blob: 3c73a40bff9713b5debe15f4b27f1ba1817b7de5 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/reconinter.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/reconinter_enc.h"
void av1_single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int ref_idx, int *rate_mv,
int search_range) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mbmi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int bestsme = INT_MAX;
const int ref = mbmi->ref_frame[ref_idx];
FullMvLimits tmp_mv_limits = x->mv_limits;
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (scaled_ref_frame) {
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// full-pixel motion search code to be used without additional
// modifications.
for (int i = 0; i < num_planes; i++) {
backup_yv12[i] = xd->plane[i].pre[ref_idx];
}
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
int step_param;
if (cpi->sf.mv_sf.auto_mv_step_size && cm->show_frame) {
// Take the weighted average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param =
(av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
2;
} else {
step_param = cpi->mv_step_param;
}
if (cpi->sf.mv_sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) {
int boffset =
2 * (mi_size_wide_log2[cm->seq_params.sb_size] -
AOMMIN(mi_size_high_log2[bsize], mi_size_wide_log2[bsize]));
step_param = AOMMAX(step_param, boffset);
}
if (cpi->sf.mv_sf.adaptive_motion_search) {
int bwl = mi_size_wide_log2[bsize];
int bhl = mi_size_high_log2[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5) {
step_param += 2;
step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1);
}
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_RANDOM) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
x->best_mv.as_int = INVALID_MV;
if (scaled_ref_frame) {
// Swap back the original buffers before returning.
for (int j = 0; j < num_planes; ++j)
xd->plane[j].pre[ref_idx] = backup_yv12[j];
}
return;
}
}
}
}
const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
// Further reduce the search range.
if (search_range < INT_MAX) {
const search_site_config *ss_cfg = &cpi->ss_cfg[SS_CFG_SRC];
// MAx step_param is ss_cfg->ss_count.
if (search_range < 1) {
step_param = ss_cfg->ss_count;
} else {
while (ss_cfg->radius[ss_cfg->ss_count - step_param - 1] >
(search_range << 1) &&
ss_cfg->ss_count - step_param - 1 > 0)
step_param++;
}
}
// Note: MV limits are modified here. Always restore the original values
// after full-pixel motion search.
av1_set_mv_search_range(&x->mv_limits, &ref_mv);
FULLPEL_MV start_mv;
if (mbmi->motion_mode != SIMPLE_TRANSLATION)
start_mv = get_fullmv_from_mv(&mbmi->mv[0].as_mv);
else
start_mv = get_fullmv_from_mv(&ref_mv);
const int sadpb = x->sadperbit16;
int cost_list[5];
x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;
switch (mbmi->motion_mode) {
case SIMPLE_TRANSLATION:
bestsme = av1_full_pixel_search(
cpi, x, bsize, &start_mv, step_param, cpi->sf.mv_sf.search_method, 0,
sadpb, cond_cost_list(cpi, cost_list), &ref_mv, INT_MAX, 1,
(MI_SIZE * mi_col), (MI_SIZE * mi_row), 0, &cpi->ss_cfg[SS_CFG_SRC],
0);
break;
case OBMC_CAUSAL:
bestsme = av1_obmc_full_pixel_search(
cpi, x, &start_mv, step_param, sadpb,
MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv,
&(x->best_mv.as_fullmv), &cpi->ss_cfg[SS_CFG_SRC]);
break;
default: assert(0 && "Invalid motion mode!\n");
}
if (scaled_ref_frame) {
// Swap back the original buffers for subpel motion search.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
x->mv_limits = tmp_mv_limits;
if (cpi->common.cur_frame_force_integer_mv) {
convert_fullmv_to_mv(&x->best_mv);
}
const int use_fractional_mv =
bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0;
if (use_fractional_mv) {
int dis; /* TODO: use dis in distortion calculation later. */
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
switch (mbmi->motion_mode) {
case SIMPLE_TRANSLATION:
if (cpi->sf.mv_sf.use_accurate_subpel_search) {
const int try_second = x->second_best_mv.as_int != INVALID_MV &&
x->second_best_mv.as_int != x->best_mv.as_int;
const int best_mv_var = cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv_sf.subpel_force_stop,
cpi->sf.mv_sf.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmv_vec_cost, x->mv_cost_stack,
&dis, &x->pred_sse[ref], NULL, NULL, 0, 0, pw, ph,
cpi->sf.mv_sf.use_accurate_subpel_search, 1);
if (try_second) {
SubpelMvLimits subpel_limits;
av1_set_subpel_mv_search_range(&subpel_limits, &x->mv_limits,
&ref_mv);
MV best_mv = x->best_mv.as_mv;
x->best_mv = x->second_best_mv;
if (av1_is_subpelmv_in_range(
&subpel_limits,
get_mv_from_fullmv(&x->best_mv.as_fullmv))) {
