out); |
| |
| #if CHECK_RESULTS |
| static const int16_t v_kernel[3] = { 1, 2, 1 }; |
| for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { |
| int sum = 0; |
| for (int k = 0; k < taps; ++k) { |
| sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x]; |
| } |
| (void)sum; |
| assert(dst_row[x] == sum); |
| } |
| #endif // CHECK_RESULTS |
| } |
| } |
| |
| static INLINE void sobel_filter_y(const uint8_t *src, int src_stride, |
| int16_t *dst, int dst_stride) { |
| int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; |
| int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; |
| const int taps = 3; |
| |
| // Horizontal filter |
| // Here the kernel is {1, 2, 1}, which can be implemented |
| // with simple sums rather than multiplies and adds. |
| // In order to minimize dependency chains, we evaluate in the order |
| // (image[y - 1] + image[y + 1]) + (image[y] << 1) |
| // This way, the first addition and the shift can happen in parallel |
| for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) { |
| const uint8_t *src_row = src + y * src_stride; |
| int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; |
| |
| // Load pixels and expand to 16 bits |
| __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1)); |
| __m128i px0 = _mm_cvtepu8_epi16(row); |
| __m128i px1 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1)); |
| __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); |
| |
| __m128i out = |
| _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1)); |
| |
| // Store to intermediate array |
| _mm_storeu_si128((__m128i *)tmp_row, out); |
| |
| #if CHECK_RESULTS |
| // Cross-check |
| static const int16_t h_kernel[3] = { 1, 2, 1 }; |
| for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { |
| int sum = 0; |
| for (int k = 0; k < taps; ++k) { |
| sum += h_kernel[k] * src_row[x + k - 1]; |
| } |
| (void)sum; |
| assert(tmp_row[x] == sum); |
| } |
| #endif // CHECK_RESULTS |
| } |
| |
| // Vertical filter |
| // As the kernel is simply {1, 0, -1}, we implement this as simply |
| // out[x] = image[x-1] - image[x+1] |
| // rather than doing a "proper" convolution operation |
| for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) { |
| const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; |
| int16_t *dst_row = dst + y * dst_stride; |
| |
| __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); |
| __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); |
| |
| __m128i out = _mm_sub_epi16(px0, px2); |
| |
| _mm_storeu_si128((__m128i *)dst_row, out); |
| |
| #if CHECK_RESULTS |
| static const int16_t v_kernel[3] = { 1, 0, -1 }; |
| for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { |
| int sum = 0; |
| for (int k = 0; k < taps; ++k) { |
| sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x]; |
| } |
| (void)sum; |
| assert(dst_row[x] == sum); |
| } |
| #endif // CHECK_RESULTS |
| } |
| } |
| |
| static INLINE void compute_flow_vector(const int16_t *dx, int dx_stride, |
| const int16_t *dy, int dy_stride, |
| const int16_t *dt, int dt_stride, |
| int *b) { |
| __m128i b0_acc = _mm_setzero_si128(); |
| __m128i b1_acc = _mm_setzero_si128(); |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { |
| // Need to load 8 values of dx, 8 of dy, 8 of dt, which conveniently |
| // works out to one register each. Then just calculate dx * dt, dy * dt, |
| // and (implicitly) sum horizontally in pairs. |
| // This gives four 32-bit partial sums for each of b[0] and b[1], |
| // which can be accumulated and summed at the end. |
| __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]); |
| __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]); |
| __m128i dt_row = _mm_loadu_si128((__m128i *)&dt[i * dt_stride]); |
| |
| b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt_row)); |
| b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt_row)); |
| } |
| |
| // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc). |
| // We might as well use a `hadd` instruction to do 4 of the additions |
| // needed here. Then that just leaves two more additions, which can be |
| // done in scalar code |
| __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc); |
| b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1); |
| b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3); |
| |
| #if CHECK_RESULTS |
| int c_result[2] = { 0 }; |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { |
| for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) { |
| c_result[0] += dx[i * dx_stride + j] * dt[i * dt_stride + j]; |
| c_result[1] += dy[i * dy_stride + j] * dt[i * dt_stride + j]; |
| } |
| } |
| |
| assert(b[0] == c_result[0]); |
