blob: 9f9071449544b457adb48e684e46e5785ed224c3 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/fwd_txfm.h"
#include "aom_ports/mem.h"
#include "av1/common/blockd.h"
#include "av1/common/av1_fwd_txfm1d.h"
#include "av1/common/av1_fwd_txfm1d_cfg.h"
#include "av1/common/idct.h"
static INLINE void range_check(const tran_low_t *input, const int size,
const int bit) {
#if 0 // CONFIG_COEFFICIENT_RANGE_CHECKING
// TODO(angiebird): the range_check is not used because the bit range
// in fdct# is not correct. Since we are going to merge in a new version
// of fdct# from nextgenv2, we won't fix the incorrect bit range now.
int i;
for (i = 0; i < size; ++i) {
assert(abs(input[i]) < (1 << bit));
}
#else
(void)input;
(void)size;
(void)bit;
#endif
}
static void fdct4(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[4];
// stage 0
range_check(input, 4, 14);
// stage 1
output[0] = input[0] + input[3];
output[1] = input[1] + input[2];
output[2] = input[1] - input[2];
output[3] = input[0] - input[3];
range_check(output, 4, 15);
// stage 2
temp = output[0] * cospi_16_64 + output[1] * cospi_16_64;
step[0] = (tran_low_t)fdct_round_shift(temp);
temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64;
step[1] = (tran_low_t)fdct_round_shift(temp);
temp = output[2] * cospi_24_64 + output[3] * cospi_8_64;
step[2] = (tran_low_t)fdct_round_shift(temp);
temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64;
step[3] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 4, 16);
// stage 3
output[0] = step[0];
output[1] = step[2];
output[2] = step[1];
output[3] = step[3];
range_check(output, 4, 16);
}
static void fdct8(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[8];
// stage 0
range_check(input, 8, 13);
// stage 1
output[0] = input[0] + input[7];
output[1] = input[1] + input[6];
output[2] = input[2] + input[5];
output[3] = input[3] + input[4];
output[4] = input[3] - input[4];
output[5] = input[2] - input[5];
output[6] = input[1] - input[6];
output[7] = input[0] - input[7];
range_check(output, 8, 14);
// stage 2
step[0] = output[0] + output[3];
step[1] = output[1] + output[2];
step[2] = output[1] - output[2];
step[3] = output[0] - output[3];
step[4] = output[4];
temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_16_64 + output[5] * cospi_16_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
step[7] = output[7];
range_check(step, 8, 15);
// stage 3
temp = step[0] * cospi_16_64 + step[1] * cospi_16_64;
output[0] = (tran_low_t)fdct_round_shift(temp);
temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64;
output[1] = (tran_low_t)fdct_round_shift(temp);
temp = step[2] * cospi_24_64 + step[3] * cospi_8_64;
output[2] = (tran_low_t)fdct_round_shift(temp);
temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64;
output[3] = (tran_low_t)fdct_round_shift(temp);
output[4] = step[4] + step[5];
output[5] = step[4] - step[5];
output[6] = step[7] - step[6];
output[7] = step[7] + step[6];
range_check(output, 8, 16);
// stage 4
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
temp = output[4] * cospi_28_64 + output[7] * cospi_4_64;
step[4] = (tran_low_t)fdct_round_shift(temp);
temp = output[5] * cospi_12_64 + output[6] * cospi_20_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64;
step[7] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 8, 16);
// stage 5
output[0] = step[0];
output[1] = step[4];
output[2] = step[2];
output[3] = step[6];
output[4] = step[1];
output[5] = step[5];
output[6] = step[3];
output[7] = step[7];
range_check(output, 8, 16);
}
static void fdct16(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[16];
// stage 0
range_check(input, 16, 13);
// stage 1
output[0] = input[0] + input[15];
output[1] = input[1] + input[14];
output[2] = input[2] + input[13];
output[3] = input[3] + input[12];
output[4] = input[4] + input[11];
output[5] = input[5] + input[10];
output[6] = input[6] + input[9];
output[7] = input[7] + input[8];
output[8] = input[7] - input[8];
output[9] = input[6] - input[9];
output[10] = input[5] - input[10];
output[11] = input[4] - input[11];
output[12] = input[3] - input[12];
output[13] = input[2] - input[13];
output[14] = input[1] - input[14];
output[15] = input[0] - input[15];
range_check(output, 16, 14);
// stage 2
step[0] = output[0] + output[7];
step[1] = output[1] + output[6];
step[2] = output[2] + output[5];
step[3] = output[3] + output[4];
step[4] = output[3] - output[4];
step[5] = output[2] - output[5];
step[6] = output[1] - output[6];
step[7] = output[0] - output[7];
step[8] = output[8];
step[9] = output[9];
temp = output[10] * -cospi_16_64 + output[13] * cospi_16_64;
step[10] = (tran_low_t)fdct_round_shift(temp);
temp = output[11] * -cospi_16_64 + output[12] * cospi_16_64;
step[11] = (tran_low_t)fdct_round_shift(temp);
temp = output[12] * cospi_16_64 + output[11] * cospi_16_64;
step[12] = (tran_low_t)fdct_round_shift(temp);
temp = output[13] * cospi_16_64 + output[10] * cospi_16_64;
step[13] = (tran_low_t)fdct_round_shift(temp);
step[14] = output[14];
step[15] = output[15];
range_check(step, 16, 15);
// stage 3
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = step[1] - step[2];
output[3] = step[0] - step[3];
output[4] = step[4];
temp = step[5] * -cospi_16_64 + step[6] * cospi_16_64;
output[5] = (tran_low_t)fdct_round_shift(temp);
temp = step[6] * cospi_16_64 + step[5] * cospi_16_64;
output[6] = (tran_low_t)fdct_round_shift(temp);
output[7] = step[7];
output[8] = step[8] + step[11];
output[9] = step[9] + step[10];
output[10] = step[9] - step[10];
output[11] = step[8] - step[11];
output[12] = step[15] - step[12];
output[13] = step[14] - step[13];
output[14] = step[14] + step[13];
output[15] = step[15] + step[12];
range_check(output, 16, 16);
// stage 4
temp = output[0] * cospi_16_64 + output[1] * cospi_16_64;
step[0] = (tran_low_t)fdct_round_shift(temp);
temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64;
step[1] = (tran_low_t)fdct_round_shift(temp);