const int this_var = cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv_sf.subpel_force_stop,
cpi->sf.mv_sf.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmv_vec_cost,
x->mv_cost_stack, &dis, &x->pred_sse[ref], NULL, NULL, 0, 0,
pw, ph, cpi->sf.mv_sf.use_accurate_subpel_search, 0);
if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
}
x->best_mv.as_mv = best_mv;
}
} else {
cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv_sf.subpel_force_stop,
cpi->sf.mv_sf.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmv_vec_cost, x->mv_cost_stack,
&dis, &x->pred_sse[ref], NULL, NULL, 0, 0, 0, 0, 0, 1);
}
break;
case OBMC_CAUSAL:
av1_find_best_obmc_sub_pixel_tree_up(
x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv_sf.subpel_force_stop,
cpi->sf.mv_sf.subpel_iters_per_step, x->nmv_vec_cost,
x->mv_cost_stack, &dis, &x->pred_sse[ref], pw, ph,
cpi->sf.mv_sf.use_accurate_subpel_search);
break;
default: assert(0 && "Invalid motion mode!\n");
}
}
*rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
if (cpi->sf.mv_sf.adaptive_motion_search &&
mbmi->motion_mode == SIMPLE_TRANSLATION)
x->pred_mv[ref] = x->best_mv.as_mv;
}
void av1_joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int_mv *cur_mv,
const uint8_t *mask, int mask_stride,
int *rate_mv) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
const int plane = 0;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
// This function should only ever be called for compound modes
assert(has_second_ref(mbmi));
const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] };
const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] };
int_mv ref_mv[2];
int ite, ref;
// Get the prediction block from the 'other' reference frame.
const int_interpfilters interp_filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
InterPredParams inter_pred_params;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
int last_besterr[2] = { INT_MAX, INT_MAX };
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
av1_get_scaled_ref_frame(cpi, refs[0]),
av1_get_scaled_ref_frame(cpi, refs[1])
};
// Prediction buffer from second frame.
DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]);
uint8_t *second_pred = get_buf_by_bd(xd, second_pred16);
int_mv *best_int_mv = &x->best_mv;
const int search_range = SEARCH_RANGE_8P;
const int sadpb = x->sadperbit16;
// Allow joint search multiple times iteratively for each reference frame
// and break out of the search loop if it couldn't find a better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
FullMvLimits tmp_mv_limits = x->mv_limits;
int id = ite % 2; // Even iterations search in the first reference frame,
// odd iterations search in the second. The predictor
// found for the 'other' reference frame is factored in.
if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) {
if (cur_mv[id].as_int == init_mv[id].as_int) {
break;
} else {
int_mv cur_int_mv, init_int_mv;
cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3;
cur_int_mv.as_mv.row = cur_mv[id].as_mv.row >> 3;
init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3;
init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3;
if (cur_int_mv.as_int == init_int_mv.as_int) {
break;
}
}
}
for (ref = 0; ref < 2; ++ref) {
ref_mv[ref] = av1_get_ref_mv(x, ref);
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
if (scaled_ref_frame[ref]) {
int i;
for (i = 0; i < num_planes; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL, num_planes);
}
}
assert(IMPLIES(scaled_ref_frame[0] != NULL,
cm->width == scaled_ref_frame[0]->y_crop_width &&
cm->height == scaled_ref_frame[0]->y_crop_height));
assert(IMPLIES(scaled_ref_frame[1] != NULL,
cm->width == scaled_ref_frame[1]->y_crop_width &&
cm->height == scaled_ref_frame[1]->y_crop_height));
// Initialize based on (possibly scaled) prediction buffers.
ref_yv12[0] = xd->plane[plane].pre[0];
ref_yv12[1] = xd->plane[plane].pre[1];
av1_init_inter_params(&inter_pred_params, pw, ph, mi_row * MI_SIZE,
mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
&cm->sf_identity, &ref_yv12[!id], interp_filters);
inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
// Since we have scaled the reference frames to match the size of the
// current frame we must use a unit scaling factor during mode selection.
av1_build_inter_predictor(second_pred, pw, &cur_mv[!id].as_mv,
&inter_pred_params);
const int order_idx = id != 0;
av1_dist_wtd_comp_weight_assign(
cm, mbmi, order_idx, &xd->jcp_param.fwd_offset,
&xd->jcp_param.bck_offset, &xd->jcp_param.use_dist_wtd_comp_avg, 1);
// Do full-pixel compound motion search on the current reference frame.
