blob: 1616161e2b2a9901ff9399040299bdb8d92e2e98 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_config.h"
#if CONFIG_TFLITE
#include "tensorflow/lite/c/c_api.h"
#include "av1/encoder/deltaq4_model.c"
#endif
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/allintra_vis.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/rdopt_utils.h"
// Process the wiener variance in 16x16 block basis.
static int qsort_comp(const void *elem1, const void *elem2) {
int a = *((const int *)elem1);
int b = *((const int *)elem2);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
void av1_init_mb_wiener_var_buffer(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
cpi->weber_bsize = BLOCK_8X8;
if (cpi->mb_weber_stats) return;
CHECK_MEM_ERROR(cm, cpi->mb_weber_stats,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->mb_weber_stats)));
}
static int64_t get_satd(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
int64_t satd = 0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
satd += cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
.satd;
++mb_count;
}
}
if (mb_count) satd = (int)(satd / mb_count);
satd = AOMMAX(1, satd);
return (int)satd;
}
static int64_t get_sse(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
int64_t distortion = 0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
distortion +=
cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
.distortion;
++mb_count;
}
}
if (mb_count) distortion = (int)(distortion / mb_count);
distortion = AOMMAX(1, distortion);
return (int)distortion;
}
static double get_max_scale(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
double min_max_scale = 10.0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
WeberStats *weber_stats =
&cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
if (weber_stats->max_scale < 1.0) continue;
if (weber_stats->max_scale < min_max_scale)
min_max_scale = weber_stats->max_scale;
}
}
return min_max_scale;
}
static int get_window_wiener_var(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int sb_wiener_var = 0;
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
double base_num = 1;
double base_den = 1;
double base_reg = 1;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
WeberStats *weber_stats =
&cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
base_num += ((double)weber_stats->distortion) *
sqrt((double)weber_stats->src_variance) *
weber_stats->rec_pix_max;
base_den += fabs(
weber_stats->rec_pix_max * sqrt((double)weber_stats->src_variance) -
weber_stats->src_pix_max * sqrt((double)weber_stats->rec_variance));
base_reg += sqrt((double)weber_stats->distortion) *
sqrt((double)weber_stats->src_pix_max) * 0.1;
++mb_count;
}
}
sb_wiener_var =
(int)(((base_num + base_reg) / (base_den + base_reg)) / mb_count);
sb_wiener_var = AOMMAX(1, sb_wiener_var);
return (int)sb_wiener_var;
}
static int get_var_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
int sb_wiener_var = get_window_wiener_var(cpi, bsize, mi_row, mi_col);
if (mi_row >= (mi_high / 2)) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row - mi_high / 2, mi_col));
}
if (mi_row <= (cm->mi_params.mi_rows - mi_high - (mi_high / 2))) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row + mi_high / 2, mi_col));
}
if (mi_col >= (mi_wide / 2)) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row, mi_col - mi_wide / 2));
}
if (mi_col <= (cm->mi_params.mi_cols - mi_wide - (mi_wide / 2))) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row, mi_col + mi_wide / 2));
}
return sb_wiener_var;
}
static double calc_src_mean_var(const uint8_t *const src_buffer,
const int buf_stride, const int block_size,
const int use_hbd, double *mean) {
double src_mean = 0.0;
double src_variance = 0.0;
for (int pix_row = 0; pix_row < block_size; ++pix_row) {
for (int pix_col = 0; pix_col < block_size; ++pix_col) {
int src_pix;
if (use_hbd) {
const uint16_t *src = CONVERT_TO_SHORTPTR(src_buffer);
src_pix = src[pix_row * buf_stride + pix_col];
} else {
src_pix = src_buffer[pix_row * buf_stride + pix_col];
}
src_mean += src_pix;
src_variance += src_pix * src_pix;
}
}
const int pix_num = block_size * block_size;
src_variance -= (src_mean * src_mean) / pix_num;
src_variance /= pix_num;
*mean = src_mean / pix_num;
return src_variance;
}
static BLOCK_SIZE pick_block_size(AV1_COMP *cpi,
const BLOCK_SIZE orig_block_size) {
const BLOCK_SIZE sub_block_size =
get_partition_subsize(orig_block_size, PARTITION_SPLIT);
const int mb_step = mi_size_wide[orig_block_size];
