blob: 9d95788e20e8dd9ad711463d8ca2afdacf335f9b [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include "av1/common/pred_common.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#include "aom_dsp/aom_dsp_common.h"
CYCLIC_REFRESH *av1_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
CYCLIC_REFRESH *const cr = aom_calloc(1, sizeof(*cr));
if (cr == NULL) return NULL;
cr->map = aom_calloc(mi_rows * mi_cols, sizeof(*cr->map));
cr->counter_encode_maxq_scene_change = 0;
if (cr->map == NULL) {
av1_cyclic_refresh_free(cr);
return NULL;
}
return cr;
}
void av1_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
if (cr != NULL) {
aom_free(cr->map);
aom_free(cr);
}
}
// Check if this coding block, of size bsize, should be considered for refresh
// (lower-qp coding). Decision can be based on various factors, such as
// size of the coding block (i.e., below min_block size rejected), coding
// mode, and rate/distortion.
static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
const MB_MODE_INFO *mbmi, int64_t rate,
int64_t dist, int bsize, int noise_level) {
MV mv = mbmi->mv[0].as_mv;
int is_compound = has_second_ref(mbmi);
// Reject the block for lower-qp coding for non-compound mode if
// projected distortion is above the threshold, and any of the following
// is true:
// 1) mode uses large mv
// 2) mode is an intra-mode
// Otherwise accept for refresh.
if (!is_compound && dist > cr->thresh_dist_sb &&
(mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh ||
mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh ||
!is_inter_block(mbmi)))
return CR_SEGMENT_ID_BASE;
else if ((is_compound && noise_level < kMedium) ||
(bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb &&
is_inter_block(mbmi) && mbmi->mv[0].as_int == 0 &&
cr->rate_boost_fac > 10))
// More aggressive delta-q for bigger blocks with zero motion.
return CR_SEGMENT_ID_BOOST2;
else
return CR_SEGMENT_ID_BOOST1;
}
// Compute delta-q for the segment.
static int compute_deltaq(const AV1_COMP *cpi, int q, double rate_factor) {
const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
const RATE_CONTROL *const rc = &cpi->rc;
int deltaq = av1_compute_qdelta_by_rate(
rc, cpi->common.current_frame.frame_type, q, rate_factor,
cpi->is_screen_content_type, cpi->common.seq_params->bit_depth);
if ((-deltaq) > cr->max_qdelta_perc * q / 100) {
deltaq = -cr->max_qdelta_perc * q / 100;
}
return deltaq;
}
int av1_cyclic_refresh_estimate_bits_at_q(const AV1_COMP *cpi,
double correction_factor) {
const AV1_COMMON *const cm = &cpi->common;
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
const int base_qindex = cm->quant_params.base_qindex;
const int bit_depth = cm->seq_params->bit_depth;
const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
const int mbs = cm->mi_params.MBs;
const int num4x4bl = mbs << 4;
// Weight for non-base segments: use actual number of blocks refreshed in
// previous/just encoded frame. Note number of blocks here is in 4x4 units.
double weight_segment1 = (double)cr->actual_num_seg1_blocks / num4x4bl;
double weight_segment2 = (double)cr->actual_num_seg2_blocks / num4x4bl;
if (cpi->rc.rtc_external_ratectrl) {
weight_segment1 = (double)(cr->percent_refresh * cm->mi_params.mi_rows *
cm->mi_params.mi_cols / 100) /
num4x4bl;
weight_segment2 = 0;
}
// Take segment weighted average for estimated bits.