if (id) xd->plane[plane].pre[0] = ref_yv12[id];
av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv);
// Use the mv result from the single mode as mv predictor.
best_int_mv->as_fullmv = get_fullmv_from_mv(&cur_mv[id].as_mv);
// Small-range full-pixel motion search.
bestsme = av1_refining_search_8p_c(
x, sadpb, search_range, &cpi->fn_ptr[bsize], mask, mask_stride, id,
&ref_mv[id].as_mv, second_pred, &x->plane[0].src, &ref_yv12[id]);
if (bestsme < INT_MAX) {
if (mask)
bestsme = av1_get_mvpred_mask_var(x, &best_int_mv->as_fullmv,
&ref_mv[id].as_mv, second_pred, mask,
mask_stride, id, &cpi->fn_ptr[bsize],
&x->plane[0].src, &ref_yv12[id]);
else
bestsme = av1_get_mvpred_av_var(
x, &best_int_mv->as_fullmv, &ref_mv[id].as_mv, second_pred,
&cpi->fn_ptr[bsize], &x->plane[0].src, &ref_yv12[id]);
}
x->mv_limits = tmp_mv_limits;
// Restore the pointer to the first (possibly scaled) prediction buffer.
if (id) xd->plane[plane].pre[0] = ref_yv12[0];
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Swap back the original buffers for subpel motion search.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
// Re-initialize based on unscaled prediction buffers.
ref_yv12[ref] = xd->plane[plane].pre[ref];
}
}
// Do sub-pixel compound motion search on the current reference frame.
if (id) xd->plane[plane].pre[0] = ref_yv12[id];
if (cpi->common.cur_frame_force_integer_mv) {
convert_fullmv_to_mv(best_int_mv);
}
if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
bestsme = cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv[id].as_mv,
cpi->common.allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], 0, cpi->sf.mv_sf.subpel_iters_per_step, NULL,
x->nmv_vec_cost, x->mv_cost_stack, &dis, &sse, second_pred, mask,
mask_stride, id, pw, ph, cpi->sf.mv_sf.use_accurate_subpel_search, 1);
}
// Restore the pointer to the first prediction buffer.
if (id) xd->plane[plane].pre[0] = ref_yv12[0];
if (bestsme < last_besterr[id]) {
cur_mv[id] = *best_int_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
*rate_mv = 0;
for (ref = 0; ref < 2; ++ref) {
const int_mv curr_ref_mv = av1_get_ref_mv(x, ref);
*rate_mv +=
av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
}
}
// Search for the best mv for one component of a compound,
// given that the other component is fixed.
void av1_compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, MV *this_mv,
const uint8_t *second_pred,
const uint8_t *mask, int mask_stride,
int *rate_mv, int ref_idx) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int ref = mbmi->ref_frame[ref_idx];
const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_yv12[MAX_MB_PLANE];
const YV12_BUFFER_CONFIG *const scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
// Check that this is either an interinter or an interintra block
assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi)));
// Store the first prediction buffer.
struct buf_2d orig_yv12;
struct buf_2d ref_yv12 = pd->pre[ref_idx];
if (ref_idx) {
orig_yv12 = pd->pre[0];
pd->pre[0] = pd->pre[ref_idx];
}
if (scaled_ref_frame) {
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// full-pixel motion search code to be used without additional
// modifications.
for (int i = 0; i < num_planes; i++) {
backup_yv12[i] = xd->plane[i].pre[ref_idx];
}
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
int_mv *best_int_mv = &x->best_mv;
int search_range = SEARCH_RANGE_8P;
FullMvLimits tmp_mv_limits = x->mv_limits;
// Do compound motion search on the current reference frame.
av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv);
// Use the mv result from the single mode as mv predictor.
best_int_mv->as_fullmv = get_fullmv_from_mv(this_mv);
// Small-range full-pixel motion search.
bestsme = av1_refining_search_8p_c(
x, sadpb, search_range, &cpi->fn_ptr[bsize], mask, mask_stride, ref_idx,
&ref_mv.as_mv, second_pred, &x->plane[0].src, &ref_yv12);
if (bestsme < INT_MAX) {
if (mask)
bestsme = av1_get_mvpred_mask_var(
x, &best_int_mv->as_fullmv, &ref_mv.as_mv, second_pred, mask,
mask_stride, ref_idx, &cpi->fn_ptr[bsize], &x->plane[0].src,
&ref_yv12);
else
bestsme = av1_get_mvpred_av_var(x, &best_int_mv->as_fullmv, &ref_mv.as_mv,
second_pred, &cpi->fn_ptr[bsize],
&x->plane[0].src, &ref_yv12);
}
x->mv_limits = tmp_mv_limits;
if (scaled_ref_frame) {
// Swap back the original buffers for subpel motion search.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
if (cpi->common.cur_frame_force_integer_mv) {
convert_fullmv_to_mv(best_int_mv);
}
const int use_fractional_mv =
bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0;
if (use_fractional_mv) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
bestsme = cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &ref_mv.as_mv,
cpi->common.allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], 0, cpi->sf.mv_sf.subpel_iters_per_step, NULL,
x->nmv_vec_cost, x->mv_cost_stack, &dis, &sse, second_pred, mask,
mask_stride, ref_idx, pw, ph, cpi->sf.mv_sf.use_accurate_subpel_search,
1);
}
// Restore the pointer to the first unscaled prediction buffer.