const int sub_step = mb_step >> 1;
const TX_SIZE tx_size = max_txsize_lookup[orig_block_size];
const int block_size = tx_size_wide[tx_size];
const int split_block_size = block_size >> 1;
assert(split_block_size >= 8);
const uint8_t *const buffer = cpi->source->y_buffer;
const int buf_stride = cpi->source->y_stride;
const int use_hbd = cpi->source->flags & YV12_FLAG_HIGHBITDEPTH;
double vote = 0.0;
int sb_count = 0;
for (int mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) {
for (int mi_col = 0; mi_col < cpi->frame_info.mi_cols; mi_col += mb_step) {
const uint8_t *mb_buffer =
buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE;
// (1). Calculate mean and var using the original block size
double mean = 0.0;
const double orig_var =
calc_src_mean_var(mb_buffer, buf_stride, block_size, use_hbd, &mean);
// (2). Calculate mean and var using the split block size
double split_var[4] = { 0 };
double split_mean[4] = { 0 };
int sub_idx = 0;
for (int row = mi_row; row < mi_row + mb_step; row += sub_step) {
for (int col = mi_col; col < mi_col + mb_step; col += sub_step) {
mb_buffer = buffer + row * MI_SIZE * buf_stride + col * MI_SIZE;
split_var[sub_idx] =
calc_src_mean_var(mb_buffer, buf_stride, split_block_size,
use_hbd, &split_mean[sub_idx]);
++sub_idx;
}
}
// (3). Determine whether to use the original or the split block size.
// If use original, vote += 1.0.
// If use split, vote -= 1.0.
double max_split_mean = 0.0;
double max_split_var = 0.0;
double geo_split_var = 0.0;
for (int i = 0; i < 4; ++i) {
max_split_mean = AOMMAX(max_split_mean, split_mean[i]);
max_split_var = AOMMAX(max_split_var, split_var[i]);
geo_split_var += log(split_var[i]);
}
geo_split_var = exp(geo_split_var / 4);
const double param_1 = 1.5;
const double param_2 = 1.0;
// If the variance of the large block size is considerably larger than the
// geometric mean of vars of small blocks;
// Or if the variance of the large block size is larger than the local
// variance;
// Or if the variance of the large block size is considerably larger
// than the mean.
// It indicates that the source block is not a flat area, therefore we
// might want to split into smaller block sizes to capture the
// local characteristics.
if (orig_var > param_1 * geo_split_var || orig_var > max_split_var ||
sqrt(orig_var) > param_2 * mean) {
vote -= 1.0;
} else {
vote += 1.0;
}
++sb_count;
}
}
return vote > 0.0 ? orig_block_size : sub_block_size;
}
static int64_t pick_norm_factor_and_block_size(AV1_COMP *const cpi,
BLOCK_SIZE *best_block_size) {
const AV1_COMMON *const cm = &cpi->common;
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
BLOCK_SIZE last_block_size;
BLOCK_SIZE this_block_size = sb_size;
*best_block_size = sb_size;
// Pick from block size 64x64, 32x32 and 16x16.
do {
last_block_size = this_block_size;
assert(this_block_size >= BLOCK_16X16 && this_block_size <= BLOCK_128X128);
const int block_size = block_size_wide[this_block_size];
if (block_size < 32) break;
this_block_size = pick_block_size(cpi, last_block_size);
} while (this_block_size != last_block_size);
*best_block_size = this_block_size;
int64_t norm_factor = 1;
const BLOCK_SIZE norm_block_size = this_block_size;
assert(norm_block_size >= BLOCK_16X16 && norm_block_size <= BLOCK_64X64);
const int norm_step = mi_size_wide[norm_block_size];
double sb_wiener_log = 0;
double sb_count = 0;
for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) {
const int sb_wiener_var =
get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
const int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
const int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
const double scaled_satd = (double)satd / sqrt((double)sse);
sb_wiener_log += scaled_satd * log(sb_wiener_var);
sb_count += scaled_satd;
}
}
if (sb_count > 0) norm_factor = (int64_t)(exp(sb_wiener_log / sb_count));
norm_factor = AOMMAX(1, norm_factor);
return norm_factor;
}
static void automatic_intra_tools_off(AV1_COMP *cpi,
const double sum_rec_distortion,
const double sum_est_rate) {
if (!cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) return;
// Thresholds
const int high_quality_qindex = 128;
const double high_quality_bpp = 2.0;
const double high_quality_dist_per_pix = 4.0;
AV1_COMMON *const cm = &cpi->common;
const int qindex = cm->quant_params.base_qindex;
const double dist_per_pix =
(double)sum_rec_distortion / (cm->width * cm->height);
// The estimate bpp is not accurate, an empirical constant 100 is divided.