temp = output[2] * cospi_24_64 + output[3] * cospi_8_64;
step[2] = (tran_low_t)fdct_round_shift(temp);
temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64;
step[3] = (tran_low_t)fdct_round_shift(temp);
step[4] = output[4] + output[5];
step[5] = output[4] - output[5];
step[6] = output[7] - output[6];
step[7] = output[7] + output[6];
step[8] = output[8];
temp = output[9] * -cospi_8_64 + output[14] * cospi_24_64;
step[9] = (tran_low_t)fdct_round_shift(temp);
temp = output[10] * -cospi_24_64 + output[13] * -cospi_8_64;
step[10] = (tran_low_t)fdct_round_shift(temp);
step[11] = output[11];
step[12] = output[12];
temp = output[13] * cospi_24_64 + output[10] * -cospi_8_64;
step[13] = (tran_low_t)fdct_round_shift(temp);
temp = output[14] * cospi_8_64 + output[9] * cospi_24_64;
step[14] = (tran_low_t)fdct_round_shift(temp);
step[15] = output[15];
range_check(step, 16, 16);
// stage 5
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
temp = step[4] * cospi_28_64 + step[7] * cospi_4_64;
output[4] = (tran_low_t)fdct_round_shift(temp);
temp = step[5] * cospi_12_64 + step[6] * cospi_20_64;
output[5] = (tran_low_t)fdct_round_shift(temp);
temp = step[6] * cospi_12_64 + step[5] * -cospi_20_64;
output[6] = (tran_low_t)fdct_round_shift(temp);
temp = step[7] * cospi_28_64 + step[4] * -cospi_4_64;
output[7] = (tran_low_t)fdct_round_shift(temp);
output[8] = step[8] + step[9];
output[9] = step[8] - step[9];
output[10] = step[11] - step[10];
output[11] = step[11] + step[10];
output[12] = step[12] + step[13];
output[13] = step[12] - step[13];
output[14] = step[15] - step[14];
output[15] = step[15] + step[14];
range_check(output, 16, 16);
// stage 6
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
temp = output[8] * cospi_30_64 + output[15] * cospi_2_64;
step[8] = (tran_low_t)fdct_round_shift(temp);
temp = output[9] * cospi_14_64 + output[14] * cospi_18_64;
step[9] = (tran_low_t)fdct_round_shift(temp);
temp = output[10] * cospi_22_64 + output[13] * cospi_10_64;
step[10] = (tran_low_t)fdct_round_shift(temp);
temp = output[11] * cospi_6_64 + output[12] * cospi_26_64;
step[11] = (tran_low_t)fdct_round_shift(temp);
temp = output[12] * cospi_6_64 + output[11] * -cospi_26_64;
step[12] = (tran_low_t)fdct_round_shift(temp);
temp = output[13] * cospi_22_64 + output[10] * -cospi_10_64;
step[13] = (tran_low_t)fdct_round_shift(temp);
temp = output[14] * cospi_14_64 + output[9] * -cospi_18_64;
step[14] = (tran_low_t)fdct_round_shift(temp);
temp = output[15] * cospi_30_64 + output[8] * -cospi_2_64;
step[15] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 16, 16);
// stage 7
output[0] = step[0];
output[1] = step[8];
output[2] = step[4];
output[3] = step[12];
output[4] = step[2];
output[5] = step[10];
output[6] = step[6];
output[7] = step[14];
output[8] = step[1];
output[9] = step[9];
output[10] = step[5];
output[11] = step[13];
output[12] = step[3];
output[13] = step[11];
output[14] = step[7];
output[15] = step[15];
range_check(output, 16, 16);
}
static void fdct32(const tran_low_t *input, tran_low_t *output) {
tran_high_t temp;
tran_low_t step[32];
// stage 0
range_check(input, 32, 14);
// stage 1
output[0] = input[0] + input[31];
output[1] = input[1] + input[30];
output[2] = input[2] + input[29];
output[3] = input[3] + input[28];
output[4] = input[4] + input[27];
output[5] = input[5] + input[26];
output[6] = input[6] + input[25];
output[7] = input[7] + input[24];
output[8] = input[8] + input[23];
output[9] = input[9] + input[22];
output[10] = input[10] + input[21];
output[11] = input[11] + input[20];
output[12] = input[12] + input[19];
output[13] = input[13] + input[18];
output[14] = input[14] + input[17];
output[15] = input[15] + input[16];
output[16] = input[15] - input[16];
output[17] = input[14] - input[17];
output[18] = input[13] - input[18];
output[19] = input[12] - input[19];
output[20] = input[11] - input[20];
output[21] = input[10] - input[21];
output[22] = input[9] - input[22];
output[23] = input[8] - input[23];
output[24] = input[7] - input[24];
output[25] = input[6] - input[25];
output[26] = input[5] - input[26];
output[27] = input[4] - input[27];
output[28] = input[3] - input[28];
output[29] = input[2] - input[29];
output[30] = input[1] - input[30];
output[31] = input[0] - input[31];
range_check(output, 32, 15);
// stage 2
step[0] = output[0] + output[15];
step[1] = output[1] + output[14];
step[2] = output[2] + output[13];
step[3] = output[3] + output[12];
step[4] = output[4] + output[11];
step[5] = output[5] + output[10];
step[6] = output[6] + output[9];
step[7] = output[7] + output[8];
step[8] = output[7] - output[8];
step[9] = output[6] - output[9];
step[10] = output[5] - output[10];
step[11] = output[4] - output[11];
step[12] = output[3] - output[12];
step[13] = output[2] - output[13];
step[14] = output[1] - output[14];
step[15] = output[0] - output[15];
step[16] = output[16];
step[17] = output[17];
step[18] = output[18];
step[19] = output[19];
temp = output[20] * -cospi_16_64 + output[27] * cospi_16_64;
step[20] = (tran_low_t)fdct_round_shift(temp);
temp = output[21] * -cospi_16_64 + output[26] * cospi_16_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
temp = output[22] * -cospi_16_64 + output[25] * cospi_16_64;
step[22] = (tran_low_t)fdct_round_shift(temp);
temp = output[23] * -cospi_16_64 + output[24] * cospi_16_64;
step[23] = (tran_low_t)fdct_round_shift(temp);
temp = output[24] * cospi_16_64 + output[23] * cospi_16_64;
step[24] = (tran_low_t)fdct_round_shift(temp);
temp = output[25] * cospi_16_64 + output[22] * cospi_16_64;
step[25] = (tran_low_t)fdct_round_shift(temp);
temp = output[26] * cospi_16_64 + output[21] * cospi_16_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
temp = output[27] * cospi_16_64 + output[20] * cospi_16_64;
step[27] = (tran_low_t)fdct_round_shift(temp);
step[28] = output[28];
step[29] = output[29];
step[30] = output[30];
step[31] = output[31];
range_check(step, 32, 16);
