blob: 34d45e08b337010a17a9ef71be5eb90244b6f0f3 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/blockd.h"
#include "av1/common/scan.h"
#include "aom/aom_integer.h"
#include "aom_dsp/inv_txfm.h"
using libaom_test::ACMRandom;
namespace {
const double kInvSqrt2 = 0.707106781186547524400844362104;
void reference_idct_1d(const double *in, double *out, int size) {
for (int n = 0; n < size; ++n) {
out[n] = 0;
for (int k = 0; k < size; ++k) {
if (k == 0)
out[n] += kInvSqrt2 * in[k] * cos(PI * (2 * n + 1) * k / (2 * size));
else
out[n] += in[k] * cos(PI * (2 * n + 1) * k / (2 * size));
}
}
}
typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out);
class TransTestBase {
public:
virtual ~TransTestBase() {}
protected:
void RunInvAccuracyCheck() {
tran_low_t input[64];
tran_low_t output[64];
double ref_input[64];
double ref_output[64];
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
for (int ti = 0; ti < count_test_block; ++ti) {
for (int ni = 0; ni < txfm_size_; ++ni) {
input[ni] = rnd.Rand8() - rnd.Rand8();
ref_input[ni] = static_cast<double>(input[ni]);
}
inv_txfm_(input, output);
reference_idct_1d(ref_input, ref_output, txfm_size_);
for (int ni = 0; ni < txfm_size_; ++ni) {
EXPECT_LE(
abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))),
max_error_);
}
}
}
double max_error_;
int txfm_size_;
IdctFunc inv_txfm_;
};
typedef std::tr1::tuple<IdctFunc, int, int> IdctParam;
class AV1InvTxfm : public TransTestBase,
public ::testing::TestWithParam<IdctParam> {
public:
virtual void SetUp() {
inv_txfm_ = GET_PARAM(0);
txfm_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
}
virtual void TearDown() {}
};
TEST_P(AV1InvTxfm, RunInvAccuracyCheck) { RunInvAccuracyCheck(); }
INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm,
::testing::Values(IdctParam(&aom_idct4_c, 4, 1),
IdctParam(&aom_idct8_c, 8, 2),
IdctParam(&aom_idct16_c, 16, 4),
IdctParam(&aom_idct32_c, 32, 6)));
#if CONFIG_AV1_ENCODER
typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int>
PartialInvTxfmParam;
#if !CONFIG_ADAPT_SCAN
const int kMaxNumCoeffs = 1024;
#endif
class AV1PartialIDctTest
: public ::testing::TestWithParam<PartialInvTxfmParam> {
public:
virtual ~AV1PartialIDctTest() {}
virtual void SetUp() {
ftxfm_ = GET_PARAM(0);
full_itxfm_ = GET_PARAM(1);
partial_itxfm_ = GET_PARAM(2);
tx_size_ = GET_PARAM(3);
last_nonzero_ = GET_PARAM(4);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
int last_nonzero_;
TX_SIZE tx_size_;
FwdTxfmFunc ftxfm_;
InvTxfmFunc full_itxfm_;
InvTxfmFunc partial_itxfm_;
};
#if !CONFIG_ADAPT_SCAN
static MB_MODE_INFO get_mbmi() {
MB_MODE_INFO mbmi;
mbmi.ref_frame[0] = LAST_FRAME;
assert(is_inter_block(&mbmi));
return mbmi;
}
TEST_P(AV1PartialIDctTest, RunQuantCheck) {
int size;
switch (tx_size_) {
case TX_4X4: size = 4; break;
case TX_8X8: size = 8; break;
case TX_16X16: size = 16; break;
case TX_32X32: size = 32; break;
default: FAIL() << "Wrong Size!"; break;
}
DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]);
const int count_test_block = 1000;
const int block_size = size * size;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]);
int max_error = 0;
for (int m = 0; m < count_test_block; ++m) {
// clear out destination buffer
memset(dst1, 0, sizeof(*dst1) * block_size);
memset(dst2, 0, sizeof(*dst2) * block_size);
memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size);
memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size);
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int n = 0; n < count_test_block; ++n) {
// Initialize a test block with input range [-255, 255].
if (n == 0) {
for (int j = 0; j < block_size; ++j) input_extreme_block[j] = 255;
} else if (n == 1) {
for (int j = 0; j < block_size; ++j) input_extreme_block[j] = -255;
} else {
for (int j = 0; j < block_size; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
}
ftxfm_(input_extreme_block, output_ref_block, size);
// quantization with maximum allowed step sizes
test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336;
MB_MODE_INFO mbmi = get_mbmi();
for (int j = 1; j < last_nonzero_; ++j)
test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT,
&mbmi)
->scan[j]] = (output_ref_block[j] / 1828) * 1828;
}
ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size));
ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size));
for (int j = 0; j < block_size; ++j) {
const int diff = dst1[j] - dst2[j];
const int error = diff * diff;
if (max_error < error) max_error = error;
}
}
EXPECT_EQ(0, max_error)
<< "Error: partial inverse transform produces different results";
}
TEST_P(AV1PartialIDctTest, ResultsMatch) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int size;
switch (tx_size_) {
case TX_4X4: size = 4; break;
case TX_8X8: size = 8; break;
case TX_16X16: size = 16; break;
case TX_32X32: size = 32; break;
default: FAIL() << "Wrong Size!"; break;
}
DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]);
const int count_test_block = 1000;
const int max_coeff = 32766 / 4;
const int block_size = size * size;
int max_error = 0;
for (int i = 0; i < count_test_block; ++i) {
// clear out destination buffer
memset(dst1, 0, sizeof(*dst1) * block_size);
memset(dst2, 0, sizeof(*dst2) * block_size);
memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size);
memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size);
int max_energy_leftover = max_coeff * max_coeff;
for (int j = 0; j < last_nonzero_; ++j) {
int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) *
(rnd.Rand16() - 32768) / 65536);
max_energy_leftover -= coef * coef;
if (max_energy_leftover < 0) {
max_energy_leftover = 0;
coef = 0;
}
MB_MODE_INFO mbmi = get_mbmi();
test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT,
&mbmi)
->scan[j]] = coef;
}
memcpy(test_coef_block2, test_coef_block1,
sizeof(*test_coef_block2) * block_size);
ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size));
ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size));
for (int j = 0; j < block_size; ++j) {
const int diff = dst1[j] - dst2[j];
const int error = diff * diff;
if (max_error < error) max_error = error;
}
}
EXPECT_EQ(0, max_error)
<< "Error: partial inverse transform produces different results";
}
#endif
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, AV1PartialIDctTest,
::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c,
&aom_idct32x32_34_add_c, TX_32X32, 34),
make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c,
&aom_idct32x32_1_add_c, TX_32X32, 1),
make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c,
&aom_idct16x16_10_add_c, TX_16X16, 10),
make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c,
&aom_idct16x16_1_add_c, TX_16X16, 1),
make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c,
&aom_idct8x8_12_add_c, TX_8X8, 12),
make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c,
&aom_idct8x8_1_add_c, TX_8X8, 1),
make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_c,
&aom_idct4x4_1_add_c, TX_4X4, 1)));
#endif // CONFIG_AV1_ENCODER
} // namespace