const int estimated_bits =
(int)((1.0 - weight_segment1 - weight_segment2) *
av1_estimate_bits_at_q(frame_type, base_qindex, mbs,
correction_factor, bit_depth,
cpi->is_screen_content_type) +
weight_segment1 * av1_estimate_bits_at_q(
frame_type, base_qindex + cr->qindex_delta[1],
mbs, correction_factor, bit_depth,
cpi->is_screen_content_type) +
weight_segment2 * av1_estimate_bits_at_q(
frame_type, base_qindex + cr->qindex_delta[2],
mbs, correction_factor, bit_depth,
cpi->is_screen_content_type));
return estimated_bits;
}
int av1_cyclic_refresh_rc_bits_per_mb(const AV1_COMP *cpi, int i,
double correction_factor) {
const AV1_COMMON *const cm = &cpi->common;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
int bits_per_mb;
int num4x4bl = cm->mi_params.MBs << 4;
// Weight for segment prior to encoding: take the average of the target
// number for the frame to be encoded and the actual from the previous frame.
double weight_segment =
(double)((cr->target_num_seg_blocks + cr->actual_num_seg1_blocks +
cr->actual_num_seg2_blocks) >>
1) /
num4x4bl;
if (cpi->rc.rtc_external_ratectrl) {
weight_segment = (double)((cr->target_num_seg_blocks +
cr->percent_refresh * cm->mi_params.mi_rows *
cm->mi_params.mi_cols / 100) >>
1) /
num4x4bl;
}
// Compute delta-q corresponding to qindex i.
int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta);
// Take segment weighted average for bits per mb.
bits_per_mb =
(int)((1.0 - weight_segment) *
av1_rc_bits_per_mb(cm->current_frame.frame_type, i,
correction_factor, cm->seq_params->bit_depth,
cpi->is_screen_content_type) +
weight_segment * av1_rc_bits_per_mb(cm->current_frame.frame_type,
i + deltaq, correction_factor,
cm->seq_params->bit_depth,
cpi->is_screen_content_type));
return bits_per_mb;
}
void av1_cyclic_reset_segment_skip(const AV1_COMP *cpi, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
int cdf_num;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int prev_segment_id = mbmi->segment_id;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int xmis = AOMMIN(cm->mi_params.mi_cols - mi_col, bw);
const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
if (!cr->skip_over4x4) {
mbmi->segment_id = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
if (prev_segment_id != mbmi->segment_id) {
const int block_index = mi_row * cm->mi_params.mi_cols + mi_col;
for (int mi_y = 0; mi_y < ymis; mi_y++) {
for (int mi_x = 0; mi_x < xmis; mi_x++) {
const int map_offset =
block_index + mi_y * cm->mi_params.mi_cols + mi_x;
cr->map[map_offset] = 0;
cpi->enc_seg.map[map_offset] = mbmi->segment_id;
cm->cur_frame->seg_map[map_offset] = mbmi->segment_id;
}
}
}
}
if (cyclic_refresh_segment_id(prev_segment_id) == CR_SEGMENT_ID_BOOST1)
x->actual_num_seg1_blocks -= xmis * ymis;
else if (cyclic_refresh_segment_id(prev_segment_id) == CR_SEGMENT_ID_BOOST2)
x->actual_num_seg2_blocks -= xmis * ymis;
}
void av1_cyclic_refresh_update_segment(const AV1_COMP *cpi, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int64_t rate, int64_t dist, int skip,
RUN_TYPE dry_run) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int xmis = AOMMIN(cm->mi_params.mi_cols - mi_col, bw);
const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
const int block_index = mi_row * cm->mi_params.mi_cols + mi_col;
int noise_level = 0;
if (cpi->noise_estimate.enabled) noise_level = cpi->noise_estimate.level;
const int refresh_this_block =
candidate_refresh_aq(cr, mbmi, rate, dist, bsize, noise_level);
int sh = cpi->cyclic_refresh->skip_over4x4 ? 2 : 1;
// Default is to not update the refresh map.
int new_map_value = cr->map[block_index];
// If this block is labeled for refresh, check if we should reset the
// segment_id.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
mbmi->segment_id = refresh_this_block;
// Reset segment_id if will be skipped.