// stage 3
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
output[8] = step[8];
output[9] = step[9];
temp = step[10] * -cospi_16_64 + step[13] * cospi_16_64;
output[10] = (tran_low_t)fdct_round_shift(temp);
temp = step[11] * -cospi_16_64 + step[12] * cospi_16_64;
output[11] = (tran_low_t)fdct_round_shift(temp);
temp = step[12] * cospi_16_64 + step[11] * cospi_16_64;
output[12] = (tran_low_t)fdct_round_shift(temp);
temp = step[13] * cospi_16_64 + step[10] * cospi_16_64;
output[13] = (tran_low_t)fdct_round_shift(temp);
output[14] = step[14];
output[15] = step[15];
output[16] = step[16] + step[23];
output[17] = step[17] + step[22];
output[18] = step[18] + step[21];
output[19] = step[19] + step[20];
output[20] = step[19] - step[20];
output[21] = step[18] - step[21];
output[22] = step[17] - step[22];
output[23] = step[16] - step[23];
output[24] = step[31] - step[24];
output[25] = step[30] - step[25];
output[26] = step[29] - step[26];
output[27] = step[28] - step[27];
output[28] = step[28] + step[27];
output[29] = step[29] + step[26];
output[30] = step[30] + step[25];
output[31] = step[31] + step[24];
range_check(output, 32, 17);
// stage 4
step[0] = output[0] + output[3];
step[1] = output[1] + output[2];
step[2] = output[1] - output[2];
step[3] = output[0] - output[3];
step[4] = output[4];
temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_16_64 + output[5] * cospi_16_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
step[7] = output[7];
step[8] = output[8] + output[11];
step[9] = output[9] + output[10];
step[10] = output[9] - output[10];
step[11] = output[8] - output[11];
step[12] = output[15] - output[12];
step[13] = output[14] - output[13];
step[14] = output[14] + output[13];
step[15] = output[15] + output[12];
step[16] = output[16];
step[17] = output[17];
temp = output[18] * -cospi_8_64 + output[29] * cospi_24_64;
step[18] = (tran_low_t)fdct_round_shift(temp);
temp = output[19] * -cospi_8_64 + output[28] * cospi_24_64;
step[19] = (tran_low_t)fdct_round_shift(temp);
temp = output[20] * -cospi_24_64 + output[27] * -cospi_8_64;
step[20] = (tran_low_t)fdct_round_shift(temp);
temp = output[21] * -cospi_24_64 + output[26] * -cospi_8_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
step[22] = output[22];
step[23] = output[23];
step[24] = output[24];
step[25] = output[25];
temp = output[26] * cospi_24_64 + output[21] * -cospi_8_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
temp = output[27] * cospi_24_64 + output[20] * -cospi_8_64;
step[27] = (tran_low_t)fdct_round_shift(temp);
temp = output[28] * cospi_8_64 + output[19] * cospi_24_64;
step[28] = (tran_low_t)fdct_round_shift(temp);
temp = output[29] * cospi_8_64 + output[18] * cospi_24_64;
step[29] = (tran_low_t)fdct_round_shift(temp);
step[30] = output[30];
step[31] = output[31];
range_check(step, 32, 18);
// stage 5
temp = step[0] * cospi_16_64 + step[1] * cospi_16_64;
output[0] = (tran_low_t)fdct_round_shift(temp);
temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64;
output[1] = (tran_low_t)fdct_round_shift(temp);
temp = step[2] * cospi_24_64 + step[3] * cospi_8_64;
output[2] = (tran_low_t)fdct_round_shift(temp);
temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64;
output[3] = (tran_low_t)fdct_round_shift(temp);
output[4] = step[4] + step[5];
output[5] = step[4] - step[5];
output[6] = step[7] - step[6];
output[7] = step[7] + step[6];
output[8] = step[8];
temp = step[9] * -cospi_8_64 + step[14] * cospi_24_64;
output[9] = (tran_low_t)fdct_round_shift(temp);
temp = step[10] * -cospi_24_64 + step[13] * -cospi_8_64;
output[10] = (tran_low_t)fdct_round_shift(temp);
output[11] = step[11];
output[12] = step[12];
temp = step[13] * cospi_24_64 + step[10] * -cospi_8_64;
output[13] = (tran_low_t)fdct_round_shift(temp);
temp = step[14] * cospi_8_64 + step[9] * cospi_24_64;
output[14] = (tran_low_t)fdct_round_shift(temp);
output[15] = step[15];
output[16] = step[16] + step[19];
output[17] = step[17] + step[18];
output[18] = step[17] - step[18];
output[19] = step[16] - step[19];
output[20] = step[23] - step[20];
output[21] = step[22] - step[21];
output[22] = step[22] + step[21];
output[23] = step[23] + step[20];
output[24] = step[24] + step[27];
output[25] = step[25] + step[26];
output[26] = step[25] - step[26];
output[27] = step[24] - step[27];
output[28] = step[31] - step[28];
output[29] = step[30] - step[29];
output[30] = step[30] + step[29];
output[31] = step[31] + step[28];
range_check(output, 32, 18);
// stage 6
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
temp = output[4] * cospi_28_64 + output[7] * cospi_4_64;
step[4] = (tran_low_t)fdct_round_shift(temp);
temp = output[5] * cospi_12_64 + output[6] * cospi_20_64;
step[5] = (tran_low_t)fdct_round_shift(temp);
temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64;
step[6] = (tran_low_t)fdct_round_shift(temp);
temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64;
step[7] = (tran_low_t)fdct_round_shift(temp);
step[8] = output[8] + output[9];
step[9] = output[8] - output[9];
step[10] = output[11] - output[10];
step[11] = output[11] + output[10];
step[12] = output[12] + output[13];
step[13] = output[12] - output[13];
step[14] = output[15] - output[14];
step[15] = output[15] + output[14];
step[16] = output[16];
temp = output[17] * -cospi_4_64 + output[30] * cospi_28_64;
step[17] = (tran_low_t)fdct_round_shift(temp);
temp = output[18] * -cospi_28_64 + output[29] * -cospi_4_64;
step[18] = (tran_low_t)fdct_round_shift(temp);
step[19] = output[19];
step[20] = output[20];
temp = output[21] * -cospi_20_64 + output[26] * cospi_12_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
temp = output[22] * -cospi_12_64 + output[25] * -cospi_20_64;
step[22] = (tran_low_t)fdct_round_shift(temp);
step[23] = output[23];
step[24] = output[24];
temp = output[25] * cospi_12_64 + output[22] * -cospi_20_64;
step[25] = (tran_low_t)fdct_round_shift(temp);