const double estimate_bpp = sum_est_rate / (cm->width * cm->height * 100);
if (qindex < high_quality_qindex && estimate_bpp > high_quality_bpp &&
dist_per_pix < high_quality_dist_per_pix) {
cpi->oxcf.intra_mode_cfg.enable_smooth_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_paeth_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_cfl_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_diagonal_intra = 0;
}
}
void av1_set_mb_wiener_variance(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
uint8_t *buffer = cpi->source->y_buffer;
int buf_stride = cpi->source->y_stride;
ThreadData *td = &cpi->td;
MACROBLOCK *x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
MB_MODE_INFO *mbmi_ptr = &mbmi;
xd->mi = &mbmi_ptr;
xd->cur_buf = cpi->source;
const SequenceHeader *const seq_params = cm->seq_params;
if (aom_realloc_frame_buffer(
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
NULL, cpi->oxcf.tool_cfg.enable_global_motion))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
cm->quant_params.base_qindex = cpi->oxcf.rc_cfg.cq_level;
av1_frame_init_quantizer(cpi);
DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
int mi_row, mi_col;
BLOCK_SIZE bsize = cpi->weber_bsize;
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const int block_size = tx_size_wide[tx_size];
const int coeff_count = block_size * block_size;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
cpi->norm_wiener_variance = 0;
int mb_step = mi_size_wide[bsize];
double sum_rec_distortion = 0.0;
double sum_est_rate = 0.0;
for (mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) {
for (mi_col = 0; mi_col < cpi->frame_info.mi_cols; mi_col += mb_step) {
PREDICTION_MODE best_mode = DC_PRED;
int best_intra_cost = INT_MAX;
xd->up_available = mi_row > 0;
xd->left_available = mi_col > 0;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col);
set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_params.mi_rows, cm->mi_params.mi_cols);
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
av1_num_planes(cm));
xd->mi[0]->bsize = bsize;
xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row,
mi_col, 0, av1_num_planes(cm));
int dst_buffer_stride = xd->plane[0].dst.stride;
uint8_t *dst_buffer = xd->plane[0].dst.buf;
uint8_t *mb_buffer =
buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE;
for (PREDICTION_MODE mode = INTRA_MODE_START; mode < INTRA_MODE_END;
++mode) {
av1_predict_intra_block(
xd, cm->seq_params->sb_size,
cm->seq_params->enable_intra_edge_filter, block_size, block_size,
tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
dst_buffer_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
av1_subtract_block(bd_info, block_size, block_size, src_diff,
block_size, mb_buffer, buf_stride, dst_buffer,
dst_buffer_stride);
av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
int intra_cost = aom_satd(coeff, coeff_count);
if (intra_cost < best_intra_cost) {
best_intra_cost = intra_cost;
best_mode = mode;
}
}
int idx;
av1_predict_intra_block(xd, cm->seq_params->sb_size,
cm->seq_params->enable_intra_edge_filter,
block_size, block_size, tx_size, best_mode, 0, 0,
FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride,
dst_buffer, dst_buffer_stride, 0, 0, 0);
av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
const struct macroblock_plane *const p = &x->plane[0];
uint16_t eob;
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
QUANT_PARAM quant_param;
int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
} else {
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
}
#else
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
#endif // CONFIG_AV1_HIGHBITDEPTH
av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst_buffer,
dst_buffer_stride, eob, 0);
WeberStats *weber_stats =
&cpi->mb_weber_stats[(mi_row / mb_step) * cpi->frame_info.mi_cols +
(mi_col / mb_step)];
weber_stats->rec_pix_max = 1;
weber_stats->rec_variance = 0;
weber_stats->src_pix_max = 1;
weber_stats->src_variance = 0;
weber_stats->distortion = 0;
