blob: 67111316cc7ab53d4b160c1155168c8df1878c8f [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/encint.h"
#include "av1/common/partition.h"
#include "av1/encoder/pvq_encoder.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
// Check if one needs to use c version subtraction.
static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; }
static void subtract_block(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint8_t *src8, ptrdiff_t src_stride,
const uint8_t *pred8, ptrdiff_t pred_stride) {
#if !CONFIG_HIGHBITDEPTH
(void)xd;
#endif
if (check_subtract_block_size(rows, cols)) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8,
src_stride, pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
return;
}
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
}
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#if !CONFIG_LV_MAP
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 10, 7 }, { 8, 5 },
};
static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane,
int blk_row, int blk_col, int block,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const PLANE_TYPE plane_type = pd->plane_type;
const int eob = p->eobs[block];
assert(mb->qindex > 0);
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= tx_size_2d[tx_size]);
const int ref = is_inter_block(&xd->mi[0]->mbmi);
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, &xd->mi[0]->mbmi);
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
// Use a flat matrix (i.e. no weighting) for 1D and Identity transforms
const qm_val_t *iqmatrix =
IS_2D_TRANSFORM(tx_type)
? pd->seg_iqmatrix[seg_id][!ref][tx_size]
: cm->giqmatrix[NUM_QM_LEVELS - 1][0][0][tx_size];
#endif
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#endif // CONFIG_NEW_QUANT
int64_t rd_cost0, rd_cost1;
int16_t t0, t1;
int i, final_eob = 0;
const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
int(*head_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] =
mb->token_head_costs[txsize_sqr_map[tx_size]][plane_type][ref];
int(*tail_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] =
mb->token_tail_costs[txsize_sqr_map[tx_size]][plane_type][ref];
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
int64_t rate0, rate1;
int64_t eob_cost0, eob_cost1;
tran_low_t before_best_eob_qc = 0;
tran_low_t before_best_eob_dqc = 0;
uint8_t token_cache[MAX_TX_SQUARE];
for (i = 0; i < eob; i++) {
const int rc = scan[i];
token_cache[rc] = av1_pt_energy_class[av1_get_token(qcoeff[rc])];
}
/* Record the r-d cost */
int64_t accu_rate = 0;
// Initialized to the worst possible error for the largest transform size.
// This ensures that it never goes negative.
int64_t accu_error = ((int64_t)1) << 50;
rate0 = head_token_costs[0][ctx][0];
int64_t best_block_rd_cost = RDCOST(rdmult, rate0, accu_error);
// int64_t best_block_rd_cost_all0 = best_block_rd_cost;
const int seg_eob =
av1_get_tx_eob(&cm->seg, xd->mi[0]->mbmi.segment_id, tx_size);
for (i = 0; i < eob; i++) {
const int rc = scan[i];
const int x = qcoeff[rc];
const int sz = -(x < 0);
const int band_cur = band_translate[i];
const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
const int eob_val =
(i + 1 == eob) ? (i + 1 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB;
const int is_first = (i == 0);
if (x == 0) {
// no need to search when x == 0
accu_rate += av1_get_coeff_token_cost(
ZERO_TOKEN, eob_val, is_first, head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
// accu_error does not change when x==0
} else {
/* Computing distortion
*/
// compute the distortion for the first candidate
// and the distortion for quantizing to 0.