temp = output[26] * cospi_20_64 + output[21] * cospi_12_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
step[27] = output[27];
step[28] = output[28];
temp = output[29] * cospi_28_64 + output[18] * -cospi_4_64;
step[29] = (tran_low_t)fdct_round_shift(temp);
temp = output[30] * cospi_4_64 + output[17] * cospi_28_64;
step[30] = (tran_low_t)fdct_round_shift(temp);
step[31] = output[31];
range_check(step, 32, 18);
// stage 7
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
output[4] = step[4];
output[5] = step[5];
output[6] = step[6];
output[7] = step[7];
temp = step[8] * cospi_30_64 + step[15] * cospi_2_64;
output[8] = (tran_low_t)fdct_round_shift(temp);
temp = step[9] * cospi_14_64 + step[14] * cospi_18_64;
output[9] = (tran_low_t)fdct_round_shift(temp);
temp = step[10] * cospi_22_64 + step[13] * cospi_10_64;
output[10] = (tran_low_t)fdct_round_shift(temp);
temp = step[11] * cospi_6_64 + step[12] * cospi_26_64;
output[11] = (tran_low_t)fdct_round_shift(temp);
temp = step[12] * cospi_6_64 + step[11] * -cospi_26_64;
output[12] = (tran_low_t)fdct_round_shift(temp);
temp = step[13] * cospi_22_64 + step[10] * -cospi_10_64;
output[13] = (tran_low_t)fdct_round_shift(temp);
temp = step[14] * cospi_14_64 + step[9] * -cospi_18_64;
output[14] = (tran_low_t)fdct_round_shift(temp);
temp = step[15] * cospi_30_64 + step[8] * -cospi_2_64;
output[15] = (tran_low_t)fdct_round_shift(temp);
output[16] = step[16] + step[17];
output[17] = step[16] - step[17];
output[18] = step[19] - step[18];
output[19] = step[19] + step[18];
output[20] = step[20] + step[21];
output[21] = step[20] - step[21];
output[22] = step[23] - step[22];
output[23] = step[23] + step[22];
output[24] = step[24] + step[25];
output[25] = step[24] - step[25];
output[26] = step[27] - step[26];
output[27] = step[27] + step[26];
output[28] = step[28] + step[29];
output[29] = step[28] - step[29];
output[30] = step[31] - step[30];
output[31] = step[31] + step[30];
range_check(output, 32, 18);
// stage 8
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
step[8] = output[8];
step[9] = output[9];
step[10] = output[10];
step[11] = output[11];
step[12] = output[12];
step[13] = output[13];
step[14] = output[14];
step[15] = output[15];
temp = output[16] * cospi_31_64 + output[31] * cospi_1_64;
step[16] = (tran_low_t)fdct_round_shift(temp);
temp = output[17] * cospi_15_64 + output[30] * cospi_17_64;
step[17] = (tran_low_t)fdct_round_shift(temp);
temp = output[18] * cospi_23_64 + output[29] * cospi_9_64;
step[18] = (tran_low_t)fdct_round_shift(temp);
temp = output[19] * cospi_7_64 + output[28] * cospi_25_64;
step[19] = (tran_low_t)fdct_round_shift(temp);
temp = output[20] * cospi_27_64 + output[27] * cospi_5_64;
step[20] = (tran_low_t)fdct_round_shift(temp);
temp = output[21] * cospi_11_64 + output[26] * cospi_21_64;
step[21] = (tran_low_t)fdct_round_shift(temp);
temp = output[22] * cospi_19_64 + output[25] * cospi_13_64;
step[22] = (tran_low_t)fdct_round_shift(temp);
temp = output[23] * cospi_3_64 + output[24] * cospi_29_64;
step[23] = (tran_low_t)fdct_round_shift(temp);
temp = output[24] * cospi_3_64 + output[23] * -cospi_29_64;
step[24] = (tran_low_t)fdct_round_shift(temp);
temp = output[25] * cospi_19_64 + output[22] * -cospi_13_64;
step[25] = (tran_low_t)fdct_round_shift(temp);
temp = output[26] * cospi_11_64 + output[21] * -cospi_21_64;
step[26] = (tran_low_t)fdct_round_shift(temp);
temp = output[27] * cospi_27_64 + output[20] * -cospi_5_64;
step[27] = (tran_low_t)fdct_round_shift(temp);
temp = output[28] * cospi_7_64 + output[19] * -cospi_25_64;
step[28] = (tran_low_t)fdct_round_shift(temp);
temp = output[29] * cospi_23_64 + output[18] * -cospi_9_64;
step[29] = (tran_low_t)fdct_round_shift(temp);
temp = output[30] * cospi_15_64 + output[17] * -cospi_17_64;
step[30] = (tran_low_t)fdct_round_shift(temp);
temp = output[31] * cospi_31_64 + output[16] * -cospi_1_64;
step[31] = (tran_low_t)fdct_round_shift(temp);
range_check(step, 32, 18);
// stage 9
output[0] = step[0];
output[1] = step[16];
output[2] = step[8];
output[3] = step[24];
output[4] = step[4];
output[5] = step[20];
output[6] = step[12];
output[7] = step[28];
output[8] = step[2];
output[9] = step[18];
output[10] = step[10];
output[11] = step[26];
output[12] = step[6];
output[13] = step[22];
output[14] = step[14];
output[15] = step[30];
output[16] = step[1];
output[17] = step[17];
output[18] = step[9];
output[19] = step[25];
output[20] = step[5];
output[21] = step[21];
output[22] = step[13];
output[23] = step[29];
output[24] = step[3];
output[25] = step[19];
output[26] = step[11];
output[27] = step[27];
output[28] = step[7];
output[29] = step[23];
output[30] = step[15];
output[31] = step[31];
range_check(output, 32, 18);
}
#ifndef AV1_DCT_GTEST
static void fadst4(const tran_low_t *input, tran_low_t *output) {
tran_high_t x0, x1, x2, x3;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
x0 = input[0];
x1 = input[1];
x2 = input[2];
x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_4_9 * x0;
s2 = sinpi_2_9 * x1;
s3 = sinpi_1_9 * x1;
s4 = sinpi_3_9 * x2;
s5 = sinpi_4_9 * x3;
s6 = sinpi_2_9 * x3;
s7 = x0 + x1 - x3;
x0 = s0 + s2 + s5;
x1 = sinpi_3_9 * s7;
x2 = s1 - s3 + s6;
x3 = s4;
s0 = x0 + x3;
s1 = x1;
s2 = x2 - x3;
s3 = x2 - x0 + x3;
// 1-D transform scaling factor is sqrt(2).
output[0] = (tran_low_t)fdct_round_shift(s0);
output[1] = (tran_low_t)fdct_round_shift(s1);
output[2] = (tran_low_t)fdct_round_shift(s2);
output[3] = (tran_low_t)fdct_round_shift(s3);
}
static void fadst8(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_high_t x0 = input[7];
tran_high_t x1 = input[0];
tran_high_t x2 = input[5];
tran_high_t x3 = input[2];
tran_high_t x4 = input[3];
tran_high_t x5 = input[4];
tran_high_t x6 = input[1];
tran_high_t x7 = input[6];
// stage 1
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = fdct_round_shift(s0 - s4);
x5 = fdct_round_shift(s1 - s5);
x6 = fdct_round_shift(s2 - s6);