| assert(b[1] == c_result[1]); |
| #endif // CHECK_RESULTS |
| } |
| |
| static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride, |
| const int16_t *dy, int dy_stride, |
| double *M) { |
| __m128i acc[4] = { 0 }; |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { |
| __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]); |
| __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]); |
| |
| acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row)); |
| acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row)); |
| // Don't compute acc[2], as it should be equal to acc[1] |
| acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row)); |
| } |
| |
| // Condense sums |
| __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]); |
| __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]); |
| __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1); |
| |
| // Apply regularization |
| // We follow the standard regularization method of adding `k * I` before |
| // inverting. This ensures that the matrix will be invertible. |
| // |
| // Setting the regularization strength k to 1 seems to work well here, as |
| // typical values coming from the other equations are very large (1e5 to |
| // 1e6, with an upper limit of around 6e7, at the time of writing). |
| // It also preserves the property that all matrix values are whole numbers, |
| // which is convenient for integerized SIMD implementation. |
| result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1)); |
| |
| #if CHECK_RESULTS |
| int tmp[4] = { 0 }; |
| |
| for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { |
| for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) { |
| tmp[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j]; |
| tmp[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j]; |
| // Don't compute tmp[2], as it should be equal to tmp[1] |
| tmp[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j]; |
| } |
| } |
| |
| // Apply regularization |
| tmp[0] += 1; |
| tmp[3] += 1; |
| |
| tmp[2] = tmp[1]; |
| |
| assert(tmp[0] == _mm_extract_epi32(result, 0)); |
| assert(tmp[1] == _mm_extract_epi32(result, 1)); |
| assert(tmp[2] == _mm_extract_epi32(result, 2)); |
| assert(tmp[3] == _mm_extract_epi32(result, 3)); |
| #endif // CHECK_RESULTS |
| |
| // Convert results to doubles and store |
| _mm_storeu_pd(M, _mm_cvtepi32_pd(result)); |
| _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8))); |
| } |
| |
| // Try to invert the matrix M |
| // Note: Due to the nature of how a least-squares matrix is constructed, all of |
| // the eigenvalues will be >= 0, and therefore det M >= 0 as well. |
| // The regularization term `+ k * I` further ensures that det M >= k^2. |
| // As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1. |
| // So we don't have to worry about non-invertible matrices here. |
| static INLINE void invert_2x2(const double *M, double *M_inv) { |
| double det = (M[0] * M[3]) - (M[1] * M[2]); |
| assert(det >= 1); |
| const double det_inv = 1 / det; |
| |
| M_inv[0] = M[3] * det_inv; |
| M_inv[1] = -M[1] * det_inv; |
| M_inv[2] = -M[2] * det_inv; |
| M_inv[3] = M[0] * det_inv; |
| } |
| |
| void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref, |
| int x, int y, int width, int height, |
| int stride, double *u, double *v) { |
| double M[4]; |
| double M_inv[4]; |
| int b[2]; |
| int16_t dt[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; |
| int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; |
| int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; |
| |
| // Compute gradients within this patch |
| const uint8_t *src_patch = &src[y * stride + x]; |
| sobel_filter_x(src_patch, stride, dx, DISFLOW_PATCH_SIZE); |
| sobel_filter_y(src_patch, stride, dy, DISFLOW_PATCH_SIZE); |
| |
| compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M); |
| invert_2x2(M, M_inv); |
| |
| for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) { |
| compute_flow_error(src, ref, width, height, stride, x, y, *u, *v, dt); |
| compute_flow_vector(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, dt, |
| DISFLOW_PATCH_SIZE, b); |
| |
| // Solve flow equations to find a better estimate for the flow vector |
| // at this point |
| const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1]; |
| const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1]; |
| *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2); |
| *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2); |
| |
| if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) { |
| // Stop iteration when we're close to convergence |
| break; |
| } |
| } |
| } |