int dx0 = abs(coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx0 >>= xd->bd - 8;
}
#endif
const int64_t d0 = (int64_t)dx0 * dx0;
const int x_a = x - 2 * sz - 1;
int dqv;
#if CONFIG_AOM_QM
int iwt;
dqv = dequant_ptr[rc != 0];
if (iqmatrix != NULL) {
iwt = iqmatrix[rc];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
}
#else
dqv = dequant_ptr[rc != 0];
#endif
int dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int dx_sign = dx < 0 ? 1 : 0;
dx = abs(dx) >> (xd->bd - 8);
if (dx_sign) dx = -dx;
}
#endif // CONFIG_HIGHBITDEPTH
const int64_t d2 = (int64_t)dx * dx;
/* compute the distortion for the second candidate
* x_a = x - 2 * sz + 1;
*/
int64_t d2_a;
if (x_a != 0) {
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
(coeff[rc] * (1 << shift));
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dqv + sz) ^ sz;
}
#else
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2_a = (int64_t)dx * dx;
} else {
d2_a = d0;
}
// Computing RD cost
int64_t base_bits;
// rate cost of x
base_bits = av1_get_token_cost(x, &t0, cat6_bits);
rate0 = base_bits +
av1_get_coeff_token_cost(t0, eob_val, is_first,
head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
// rate cost of x_a
base_bits = av1_get_token_cost(x_a, &t1, cat6_bits);
if (t1 == ZERO_TOKEN && eob_val) {
rate1 = base_bits;
} else {
rate1 = base_bits +
av1_get_coeff_token_cost(t1, eob_val, is_first,
head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
}
int64_t next_bits0 = 0, next_bits1 = 0;
if (i < eob - 1) {
int ctx_next;
const int band_next = band_translate[i + 1];
const int token_next = av1_get_token(qcoeff[scan[i + 1]]);
const int eob_val_next =
(i + 2 == eob) ? (i + 2 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB;
token_cache[rc] = av1_pt_energy_class[t0];
ctx_next = get_coef_context(nb, token_cache, i + 1);
next_bits0 = av1_get_coeff_token_cost(
token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next],
tail_token_costs[band_next][ctx_next]);
token_cache[rc] = av1_pt_energy_class[t1];
ctx_next = get_coef_context(nb, token_cache, i + 1);
next_bits1 = av1_get_coeff_token_cost(
token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next],
tail_token_costs[band_next][ctx_next]);
}
rd_cost0 = RDCOST(rdmult, (rate0 + next_bits0), d2);
rd_cost1 = RDCOST(rdmult, (rate1 + next_bits1), d2_a);
const int best_x = (rd_cost1 < rd_cost0);
const int eob_v = (i + 1 == seg_eob) ? LAST_EOB : EARLY_EOB;
int64_t next_eob_bits0, next_eob_bits1;
int best_eob_x;
next_eob_bits0 = av1_get_coeff_token_cost(
t0, eob_v, is_first, head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
eob_cost0 =
RDCOST(rdmult, (accu_rate + next_eob_bits0), (accu_error + d2 - d0));
eob_cost1 = eob_cost0;
if (x_a != 0) {
next_eob_bits1 = av1_get_coeff_token_cost(
t1, eob_v, is_first, head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
eob_cost1 = RDCOST(rdmult, (accu_rate + next_eob_bits1),
(accu_error + d2_a - d0));
best_eob_x = (eob_cost1 < eob_cost0);
} else {
best_eob_x = 0;
}
const int dqc = dqcoeff[rc];
int dqc_a = 0;
if (best_x || best_eob_x) {
if (x_a != 0) {
#if CONFIG_NEW_QUANT
dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv,
dequant_val[band_translate[i]]);
dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a;
if (sz) dqc_a = -dqc_a;
#else
if (x_a < 0)
dqc_a = -((-x_a * dqv) >> shift);
else
dqc_a = (x_a * dqv) >> shift;
#endif // CONFIG_NEW_QUANT
} else {
dqc_a = 0;
} // if (x_a != 0)
}
// record the better quantized value
if (best_x) {
assert(d2_a <= d0);
qcoeff[rc] = x_a;
dqcoeff[rc] = dqc_a;
accu_rate += rate1;
accu_error += d2_a - d0;
token_cache[rc] = av1_pt_energy_class[t1];
} else {
assert(d2 <= d0);
accu_rate += rate0;
accu_error += d2 - d0;
token_cache[rc] = av1_pt_energy_class[t0];