x7 = fdct_round_shift(s3 - s7);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
s6 = -cospi_24_64 * x6 + cospi_8_64 * x7;
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
x0 = fdct_round_shift(s0 + s2);
x1 = fdct_round_shift(s1 + s3);
x2 = fdct_round_shift(s0 - s2);
x3 = fdct_round_shift(s1 - s3);
x4 = fdct_round_shift(s4 + s6);
x5 = fdct_round_shift(s5 + s7);
x6 = fdct_round_shift(s4 - s6);
x7 = fdct_round_shift(s5 - s7);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
x2 = fdct_round_shift(s2);
x3 = fdct_round_shift(s3);
x6 = fdct_round_shift(s6);
x7 = fdct_round_shift(s7);
output[0] = (tran_low_t)x0;
output[1] = (tran_low_t)-x4;
output[2] = (tran_low_t)x6;
output[3] = (tran_low_t)-x2;
output[4] = (tran_low_t)x3;
output[5] = (tran_low_t)-x7;
output[6] = (tran_low_t)x5;
output[7] = (tran_low_t)-x1;
}
static void fadst16(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
tran_high_t s9, s10, s11, s12, s13, s14, s15;
tran_high_t x0 = input[15];
tran_high_t x1 = input[0];
tran_high_t x2 = input[13];
tran_high_t x3 = input[2];
tran_high_t x4 = input[11];
tran_high_t x5 = input[4];
tran_high_t x6 = input[9];
tran_high_t x7 = input[6];
tran_high_t x8 = input[7];
tran_high_t x9 = input[8];
tran_high_t x10 = input[5];
tran_high_t x11 = input[10];
tran_high_t x12 = input[3];
tran_high_t x13 = input[12];
tran_high_t x14 = input[1];
tran_high_t x15 = input[14];
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = s0 + s8;
x1 = s1 + s9;
x2 = s2 + s10;
x3 = s3 + s11;
x4 = s4 + s12;
x5 = s5 + s13;
x6 = s6 + s14;
x7 = s7 + s15;
x8 = fdct_round_shift(s0 - s8);
x9 = fdct_round_shift(s1 - s9);
x10 = fdct_round_shift(s2 - s10);
x11 = fdct_round_shift(s3 - s11);
x12 = fdct_round_shift(s4 - s12);
x13 = fdct_round_shift(s5 - s13);
x14 = fdct_round_shift(s6 - s14);
x15 = fdct_round_shift(s7 - s15);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = -x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = -x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = fdct_round_shift(s0 - s4);
x5 = fdct_round_shift(s1 - s5);
x6 = fdct_round_shift(s2 - s6);
x7 = fdct_round_shift(s3 - s7);
x8 = s8 + s12;
x9 = s9 + s13;
x10 = s10 + s14;
x11 = s11 + s15;
x12 = fdct_round_shift(s8 - s12);
x13 = fdct_round_shift(s9 - s13);
x14 = fdct_round_shift(s10 - s14);
x15 = fdct_round_shift(s11 - s15);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = -x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = -x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = fdct_round_shift(s0 + s2);
x1 = fdct_round_shift(s1 + s3);
x2 = fdct_round_shift(s0 - s2);
x3 = fdct_round_shift(s1 - s3);
x4 = fdct_round_shift(s4 + s6);
x5 = fdct_round_shift(s5 + s7);
x6 = fdct_round_shift(s4 - s6);
x7 = fdct_round_shift(s5 - s7);
x8 = fdct_round_shift(s8 + s10);
x9 = fdct_round_shift(s9 + s11);
x10 = fdct_round_shift(s8 - s10);
x11 = fdct_round_shift(s9 - s11);
x12 = fdct_round_shift(s12 + s14);
x13 = fdct_round_shift(s13 + s15);
x14 = fdct_round_shift(s12 - s14);
x15 = fdct_round_shift(s13 - s15);
// stage 4
s2 = (-cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (-x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (-x10 + x11);
s14 = (-cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = fdct_round_shift(s2);
x3 = fdct_round_shift(s3);
x6 = fdct_round_shift(s6);
x7 = fdct_round_shift(s7);
x10 = fdct_round_shift(s10);
x11 = fdct_round_shift(s11);
x14 = fdct_round_shift(s14);
x15 = fdct_round_shift(s15);
output[0] = (tran_low_t)x0;
output[1] = (tran_low_t)-x8;
output[2] = (tran_low_t)x12;
output[3] = (tran_low_t)-x4;
output[4] = (tran_low_t)x6;
output[5] = (tran_low_t)x14;
output[6] = (tran_low_t)x10;
output[7] = (tran_low_t)x2;
output[8] = (tran_low_t)x3;
output[9] = (tran_low_t)x11;
output[10] = (tran_low_t)x15;
output[11] = (tran_low_t)x7;
output[12] = (tran_low_t)x5;
output[13] = (tran_low_t)-x13;
output[14] = (tran_low_t)x9;
output[15] = (tran_low_t)-x1;
}
// For use in lieu of ADST
static void fhalfright32(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[16];
for (i = 0; i < 16; ++i) {
output[16 + i] = input[i] * 4;
}
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 16] * Sqrt2);
}
fdct16(inputhalf, output);
// Note overall scaling factor is 4 times orthogonal
}
#if CONFIG_LGT
static void flgt4(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
if (!(input[0] | input[1] | input[2] | input[3])) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
// evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,4
tran_high_t s[4] = { 0 };
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j) s[j] += lgtmtx[j * 4 + i] * input[i];
for (int i = 0; i < 4; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]);
}
static void flgt8(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
// evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,8
tran_high_t s[8] = { 0 };
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j) s[j] += lgtmtx[j * 8 + i] * input[i];
for (int i = 0; i < 8; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]);
}
// The get_fwd_lgt functions return 1 if LGT is chosen to apply, and 0 otherwise
int get_fwd_lgt4(transform_1d tx_orig, FWD_TXFM_PARAM *fwd_txfm_param,
const tran_high_t *lgtmtx[], int ntx) {
// inter/intra split
if (tx_orig == &fadst4) {
for (int i = 0; i < ntx; ++i)
lgtmtx[i] = fwd_txfm_param->is_inter ? &lgt4_170[0][0] : &lgt4_140[0][0];
return 1;
}
return 0;
}
int get_fwd_lgt8(transform_1d tx_orig, FWD_TXFM_PARAM *fwd_txfm_param,
const tran_high_t *lgtmtx[], int ntx) {
// inter/intra split
if (tx_orig == &fadst8) {
for (int i = 0; i < ntx; ++i)
lgtmtx[i] = fwd_txfm_param->is_inter ? &lgt8_170[0][0] : &lgt8_150[0][0];
return 1;
}
return 0;
}
#endif // CONFIG_LGT
#if CONFIG_EXT_TX
// TODO(sarahparker) these functions will be removed once the highbitdepth
// codepath works properly for rectangular transforms. They have almost
// identical versions in av1_fwd_txfm1d.c, but those are currently only
// being used for square transforms.