if (ref_idx) pd->pre[0] = orig_yv12;
if (bestsme < INT_MAX) *this_mv = best_int_mv->as_mv;
*rate_mv = 0;
*rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmv_vec_cost,
x->mv_cost_stack, MV_COST_WEIGHT);
}
static AOM_INLINE void build_second_inter_pred(const AV1_COMP *cpi,
MACROBLOCK *x, BLOCK_SIZE bsize,
const MV *other_mv, int ref_idx,
uint8_t *second_pred) {
const AV1_COMMON *const cm = &cpi->common;
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x);
const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y);
// This function should only ever be called for compound modes
assert(has_second_ref(mbmi));
const int plane = 0;
struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx];
struct scale_factors sf;
av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height,
cm->width, cm->height);
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, pw, ph, p_row, p_col,
pd->subsampling_x, pd->subsampling_y, xd->bd,
is_cur_buf_hbd(xd), 0, &sf, &ref_yv12,
mbmi->interp_filters);
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
// Get the prediction block from the 'other' reference frame.
av1_build_inter_predictor(second_pred, pw, other_mv, &inter_pred_params);
av1_dist_wtd_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset,
&xd->jcp_param.bck_offset,
&xd->jcp_param.use_dist_wtd_comp_avg, 1);
}
// Wrapper for av1_compound_single_motion_search, for the common case
// where the second prediction is also an inter mode.
void av1_compound_single_motion_search_interinter(
const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv,
const uint8_t *mask, int mask_stride, int *rate_mv, int ref_idx) {
MACROBLOCKD *xd = &x->e_mbd;
// This function should only ever be called for compound modes
assert(has_second_ref(xd->mi[0]));
// Prediction buffer from second frame.
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
uint8_t *second_pred;
if (is_cur_buf_hbd(xd))
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
else
second_pred = (uint8_t *)second_pred_alloc_16;
MV *this_mv = &cur_mv[ref_idx].as_mv;
const MV *other_mv = &cur_mv[!ref_idx].as_mv;
build_second_inter_pred(cpi, x, bsize, other_mv, ref_idx, second_pred);
av1_compound_single_motion_search(cpi, x, bsize, this_mv, second_pred, mask,
mask_stride, rate_mv, ref_idx);
}
static AOM_INLINE void do_masked_motion_search_indexed(
const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize,
int_mv *tmp_mv, int *rate_mv, int which) {
// NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
BLOCK_SIZE sb_type = mbmi->sb_type;
const uint8_t *mask;
const int mask_stride = block_size_wide[bsize];
mask = av1_get_compound_type_mask(comp_data, sb_type);
tmp_mv[0].as_int = cur_mv[0].as_int;
tmp_mv[1].as_int = cur_mv[1].as_int;
if (which == 0 || which == 1) {
av1_compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mask,
mask_stride, rate_mv, which);
} else if (which == 2) {
av1_joint_motion_search(cpi, x, bsize, tmp_mv, mask, mask_stride, rate_mv);
}
}
int av1_interinter_compound_motion_search(const AV1_COMP *const cpi,
MACROBLOCK *x,
const int_mv *const cur_mv,
const BLOCK_SIZE bsize,
const PREDICTION_MODE this_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
int_mv tmp_mv[2];
int tmp_rate_mv = 0;
mbmi->interinter_comp.seg_mask = xd->seg_mask;
const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp;
if (this_mode == NEW_NEWMV) {
do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
tmp_mv, &tmp_rate_mv, 2);
mbmi->mv[0].as_int = tmp_mv[0].as_int;
mbmi->mv[1].as_int = tmp_mv[1].as_int;
} else if (this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV) {
// which = 1 if this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV
// which = 0 if this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV
int which = (NEWMV == compound_ref1_mode(this_mode));
do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
tmp_mv, &tmp_rate_mv, which);
mbmi->mv[which].as_int = tmp_mv[which].as_int;
}
return tmp_rate_mv;
}