}
assert(accu_error >= 0);
// determine whether to move the eob position to i+1
const int use_a = (x_a != 0) && (best_eob_x);
const int64_t best_eob_cost_i = use_a ? eob_cost1 : eob_cost0;
if (best_eob_cost_i < best_block_rd_cost) {
best_block_rd_cost = best_eob_cost_i;
final_eob = i + 1;
if (use_a) {
before_best_eob_qc = x_a;
before_best_eob_dqc = dqc_a;
} else {
before_best_eob_qc = x;
before_best_eob_dqc = dqc;
}
}
} // if (x==0)
} // for (i)
assert(final_eob <= eob);
if (final_eob > 0) {
assert(before_best_eob_qc != 0);
i = final_eob - 1;
int rc = scan[i];
qcoeff[rc] = before_best_eob_qc;
dqcoeff[rc] = before_best_eob_dqc;
}
for (i = final_eob; i < eob; i++) {
int rc = scan[i];
qcoeff[rc] = 0;
dqcoeff[rc] = 0;
}
p->eobs[block] = final_eob;
return final_eob;
}
#endif // !CONFIG_LV_MAP
int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int blk_row,
int blk_col, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, const ENTROPY_CONTEXT *a,
const ENTROPY_CONTEXT *l) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
const int eob = p->eobs[block];
assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
if (eob == 0) return eob;
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return eob;
#if CONFIG_PVQ
(void)cm;
(void)tx_size;
(void)a;
(void)l;
return eob;
#endif
#if !CONFIG_LV_MAP
(void)plane_bsize;
(void)blk_row;
(void)blk_col;
#if CONFIG_VAR_TX
int ctx = get_entropy_context(tx_size, a, l);
#else
int ctx = combine_entropy_contexts(*a, *l);
#endif // CONFIG_VAR_TX
return optimize_b_greedy(cm, mb, plane, blk_row, blk_col, block, tx_size,
ctx);
#else // !CONFIG_LV_MAP
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
return av1_optimize_txb(cm, mb, plane, blk_row, blk_col, block, tx_size,
&txb_ctx);
#endif // !CONFIG_LV_MAP
}
#if !CONFIG_PVQ
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} QUANT_FUNC;
static AV1_QUANT_FACADE
quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
{ av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
#else // !CONFIG_NEW_QUANT
{ av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade },
{ av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade },
{ av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade },
#endif // !CONFIG_NEW_QUANT
{ NULL, NULL }
};
#endif // !CONFIG_PVQ
#if !CONFIG_TXMG && !CONFIG_PVQ
typedef void (*fwdTxfmFunc)(const int16_t *diff, tran_low_t *coeff, int stride,
TxfmParam *txfm_param);
static const fwdTxfmFunc fwd_txfm_func[2] = { av1_fwd_txfm,
av1_highbd_fwd_txfm };
#endif
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx,
AV1_XFORM_QUANT xform_quant_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !(CONFIG_PVQ || CONFIG_DIST_8X8)
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
#if (CONFIG_AOM_QM || CONFIG_NEW_QUANT) && !CONFIG_PVQ
const int is_inter = is_inter_block(mbmi);
#endif
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = block_size_wide[plane_bsize];
#if CONFIG_AOM_QM && !CONFIG_PVQ
int seg_id = mbmi->segment_id;
// Use a flat matrix (i.e. no weighting) for 1D and Identity transforms
const qm_val_t *qmatrix =
IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][!is_inter][tx_size]
: cm->gqmatrix[NUM_QM_LEVELS - 1][0][0][tx_size];
const qm_val_t *iqmatrix =
IS_2D_TRANSFORM(tx_type)
? pd->seg_iqmatrix[seg_id][!is_inter][tx_size]
: cm->giqmatrix[NUM_QM_LEVELS - 1][0][0][tx_size];
#endif
TxfmParam txfm_param;
#if CONFIG_PVQ || CONFIG_DIST_8X8 || CONFIG_LGT || CONFIG_MRC_TX
uint8_t *dst;
const int dst_stride = pd->dst.stride;
#if CONFIG_PVQ || CONFIG_DIST_8X8
int16_t *pred;
const int txw = tx_size_wide[tx_size];
const int txh = tx_size_high[tx_size];
int i, j;
#endif
#endif
#if !CONFIG_PVQ
const int tx2d_size = tx_size_2d[tx_size];