static void fidtx4(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 4; ++i)
output[i] = (tran_low_t)fdct_round_shift(input[i] * Sqrt2);
}
static void fidtx8(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 8; ++i) output[i] = input[i] * 2;
}
static void fidtx16(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 16; ++i)
output[i] = (tran_low_t)fdct_round_shift(input[i] * 2 * Sqrt2);
}
static void fidtx32(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 32; ++i) output[i] = input[i] * 4;
}
static void copy_block(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
int i;
for (i = 0; i < l; ++i) {
memcpy(dest + dest_stride * i, src + src_stride * i, w * sizeof(int16_t));
}
}
static void fliplr(int16_t *dest, int stride, int l, int w) {
int i, j;
for (i = 0; i < l; ++i) {
for (j = 0; j < w / 2; ++j) {
const int16_t tmp = dest[i * stride + j];
dest[i * stride + j] = dest[i * stride + w - 1 - j];
dest[i * stride + w - 1 - j] = tmp;
}
}
}
static void flipud(int16_t *dest, int stride, int l, int w) {
int i, j;
for (j = 0; j < w; ++j) {
for (i = 0; i < l / 2; ++i) {
const int16_t tmp = dest[i * stride + j];
dest[i * stride + j] = dest[(l - 1 - i) * stride + j];
dest[(l - 1 - i) * stride + j] = tmp;
}
}
}
static void fliplrud(int16_t *dest, int stride, int l, int w) {
int i, j;
for (i = 0; i < l / 2; ++i) {
for (j = 0; j < w; ++j) {
const int16_t tmp = dest[i * stride + j];
dest[i * stride + j] = dest[(l - 1 - i) * stride + w - 1 - j];
dest[(l - 1 - i) * stride + w - 1 - j] = tmp;
}
}
}
static void copy_fliplr(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
copy_block(src, src_stride, l, w, dest, dest_stride);
fliplr(dest, dest_stride, l, w);
}
static void copy_flipud(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
copy_block(src, src_stride, l, w, dest, dest_stride);
flipud(dest, dest_stride, l, w);
}
static void copy_fliplrud(const int16_t *src, int src_stride, int l, int w,
int16_t *dest, int dest_stride) {
copy_block(src, src_stride, l, w, dest, dest_stride);
fliplrud(dest, dest_stride, l, w);
}
static void maybe_flip_input(const int16_t **src, int *src_stride, int l, int w,
int16_t *buff, int tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST: break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
copy_flipud(*src, *src_stride, l, w, buff, w);
*src = buff;
*src_stride = w;
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
copy_fliplr(*src, *src_stride, l, w, buff, w);
*src = buff;
*src_stride = w;
break;
case FLIPADST_FLIPADST:
copy_fliplrud(*src, *src_stride, l, w, buff, w);
*src = buff;
*src_stride = w;
break;
default: assert(0); break;
}
}
#endif // CONFIG_EXT_TX
void av1_fht4x4_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
if (tx_type == DCT_DCT) {
aom_fdct4x4_c(input, output, stride);
} else {
static const transform_2d FHT[] = {
{ fdct4, fdct4 }, // DCT_DCT
{ fadst4, fdct4 }, // ADST_DCT
{ fdct4, fadst4 }, // DCT_ADST
{ fadst4, fadst4 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst4, fdct4 }, // FLIPADST_DCT
{ fdct4, fadst4 }, // DCT_FLIPADST
{ fadst4, fadst4 }, // FLIPADST_FLIPADST
{ fadst4, fadst4 }, // ADST_FLIPADST
{ fadst4, fadst4 }, // FLIPADST_ADST
{ fidtx4, fidtx4 }, // IDTX
{ fdct4, fidtx4 }, // V_DCT
{ fidtx4, fdct4 }, // H_DCT
{ fadst4, fidtx4 }, // V_ADST
{ fidtx4, fadst4 }, // H_ADST
{ fadst4, fidtx4 }, // V_FLIPADST
{ fidtx4, fadst4 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[4 * 4];
int i, j;
tran_low_t temp_in[4], temp_out[4];
#if CONFIG_EXT_TX
int16_t flipped_input[4 * 4];
maybe_flip_input(&input, &stride, 4, 4, flipped_input, tx_type);
#endif
#if CONFIG_LGT
// Choose LGT adaptive to the prediction. We may apply different LGTs for
// different rows/columns, indicated by the pointers to 2D arrays
const tran_high_t *lgtmtx_col[4];
const tran_high_t *lgtmtx_row[4];
int use_lgt_col = get_fwd_lgt4(ht.cols, fwd_txfm_param, lgtmtx_col, 4);
int use_lgt_row = get_fwd_lgt4(ht.rows, fwd_txfm_param, lgtmtx_row, 4);
#endif
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16;
if (i == 0 && temp_in[0]) temp_in[0] += 1;
#if CONFIG_LGT
if (use_lgt_col)
flgt4(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4];
#if CONFIG_LGT
if (use_lgt_row)
flgt4(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2;
}
}
}
void av1_fht4x8_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct8, fdct4 }, // DCT_DCT
{ fadst8, fdct4 }, // ADST_DCT
{ fdct8, fadst4 }, // DCT_ADST
{ fadst8, fadst4 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst8, fdct4 }, // FLIPADST_DCT
{ fdct8, fadst4 }, // DCT_FLIPADST
{ fadst8, fadst4 }, // FLIPADST_FLIPADST
{ fadst8, fadst4 }, // ADST_FLIPADST
{ fadst8, fadst4 }, // FLIPADST_ADST
{ fidtx8, fidtx4 }, // IDTX
{ fdct8, fidtx4 }, // V_DCT
{ fidtx8, fdct4 }, // H_DCT
{ fadst8, fidtx4 }, // V_ADST
{ fidtx8, fadst4 }, // H_ADST
{ fadst8, fidtx4 }, // V_FLIPADST
{ fidtx8, fadst4 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n2 = 8;
tran_low_t out[8 * 4];
tran_low_t temp_in[8], temp_out[8];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[8 * 4];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[4];
const tran_high_t *lgtmtx_row[8];
int use_lgt_col = get_fwd_lgt8(ht.cols, fwd_txfm_param, lgtmtx_col, 4);
int use_lgt_row = get_fwd_lgt4(ht.rows, fwd_txfm_param, lgtmtx_row, 8);
#endif
// Rows
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2);
#if CONFIG_LGT
if (use_lgt_row)
flgt4(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j];
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n2; ++j)
output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht8x4_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct4, fdct8 }, // DCT_DCT
{ fadst4, fdct8 }, // ADST_DCT
{ fdct4, fadst8 }, // DCT_ADST
{ fadst4, fadst8 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst4, fdct8 }, // FLIPADST_DCT
{ fdct4, fadst8 }, // DCT_FLIPADST
{ fadst4, fadst8 }, // FLIPADST_FLIPADST
{ fadst4, fadst8 }, // ADST_FLIPADST
{ fadst4, fadst8 }, // FLIPADST_ADST
{ fidtx4, fidtx8 }, // IDTX
{ fdct4, fidtx8 }, // V_DCT
{ fidtx4, fdct8 }, // H_DCT
{ fadst4, fidtx8 }, // V_ADST
{ fidtx4, fadst8 }, // H_ADST
{ fadst4, fidtx8 }, // V_FLIPADST
{ fidtx4, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n2 = 8;
tran_low_t out[8 * 4];
tran_low_t temp_in[8], temp_out[8];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[8 * 4];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[8];
const tran_high_t *lgtmtx_row[4];
int use_lgt_col = get_fwd_lgt4(ht.cols, fwd_txfm_param, lgtmtx_col, 8);
int use_lgt_row = get_fwd_lgt8(ht.rows, fwd_txfm_param, lgtmtx_row, 4);
#endif
// Columns
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2);
#if CONFIG_LGT
if (use_lgt_col)
flgt4(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j];
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n2; ++j)
output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht4x16_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct16, fdct4 }, // DCT_DCT
{ fadst16, fdct4 }, // ADST_DCT
{ fdct16, fadst4 }, // DCT_ADST