int64_t src_mean = 0;
int64_t rec_mean = 0;
int64_t dist_mean = 0;
for (int pix_row = 0; pix_row < block_size; ++pix_row) {
for (int pix_col = 0; pix_col < block_size; ++pix_col) {
int src_pix, rec_pix;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
uint16_t *src = CONVERT_TO_SHORTPTR(mb_buffer);
uint16_t *rec = CONVERT_TO_SHORTPTR(dst_buffer);
src_pix = src[pix_row * buf_stride + pix_col];
rec_pix = rec[pix_row * dst_buffer_stride + pix_col];
} else {
src_pix = mb_buffer[pix_row * buf_stride + pix_col];
rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
}
#else
src_pix = mb_buffer[pix_row * buf_stride + pix_col];
rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
#endif
src_mean += src_pix;
rec_mean += rec_pix;
dist_mean += src_pix - rec_pix;
weber_stats->src_variance += src_pix * src_pix;
weber_stats->rec_variance += rec_pix * rec_pix;
weber_stats->src_pix_max = AOMMAX(weber_stats->src_pix_max, src_pix);
weber_stats->rec_pix_max = AOMMAX(weber_stats->rec_pix_max, rec_pix);
weber_stats->distortion += (src_pix - rec_pix) * (src_pix - rec_pix);
}
}
sum_rec_distortion += weber_stats->distortion;
int est_block_rate = 0;
int64_t est_block_dist = 0;
model_rd_sse_fn[MODELRD_LEGACY](cpi, x, bsize, 0, weber_stats->distortion,
pix_num, &est_block_rate,
&est_block_dist);
sum_est_rate += est_block_rate;
weber_stats->src_variance -= (src_mean * src_mean) / pix_num;
weber_stats->rec_variance -= (rec_mean * rec_mean) / pix_num;
weber_stats->distortion -= (dist_mean * dist_mean) / pix_num;
weber_stats->satd = best_intra_cost;
qcoeff[0] = 0;
for (idx = 1; idx < coeff_count; ++idx) qcoeff[idx] = abs(qcoeff[idx]);
qsort(qcoeff, coeff_count, sizeof(*coeff), qsort_comp);
weber_stats->max_scale = (double)qcoeff[coeff_count - 1];
}
}
// Determine whether to turn off several intra coding tools.
automatic_intra_tools_off(cpi, sum_rec_distortion, sum_est_rate);
BLOCK_SIZE norm_block_size = BLOCK_16X16;
cpi->norm_wiener_variance =
pick_norm_factor_and_block_size(cpi, &norm_block_size);
const int norm_step = mi_size_wide[norm_block_size];
double sb_wiener_log = 0;
double sb_count = 0;
for (int its_cnt = 0; its_cnt < 2; ++its_cnt) {
sb_wiener_log = 0;
sb_count = 0;
for (mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) {
int sb_wiener_var =
get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
double min_max_scale = AOMMAX(
1.0, get_max_scale(cpi, cm->seq_params->sb_size, mi_row, mi_col));
beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale);
beta = AOMMIN(beta, 4);
beta = AOMMAX(beta, 0.25);
sb_wiener_var = (int)(cpi->norm_wiener_variance / beta);
int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
double scaled_satd = (double)satd / sqrt((double)sse);
sb_wiener_log += scaled_satd * log(sb_wiener_var);
sb_count += scaled_satd;
}
}
if (sb_count > 0)
cpi->norm_wiener_variance = (int64_t)(exp(sb_wiener_log / sb_count));
cpi->norm_wiener_variance = AOMMAX(1, cpi->norm_wiener_variance);
}
aom_free_frame_buffer(&cm->cur_frame->buf);
}
int av1_get_sbq_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
int sb_wiener_var = get_var_perceptual_ai(cpi, bsize, mi_row, mi_col);
int offset = 0;
double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale);
// Cap beta such that the delta q value is not much far away from the base q.
beta = AOMMIN(beta, 4);
beta = AOMMAX(beta, 0.25);
offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 20 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 20 + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
void av1_init_mb_ur_var_buffer(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
if (cpi->mb_delta_q) return;
CHECK_MEM_ERROR(cm, cpi->mb_delta_q,
aom_calloc(cpi->frame_info.mb_rows * cpi->frame_info.mb_cols,
sizeof(*cpi->mb_delta_q)));
}
#if CONFIG_TFLITE
static int model_predict(BLOCK_SIZE block_size, int num_cols, int num_rows,
uint8_t *y_buffer, int y_stride, float *predicts0,
float *predicts1) {
// Create the model and interpreter options.