QUANT_PARAM qparam;
const int16_t *src_diff;
src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
qparam.log_scale = av1_get_tx_scale(tx_size);
#if CONFIG_NEW_QUANT
qparam.tx_size = tx_size;
qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
qparam.qmatrix = qmatrix;
qparam.iqmatrix = iqmatrix;
#endif // CONFIG_AOM_QM
#else
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
int skip = 1;
PVQ_INFO *pvq_info = NULL;
uint8_t *src;
int16_t *src_int16;
const int src_stride = p->src.stride;
(void)ctx;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
src_int16 =
&p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < txh; j++)
for (i = 0; i < txw; i++)
src_int16[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(src)[src_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < txh; j++)
for (i = 0; i < txw; i++)
src_int16[diff_stride * j + i] = src[src_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
#endif
#if CONFIG_PVQ || CONFIG_DIST_8X8 || CONFIG_LGT || CONFIG_MRC_TX
dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
#endif // CONFIG_PVQ || CONFIG_DIST_8X8 || CONFIG_LGT || CONFIG_MRC_TX
#if CONFIG_PVQ || CONFIG_DIST_8X8
if (CONFIG_PVQ
#if CONFIG_DIST_8X8
|| x->using_dist_8x8
#endif // CONFIG_DIST_8X8
) {
pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < txh; j++)
for (i = 0; i < txw; i++)
pred[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < txh; j++)
for (i = 0; i < txw; i++)
pred[diff_stride * j + i] = dst[dst_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_PVQ || CONFIG_DIST_8X8
(void)ctx;
txfm_param.tx_type = tx_type;
txfm_param.tx_size = tx_size;
txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if CONFIG_MRC_TX || CONFIG_LGT
txfm_param.is_inter = is_inter_block(mbmi);
txfm_param.dst = dst;
txfm_param.stride = dst_stride;
#if CONFIG_MRC_TX
txfm_param.valid_mask = &mbmi->valid_mrc_mask;
#endif // CONFIG_MRC_TX
#endif // CONFIG_MRC_TX || CONFIG_LGT
#if CONFIG_LGT
txfm_param.mode = mbmi->mode;
#endif // CONFIG_LGT
#if !CONFIG_PVQ
txfm_param.bd = xd->bd;
const int is_hbd = get_bitdepth_data_path_index(xd);
#if CONFIG_TXMG
av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &txfm_param);
#else // CONFIG_TXMG
fwd_txfm_func[is_hbd](src_diff, coeff, diff_stride, &txfm_param);
#endif // CONFIG_TXMG
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][is_hbd](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
#if CONFIG_LV_MAP
p->txb_entropy_ctx[block] =
(uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif // CONFIG_LV_MAP
return;
#else // CONFIG_PVQ
(void)xform_quant_idx;
#if CONFIG_HIGHBITDEPTH
txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &txfm_param);
av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &txfm_param);
} else {
#endif
av1_fwd_txfm(src_int16, coeff, diff_stride, &txfm_param);
av1_fwd_txfm(pred, ref_coeff, diff_stride, &txfm_param);
#if CONFIG_HIGHBITDEPTH
}
#endif
// PVQ for inter mode block
if (!x->skip_block) {
PVQ_SKIP_TYPE ac_dc_coded =
av1_pvq_encode_helper(x,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
skip = ac_dc_coded == PVQ_SKIP;
}
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
#endif // #if !CONFIG_PVQ
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
int ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
#if !CONFIG_PVQ
ENTROPY_CONTEXT *a, *l;
#endif
#if CONFIG_VAR_TX
int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
#endif
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
#if !CONFIG_PVQ
a = &args->ta[blk_col];
l = &args->tl[blk_row];
#if CONFIG_VAR_TX
ctx = get_entropy_context(tx_size, a, l);
#else
ctx = combine_entropy_contexts(*a, *l);
#endif
#else
ctx = 0;
#endif // CONFIG_PVQ
#if CONFIG_VAR_TX
// Assert not magic number (uninitialized).
assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234);
if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) {
#else
{
#endif
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_FP);
}
#if CONFIG_VAR_TX
else {
p->eobs[block] = 0;
}
#endif
#if !CONFIG_PVQ
av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a,
l);
av1_set_txb_context(x, plane, block, tx_size, a, l);
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] == 0) return;
#else
(void)ctx;
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
#endif
TX_TYPE tx_type =
av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, block, tx_size);
#if CONFIG_LGT
PREDICTION_MODE mode = xd->mi[0]->mbmi.mode;
av1_inverse_transform_block(xd, dqcoeff, mode, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block]);
#else
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block]);
#endif
}
#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
} else {
assert(tx_size < TX_SIZES_ALL);
#if CONFIG_RECT_TX_EXT
int is_qttx = plane_tx_size == quarter_txsize_lookup[plane_bsize];
const TX_SIZE sub_txs = is_qttx ? plane_tx_size : sub_tx_size_map[tx_size];
if (is_qttx) assert(blk_row == 0 && blk_col == 0 && block == 0);
#else
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(sub_txs < tx_size);
#endif
// This is the square transform block partition entry point.
int bsl = tx_size_wide_unit[sub_txs];
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
#if CONFIG_RECT_TX_EXT
int is_wide_tx = tx_size_wide_unit[sub_txs] > tx_size_high_unit[sub_txs];
const int offsetr =
is_qttx ? (is_wide_tx ? i * tx_size_high_unit[sub_txs] : 0)
: blk_row + ((i >> 1) * bsl);
const int offsetc =
is_qttx ? (is_wide_tx ? 0 : i * tx_size_wide_unit[sub_txs])
: blk_col + ((i & 0x01) * bsl);
#else
const int offsetr = blk_row + ((i >> 1) * bsl);
const int offsetc = blk_col + ((i & 0x01) * bsl);
#endif
int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg);
block += step;
}
}
}
#endif
typedef struct encode_block_pass1_args {
AV1_COMMON *cm;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
TxfmParam txfm_param;
uint8_t *dst;
int ctx = 0;
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_B);
#if !CONFIG_PVQ
if (p->eobs[block] > 0) {
#else
if (!x->pvq_skip[plane]) {
{
int tx_blk_size;
int i, j;
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0;
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
#endif // !CONFIG_PVQ
txfm_param.bd = xd->bd;
txfm_param.tx_type = DCT_DCT;
txfm_param.eob = p->eobs[block];
txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, &txfm_param);
return;
}
#endif // CONFIG_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
} else {
av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
}
}
}
void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cm, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
const int subsampling_x = xd->plane[plane].subsampling_x;
const int subsampling_y = xd->plane[plane].subsampling_y;
if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x,
subsampling_y))
continue;
bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
#else
(void)mi_row;
(void)mi_col;
#endif
#if CONFIG_VAR_TX
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
int idx, idy;
int block = 0;
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]);
#else
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
#endif
#if !CONFIG_PVQ
av1_subtract_plane(x, bsize, plane);
#endif
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
#if CONFIG_VAR_TX
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd);
int mu_blocks_wide =
block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high =
block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (idx = 0; idx < mi_width; idx += mu_blocks_wide) {
int blk_row, blk_col;
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
max_tx_size, &arg);
block += step;
}
}
}
}
#else
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
#endif
}
}
#if CONFIG_SUPERTX
void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_VAR_TX
const TX_SIZE tx_size = TX_4X4;
#else
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
#endif
av1_subtract_plane(x, bsize, plane);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
#endif // CONFIG_SUPERTX
#if !CONFIG_PVQ
void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
(void)tx_size;
struct macroblock_plane *p = &x->plane[plane];
#if !CONFIG_LV_MAP
*a = *l = p->eobs[block] > 0;
#else // !CONFIG_LV_MAP
*a = *l = p->txb_entropy_ctx[block];
#endif // !CONFIG_LV_MAP
#if CONFIG_VAR_TX || CONFIG_LV_MAP
int i;
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
#endif
}
#endif
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
#if !CONFIG_PVQ
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
#endif
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = get_plane_type(plane);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
uint16_t *eob = &p->eobs[block];
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size);
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
int ctx = combine_entropy_contexts(*a, *l);
if (args->enable_optimize_b) {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_FP);
av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size,
a, l);
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_B);
}
#if CONFIG_PVQ
// *(args->skip) == mbmi->skip
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
#endif // CONFIG_PVQ
av1_inverse_transform_block(xd, dqcoeff,
#if CONFIG_LGT
xd->mi[0]->mbmi.mode,
#endif
tx_type, tx_size, dst, dst_stride, *eob);
#if !CONFIG_PVQ
if (*eob) *(args->skip) = 0;
#else
// Note : *(args->skip) == mbmi->skip
#endif
#if CONFIG_CFL
if (plane == AOM_PLANE_Y && xd->cfl->store_y) {
// TODO (ltrudeau) Store sub-8x8 inter blocks when bottom right block is
// intra predicted.
cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size, plane_bsize);
}
#endif
}
void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane,
int enable_optimize_b, int mi_row,
int mi_col) {
const MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 };
struct encode_b_args arg = {
cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
};
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y))
return;
#else
(void)mi_row;
(void)mi_col;
#endif
if (enable_optimize_b) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(
xd, bsize, plane, encode_block_intra_and_set_context, &arg);
}
#if CONFIG_PVQ
PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff,
tran_low_t *ref_coeff,
tran_low_t *const dqcoeff, uint16_t *eob,
const int16_t *quant, int plane,
int tx_size, TX_TYPE tx_type, int *rate,
int speed, PVQ_INFO *pvq_info) {
const int tx_blk_size = tx_size_wide[tx_size];
daala_enc_ctx *daala_enc = &x->daala_enc;
PVQ_SKIP_TYPE ac_dc_coded;
int coeff_shift = 3 - av1_get_tx_scale(tx_size);
int hbd_downshift = 0;
int rounding_mask;
int pvq_dc_quant;
int use_activity_masking = daala_enc->use_activity_masking;
int tell;
int has_dc_skip = 1;
int i;
int off = od_qm_offset(tx_size, plane ? 1 : 0);
DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
hbd_downshift = x->e_mbd.bd - 8;
assert(OD_COEFF_SHIFT >= 4);
// DC quantizer for PVQ
if (use_activity_masking)
pvq_dc_quant =
OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
daala_enc->state
.pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
4);
else
pvq_dc_quant =
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);
*eob = 0;
#if !CONFIG_ANS
tell = od_ec_enc_tell_frac(&daala_enc->w.ec);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
// Change coefficient ordering for pvq encoding.
od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
tx_blk_size);
od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
tx_blk_size);
// copy int16 inputs to int32
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
ref_int32[i] =
AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
}
if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
out_int32[0] = 0;
} else {
out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
}
ac_dc_coded =
od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32,
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >>
hbd_downshift), // scale/quantizer
OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >>
hbd_downshift), // scale/quantizer
plane,
tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size],
0, // is_keyframe,
daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
speed, // speed
pvq_info);
// Encode residue of DC coeff, if required.
if (!has_dc_skip || out_int32[0]) {
generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane],
abs(out_int32[0]) - has_dc_skip,
&daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2);
}
if (out_int32[0]) {
aom_write_bit(&daala_enc->w, out_int32[0] < 0);
}
// need to save quantized residue of DC coeff
// so that final pvq bitstream writing can know whether DC is coded.
if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];
out_int32[0] = out_int32[0] * pvq_dc_quant;
out_int32[0] += ref_int32[0];
// copy int32 result back to int16
assert(OD_COEFF_SHIFT > coeff_shift);
rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
(OD_COEFF_SHIFT - coeff_shift);
}
// Back to original coefficient order
od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
tx_blk_size);
*eob = tx_blk_size * tx_blk_size;
#if !CONFIG_ANS
*rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell)
<< (AV1_PROB_COST_SHIFT - OD_BITRES);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
assert(*rate >= 0);
return ac_dc_coded;
}
void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k,
od_coeff *y, int nb_bands, const int *off,
int *size, int skip_rest, int skip_dir,
int bs) { // block size in log_2 -2
int i;
const int tx_blk_size = tx_size_wide[bs];
for (i = 0; i < nb_bands; i++) {
pvq_info->qg[i] = qg[i];
pvq_info->theta[i] = theta[i];
pvq_info->k[i] = k[i];
pvq_info->off[i] = off[i];
pvq_info->size[i] = size[i];
}
memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));
pvq_info->nb_bands = nb_bands;
pvq_info->skip_rest = skip_rest;
pvq_info->skip_dir = skip_dir;
pvq_info->bs = bs;
}
#endif