{ fadst16, fadst4 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst16, fdct4 }, // FLIPADST_DCT
{ fdct16, fadst4 }, // DCT_FLIPADST
{ fadst16, fadst4 }, // FLIPADST_FLIPADST
{ fadst16, fadst4 }, // ADST_FLIPADST
{ fadst16, fadst4 }, // FLIPADST_ADST
{ fidtx16, fidtx4 }, // IDTX
{ fdct16, fidtx4 }, // V_DCT
{ fidtx16, fdct4 }, // H_DCT
{ fadst16, fidtx4 }, // V_ADST
{ fidtx16, fadst4 }, // H_ADST
{ fadst16, fidtx4 }, // V_FLIPADST
{ fidtx16, fadst4 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n4 = 16;
tran_low_t out[16 * 4];
tran_low_t temp_in[16], temp_out[16];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[16 * 4];
maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[16];
int use_lgt_row = get_fwd_lgt4(ht.rows, fwd_txfm_param, lgtmtx_row, 16);
#endif
// Rows
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4;
#if CONFIG_LGT
if (use_lgt_row)
flgt4(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.cols(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht16x4_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct4, fdct16 }, // DCT_DCT
{ fadst4, fdct16 }, // ADST_DCT
{ fdct4, fadst16 }, // DCT_ADST
{ fadst4, fadst16 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst4, fdct16 }, // FLIPADST_DCT
{ fdct4, fadst16 }, // DCT_FLIPADST
{ fadst4, fadst16 }, // FLIPADST_FLIPADST
{ fadst4, fadst16 }, // ADST_FLIPADST
{ fadst4, fadst16 }, // FLIPADST_ADST
{ fidtx4, fidtx16 }, // IDTX
{ fdct4, fidtx16 }, // V_DCT
{ fidtx4, fdct16 }, // H_DCT
{ fadst4, fidtx16 }, // V_ADST
{ fidtx4, fadst16 }, // H_ADST
{ fadst4, fidtx16 }, // V_FLIPADST
{ fidtx4, fadst16 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 4;
const int n4 = 16;
tran_low_t out[16 * 4];
tran_low_t temp_in[16], temp_out[16];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[16 * 4];
maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[16];
int use_lgt_col = get_fwd_lgt4(ht.cols, fwd_txfm_param, lgtmtx_col, 16);
#endif
// Columns
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4;
#if CONFIG_LGT
if (use_lgt_col)
flgt4(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.rows(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[j + i * n4] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht8x16_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct16, fdct8 }, // DCT_DCT
{ fadst16, fdct8 }, // ADST_DCT
{ fdct16, fadst8 }, // DCT_ADST
{ fadst16, fadst8 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst16, fdct8 }, // FLIPADST_DCT
{ fdct16, fadst8 }, // DCT_FLIPADST
{ fadst16, fadst8 }, // FLIPADST_FLIPADST
{ fadst16, fadst8 }, // ADST_FLIPADST
{ fadst16, fadst8 }, // FLIPADST_ADST
{ fidtx16, fidtx8 }, // IDTX
{ fdct16, fidtx8 }, // V_DCT
{ fidtx16, fdct8 }, // H_DCT
{ fadst16, fidtx8 }, // V_ADST
{ fidtx16, fadst8 }, // H_ADST
{ fadst16, fidtx8 }, // V_FLIPADST
{ fidtx16, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n2 = 16;
tran_low_t out[16 * 8];
tran_low_t temp_in[16], temp_out[16];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[16 * 8];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[16];
int use_lgt_row = get_fwd_lgt8(ht.rows, fwd_txfm_param, lgtmtx_row, 16);
#endif
// Rows
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2);
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j)
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.cols(temp_in, temp_out);
for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j];
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht16x8_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct8, fdct16 }, // DCT_DCT
{ fadst8, fdct16 }, // ADST_DCT
{ fdct8, fadst16 }, // DCT_ADST
{ fadst8, fadst16 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst8, fdct16 }, // FLIPADST_DCT
{ fdct8, fadst16 }, // DCT_FLIPADST
{ fadst8, fadst16 }, // FLIPADST_FLIPADST
{ fadst8, fadst16 }, // ADST_FLIPADST
{ fadst8, fadst16 }, // FLIPADST_ADST
{ fidtx8, fidtx16 }, // IDTX
{ fdct8, fidtx16 }, // V_DCT
{ fidtx8, fdct16 }, // H_DCT
{ fadst8, fidtx16 }, // V_ADST
{ fidtx8, fadst16 }, // H_ADST
{ fadst8, fidtx16 }, // V_FLIPADST
{ fidtx8, fadst16 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n2 = 16;
tran_low_t out[16 * 8];
tran_low_t temp_in[16], temp_out[16];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[16 * 8];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[16];
int use_lgt_col = get_fwd_lgt8(ht.cols, fwd_txfm_param, lgtmtx_col, 16);
#endif
// Columns
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2);
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j)
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.rows(temp_in, temp_out);
for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j];
}
// Note: overall scale factor of transform is 8 times unitary
}
void av1_fht8x32_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct32, fdct8 }, // DCT_DCT
{ fhalfright32, fdct8 }, // ADST_DCT
{ fdct32, fadst8 }, // DCT_ADST
{ fhalfright32, fadst8 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fhalfright32, fdct8 }, // FLIPADST_DCT
{ fdct32, fadst8 }, // DCT_FLIPADST
{ fhalfright32, fadst8 }, // FLIPADST_FLIPADST
{ fhalfright32, fadst8 }, // ADST_FLIPADST
{ fhalfright32, fadst8 }, // FLIPADST_ADST
{ fidtx32, fidtx8 }, // IDTX
{ fdct32, fidtx8 }, // V_DCT
{ fidtx32, fdct8 }, // H_DCT
{ fhalfright32, fidtx8 }, // V_ADST
{ fidtx32, fadst8 }, // H_ADST
{ fhalfright32, fidtx8 }, // V_FLIPADST
{ fidtx32, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n4 = 32;
tran_low_t out[32 * 8];
tran_low_t temp_in[32], temp_out[32];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[32 * 8];
maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[32];
int use_lgt_row = get_fwd_lgt8(ht.rows, fwd_txfm_param, lgtmtx_row, 32);
#endif
// Rows
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4;
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.cols(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[i + j * n] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Note: overall scale factor of transform is 4 times unitary
}
void av1_fht32x8_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct8, fdct32 }, // DCT_DCT
{ fadst8, fdct32 }, // ADST_DCT
{ fdct8, fhalfright32 }, // DCT_ADST
{ fadst8, fhalfright32 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst8, fdct32 }, // FLIPADST_DCT
{ fdct8, fhalfright32 }, // DCT_FLIPADST
{ fadst8, fhalfright32 }, // FLIPADST_FLIPADST
{ fadst8, fhalfright32 }, // ADST_FLIPADST
{ fadst8, fhalfright32 }, // FLIPADST_ADST
{ fidtx8, fidtx32 }, // IDTX
{ fdct8, fidtx32 }, // V_DCT
{ fidtx8, fdct32 }, // H_DCT
{ fadst8, fidtx32 }, // V_ADST
{ fidtx8, fhalfright32 }, // H_ADST
{ fadst8, fidtx32 }, // V_FLIPADST
{ fidtx8, fhalfright32 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 8;
const int n4 = 32;
tran_low_t out[32 * 8];
tran_low_t temp_in[32], temp_out[32];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[32 * 8];
maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[32];
int use_lgt_col = get_fwd_lgt8(ht.cols, fwd_txfm_param, lgtmtx_col, 32);