TfLiteModel *model =
TfLiteModelCreate(av1_deltaq4_model_file, av1_deltaq4_model_fsize);
if (model == NULL) return 1;
TfLiteInterpreterOptions *options = TfLiteInterpreterOptionsCreate();
TfLiteInterpreterOptionsSetNumThreads(options, 2);
if (options == NULL) {
TfLiteModelDelete(model);
return 1;
}
// Create the interpreter.
TfLiteInterpreter *interpreter = TfLiteInterpreterCreate(model, options);
if (interpreter == NULL) {
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
// Allocate tensors and populate the input tensor data.
TfLiteInterpreterAllocateTensors(interpreter);
TfLiteTensor *input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
if (input_tensor == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
struct aom_internal_error_info error;
size_t input_size = TfLiteTensorByteSize(input_tensor);
float *input_data;
AOM_CHECK_MEM_ERROR(&error, input_data, aom_calloc(input_size, 1));
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int row_offset = (row * num_mi_h) << 2;
const int col_offset = (col * num_mi_w) << 2;
uint8_t *buf = y_buffer + row_offset * y_stride + col_offset;
int r = row_offset, pos = 0;
while (r < row_offset + (num_mi_h << 2)) {
for (int c = 0; c < (num_mi_w << 2); ++c) {
input_data[pos++] = (float)*(buf + c) / 255.0f;
}
buf += y_stride;
++r;
}
TfLiteTensorCopyFromBuffer(input_tensor, input_data, input_size);
// Execute inference.
if (TfLiteInterpreterInvoke(interpreter) != kTfLiteOk) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
// Extract the output tensor data.
const TfLiteTensor *output_tensor =
TfLiteInterpreterGetOutputTensor(interpreter, 0);
if (output_tensor == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
size_t output_size = TfLiteTensorByteSize(output_tensor);
float output_data[2];
TfLiteTensorCopyToBuffer(output_tensor, output_data, output_size);
predicts0[row * num_cols + col] = output_data[0];
predicts1[row * num_cols + col] = output_data[1];
}
}
// Dispose of the model and interpreter objects.
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
aom_free(input_data);
return 0;
}
void av1_set_mb_ur_variance(AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = cpi->common.seq_params->sb_size;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
const int use_hbd = cpi->source->flags & YV12_FLAG_HIGHBITDEPTH;
// TODO(sdeng): add highbitdepth support.
(void)use_hbd;
float *mb_delta_q0, *mb_delta_q1, delta_q_avg0 = 0.0f, delta_q_avg1 = 0.0f;
CHECK_MEM_ERROR(cm, mb_delta_q0,
aom_calloc(num_rows * num_cols, sizeof(float)));
CHECK_MEM_ERROR(cm, mb_delta_q1,
aom_calloc(num_rows * num_cols, sizeof(float)));
if (model_predict(block_size, num_cols, num_rows, y_buffer, y_stride,
mb_delta_q0, mb_delta_q1)) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"Failed to call TFlite functions.");
}
// Loop through each SB block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
delta_q_avg0 += mb_delta_q0[index];
delta_q_avg1 += mb_delta_q1[index];
}
}
delta_q_avg0 /= (float)(num_rows * num_cols);
delta_q_avg1 /= (float)(num_rows * num_cols);
float scaling_factor;
int model_id = 0;
const float cq_level = (float)cpi->oxcf.rc_cfg.cq_level / (float)MAXQ;
if (cq_level < delta_q_avg0) {
scaling_factor = cq_level / delta_q_avg0;
} else if (cq_level < delta_q_avg1) {
model_id = 2;
scaling_factor = (cq_level - delta_q_avg0) / (delta_q_avg1 - delta_q_avg0);
} else {
model_id = 1;
scaling_factor = 1.0f - (cq_level - delta_q_avg1) / (1.0f - delta_q_avg1);
}
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
if (model_id == 2) {
cpi->mb_delta_q[index] = RINT(
(float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ *
(scaling_factor * (mb_delta_q1[index] - delta_q_avg1) +
(1.0 - scaling_factor) * (mb_delta_q0[index] - delta_q_avg0)));
} else {
cpi->mb_delta_q[index] =
RINT((float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ *
scaling_factor *
(model_id == 0 ? mb_delta_q0[index] - delta_q_avg0
: mb_delta_q1[index] - delta_q_avg1));
}
}
}
aom_free(mb_delta_q0);
aom_free(mb_delta_q1);
}
#else // !CONFIG_TFLITE
void av1_set_mb_ur_variance(AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
ThreadData *td = &cpi->td;
MACROBLOCK *x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = cpi->common.seq_params->sb_size;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
const int use_hbd = cpi->source->flags & YV12_FLAG_HIGHBITDEPTH;
int *mb_delta_q[2];
CHECK_MEM_ERROR(cm, mb_delta_q[0],
aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[0])));
CHECK_MEM_ERROR(cm, mb_delta_q[1],
aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[1])));
// Approximates the model change between current version (Spet 2021) and the
// baseline (July 2021).