#endif
// Columns
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4;
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j];
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4];
ht.rows(temp_in, temp_out);
for (j = 0; j < n4; ++j)
output[j + i * n4] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2);
}
// Note: overall scale factor of transform is 4 times unitary
}
void av1_fht16x32_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct32, fdct16 }, // DCT_DCT
{ fhalfright32, fdct16 }, // ADST_DCT
{ fdct32, fadst16 }, // DCT_ADST
{ fhalfright32, fadst16 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fhalfright32, fdct16 }, // FLIPADST_DCT
{ fdct32, fadst16 }, // DCT_FLIPADST
{ fhalfright32, fadst16 }, // FLIPADST_FLIPADST
{ fhalfright32, fadst16 }, // ADST_FLIPADST
{ fhalfright32, fadst16 }, // FLIPADST_ADST
{ fidtx32, fidtx16 }, // IDTX
{ fdct32, fidtx16 }, // V_DCT
{ fidtx32, fdct16 }, // H_DCT
{ fhalfright32, fidtx16 }, // V_ADST
{ fidtx32, fadst16 }, // H_ADST
{ fhalfright32, fidtx16 }, // V_FLIPADST
{ fidtx32, fadst16 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 16;
const int n2 = 32;
tran_low_t out[32 * 16];
tran_low_t temp_in[32], temp_out[32];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[32 * 16];
maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type);
#endif
// Rows
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2);
ht.rows(temp_in, temp_out);
for (j = 0; j < n; ++j)
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4);
}
// Columns
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.cols(temp_in, temp_out);
for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j];
}
// Note: overall scale factor of transform is 4 times unitary
}
void av1_fht32x16_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
static const transform_2d FHT[] = {
{ fdct16, fdct32 }, // DCT_DCT
{ fadst16, fdct32 }, // ADST_DCT
{ fdct16, fhalfright32 }, // DCT_ADST
{ fadst16, fhalfright32 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst16, fdct32 }, // FLIPADST_DCT
{ fdct16, fhalfright32 }, // DCT_FLIPADST
{ fadst16, fhalfright32 }, // FLIPADST_FLIPADST
{ fadst16, fhalfright32 }, // ADST_FLIPADST
{ fadst16, fhalfright32 }, // FLIPADST_ADST
{ fidtx16, fidtx32 }, // IDTX
{ fdct16, fidtx32 }, // V_DCT
{ fidtx16, fdct32 }, // H_DCT
{ fadst16, fidtx32 }, // V_ADST
{ fidtx16, fhalfright32 }, // H_ADST
{ fadst16, fidtx32 }, // V_FLIPADST
{ fidtx16, fhalfright32 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
const int n = 16;
const int n2 = 32;
tran_low_t out[32 * 16];
tran_low_t temp_in[32], temp_out[32];
int i, j;
#if CONFIG_EXT_TX
int16_t flipped_input[32 * 16];
maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type);
#endif
// Columns
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j)
temp_in[j] =
(tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2);
ht.cols(temp_in, temp_out);
for (j = 0; j < n; ++j)
out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4);
}
// Rows
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2];
ht.rows(temp_in, temp_out);
for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j];
}
// Note: overall scale factor of transform is 4 times unitary
}
void av1_fdct8x8_quant_c(const int16_t *input, int stride,
tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const int16_t *iscan
#if CONFIG_AOM_QM
,
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr
#endif
) {
int eob = -1;
int i, j;
tran_low_t intermediate[64];
// Transform columns
{
tran_low_t *output = intermediate;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
for (i = 0; i < 8; i++) {
// stage 1
s0 = (input[0 * stride] + input[7 * stride]) * 4;
s1 = (input[1 * stride] + input[6 * stride]) * 4;
s2 = (input[2 * stride] + input[5 * stride]) * 4;
s3 = (input[3 * stride] + input[4 * stride]) * 4;
s4 = (input[3 * stride] - input[4 * stride]) * 4;
s5 = (input[2 * stride] - input[5 * stride]) * 4;
s6 = (input[1 * stride] - input[6 * stride]) * 4;
s7 = (input[0 * stride] - input[7 * stride]) * 4;
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
// stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
input++;
output++;
}
}
// Rows
for (i = 0; i < 8; ++i) {
fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]);
for (j = 0; j < 8; ++j) coeff_ptr[j + i * 8] /= 2;
}
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
#if CONFIG_AOM_QM
const qm_val_t wt = qm_ptr[rc];
const qm_val_t iwt = iqm_ptr[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int64_t tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
int tmp32;
#if CONFIG_AOM_QM
tmp32 = (int)((tmp * quant_ptr[rc != 0] * wt) >> (16 + AOM_QM_BITS));
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant;
#else
tmp32 = (int)((tmp * quant_ptr[rc != 0]) >> 16);
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
#endif
if (tmp32) eob = i;
}
}
*eob_ptr = eob + 1;
}
void av1_fht8x8_c(const int16_t *input, tran_low_t *output, int stride,
FWD_TXFM_PARAM *fwd_txfm_param) {
int tx_type = fwd_txfm_param->tx_type;
if (tx_type == DCT_DCT) {
aom_fdct8x8_c(input, output, stride);
} else {
static const transform_2d FHT[] = {
{ fdct8, fdct8 }, // DCT_DCT
{ fadst8, fdct8 }, // ADST_DCT
{ fdct8, fadst8 }, // DCT_ADST
{ fadst8, fadst8 }, // ADST_ADST
#if CONFIG_EXT_TX
{ fadst8, fdct8 }, // FLIPADST_DCT
{ fdct8, fadst8 }, // DCT_FLIPADST
{ fadst8, fadst8 }, // FLIPADST_FLIPADST
{ fadst8, fadst8 }, // ADST_FLIPADST
{ fadst8, fadst8 }, // FLIPADST_ADST
{ fidtx8, fidtx8 }, // IDTX
{ fdct8, fidtx8 }, // V_DCT
{ fidtx8, fdct8 }, // H_DCT
{ fadst8, fidtx8 }, // V_ADST
{ fidtx8, fadst8 }, // H_ADST
{ fadst8, fidtx8 }, // V_FLIPADST
{ fidtx8, fadst8 }, // H_FLIPADST
#endif
};
const transform_2d ht = FHT[tx_type];
tran_low_t out[64];
int i, j;
tran_low_t temp_in[8], temp_out[8];
#if CONFIG_EXT_TX
int16_t flipped_input[8 * 8];
maybe_flip_input(&input, &stride, 8, 8, flipped_input, tx_type);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[8];
const tran_high_t *lgtmtx_row[8];
int use_lgt_col = get_fwd_lgt8(ht.cols, fwd_txfm_param, lgtmtx_col, 8);
int use_lgt_row = get_fwd_lgt8(ht.rows, fwd_txfm_param, lgtmtx_row, 8);
#endif
// Columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4;
#if CONFIG_LGT
if (use_lgt_col)
flgt8(temp_in, temp_out, lgtmtx_col[i]);
else
#endif
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j];
}
// Rows
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8];
#if CONFIG_LGT
if (use_lgt_row)
flgt8(temp_in, temp_out, lgtmtx_row[i]);
else
#endif
ht.rows(temp_in, temp_out);
for (j = 0; j < 8; ++j)
output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
}
}
}
/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
pixel. */
void av1_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) {
int i;
tran_high_t a1, b1, c1, d1, e1;
const int16_t *ip_pass0 = input;
const tran_low_t *ip = NULL;
tran_low_t *op = output;
for (i = 0; i < 4; i++) {
a1 = ip_pass0[0 * stride];
b1 = ip_pass0[1 * stride];
c1 = ip_pass0[2 * stride];
d1 = ip_pass0[3 * stride];