const double model_change[] = { 3.0, 3.0 };
// The following parameters are fitted from user labeled data.
const double a[] = { -24.50 * 4.0, -17.20 * 4.0 };
const double b[] = { 0.004898, 0.003093 };
const double c[] = { (29.932 + model_change[0]) * 4.0,
(42.100 + model_change[1]) * 4.0 };
int delta_q_avg[2] = { 0, 0 };
// Loop through each SB block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
double var = 0.0, num_of_var = 0.0;
const int index = row * num_cols + col;
// Loop through each 8x8 block.
for (int mi_row = row * num_mi_h;
mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h;
mi_row += 2) {
for (int mi_col = col * num_mi_w;
mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w;
mi_col += 2) {
struct buf_2d buf;
const int row_offset_y = mi_row << 2;
const int col_offset_y = mi_col << 2;
buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y;
buf.stride = y_stride;
unsigned int block_variance;
if (use_hbd) {
block_variance = av1_high_get_sby_perpixel_variance(
cpi, &buf, BLOCK_8X8, xd->bd);
} else {
block_variance =
av1_get_sby_perpixel_variance(cpi, &buf, BLOCK_8X8);
}
block_variance = AOMMAX(block_variance, 1);
var += log((double)block_variance);
num_of_var += 1.0;
}
}
var = exp(var / num_of_var);
mb_delta_q[0][index] = RINT(a[0] * exp(-b[0] * var) + c[0]);
mb_delta_q[1][index] = RINT(a[1] * exp(-b[1] * var) + c[1]);
delta_q_avg[0] += mb_delta_q[0][index];
delta_q_avg[1] += mb_delta_q[1][index];
}
}
delta_q_avg[0] = RINT((double)delta_q_avg[0] / (num_rows * num_cols));
delta_q_avg[1] = RINT((double)delta_q_avg[1] / (num_rows * num_cols));
int model_idx;
double scaling_factor;
const int cq_level = cpi->oxcf.rc_cfg.cq_level;
if (cq_level < delta_q_avg[0]) {
model_idx = 0;
scaling_factor = (double)cq_level / delta_q_avg[0];
} else if (cq_level < delta_q_avg[1]) {
model_idx = 2;
scaling_factor =
(double)(cq_level - delta_q_avg[0]) / (delta_q_avg[1] - delta_q_avg[0]);
} else {
model_idx = 1;
scaling_factor = (double)(MAXQ - cq_level) / (MAXQ - delta_q_avg[1]);
}
const double new_delta_q_avg =
delta_q_avg[0] + scaling_factor * (delta_q_avg[1] - delta_q_avg[0]);
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
if (model_idx == 2) {
const double delta_q =
mb_delta_q[0][index] +
scaling_factor * (mb_delta_q[1][index] - mb_delta_q[0][index]);
cpi->mb_delta_q[index] = RINT((double)cpi->oxcf.q_cfg.deltaq_strength /
100.0 * (delta_q - new_delta_q_avg));
} else {
cpi->mb_delta_q[index] = RINT(
(double)cpi->oxcf.q_cfg.deltaq_strength / 100.0 * scaling_factor *
(mb_delta_q[model_idx][index] - delta_q_avg[model_idx]));
}
}
}
aom_free(mb_delta_q[0]);
aom_free(mb_delta_q[1]);
}
#endif
int av1_get_sbq_user_rating_based(AV1_COMP *const cpi, int mi_row, int mi_col) {
const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
if (base_qindex == MINQ || base_qindex == MAXQ) return base_qindex;
const int num_mi_w = mi_size_wide[bsize];
const int num_mi_h = mi_size_high[bsize];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int index = (mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w);
const int delta_q = cpi->mb_delta_q[index];
int qindex = base_qindex + delta_q;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}