if (skip) mbmi->segment_id = CR_SEGMENT_ID_BASE;
}
// Update the cyclic refresh map, to be used for setting segmentation map
// for the next frame. If the block will be refreshed this frame, mark it
// as clean. The magnitude of the -ve influences how long before we consider
// it for refresh again.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
new_map_value = -cr->time_for_refresh;
} else if (refresh_this_block) {
// Else if it is accepted as candidate for refresh, and has not already
// been refreshed (marked as 1) then mark it as a candidate for cleanup
// for future time (marked as 0), otherwise don't update it.
if (cr->map[block_index] == 1) new_map_value = 0;
} else {
// Leave it marked as block that is not candidate for refresh.
new_map_value = 1;
}
// Update entries in the cyclic refresh map with new_map_value, and
// copy mbmi->segment_id into global segmentation map.
for (int mi_y = 0; mi_y < ymis; mi_y += sh) {
for (int mi_x = 0; mi_x < xmis; mi_x += sh) {
const int map_offset = block_index + mi_y * cm->mi_params.mi_cols + mi_x;
cr->map[map_offset] = new_map_value;
cpi->enc_seg.map[map_offset] = mbmi->segment_id;
cm->cur_frame->seg_map[map_offset] = mbmi->segment_id;
}
}
// Accumulate cyclic refresh update counters.
if (!dry_run) {
if (cyclic_refresh_segment_id(mbmi->segment_id) == CR_SEGMENT_ID_BOOST1)
x->actual_num_seg1_blocks += xmis * ymis;
else if (cyclic_refresh_segment_id(mbmi->segment_id) ==
CR_SEGMENT_ID_BOOST2)
x->actual_num_seg2_blocks += xmis * ymis;
}
}
// Initializes counters used for cyclic refresh.
void av1_init_cyclic_refresh_counters(MACROBLOCK *const x) {
x->actual_num_seg1_blocks = 0;
x->actual_num_seg2_blocks = 0;
x->cnt_zeromv = 0;
}
// Accumulate cyclic refresh counters.
void av1_accumulate_cyclic_refresh_counters(
CYCLIC_REFRESH *const cyclic_refresh, const MACROBLOCK *const x) {
cyclic_refresh->actual_num_seg1_blocks += x->actual_num_seg1_blocks;
cyclic_refresh->actual_num_seg2_blocks += x->actual_num_seg2_blocks;
cyclic_refresh->cnt_zeromv += x->cnt_zeromv;
}
void av1_cyclic_refresh_postencode(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
RATE_CONTROL *const rc = &cpi->rc;
SVC *const svc = &cpi->svc;
const int avg_cnt_zeromv =
100 * cr->cnt_zeromv / (mi_params->mi_rows * mi_params->mi_cols);
if (!cpi->ppi->use_svc ||
(cpi->ppi->use_svc &&
!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) {
rc->avg_frame_low_motion =
(rc->avg_frame_low_motion == 0)
? avg_cnt_zeromv
: (3 * rc->avg_frame_low_motion + avg_cnt_zeromv) / 4;
// For SVC: set avg_frame_low_motion (only computed on top spatial layer)
// to all lower spatial layers.
if (cpi->ppi->use_svc &&
svc->spatial_layer_id == svc->number_spatial_layers - 1) {
for (int i = 0; i < svc->number_spatial_layers - 1; ++i) {
const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
}
}
}
}
void av1_cyclic_refresh_set_golden_update(AV1_COMP *const cpi) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
// Set minimum gf_interval for GF update to a multiple of the refresh period,
// with some max limit. Depending on past encoding stats, GF flag may be
// reset and update may not occur until next baseline_gf_interval.
const int gf_length_mult[2] = { 8, 4 };
if (cr->percent_refresh > 0)
p_rc->baseline_gf_interval =
AOMMIN(gf_length_mult[cpi->sf.rt_sf.gf_length_lvl] *
(100 / cr->percent_refresh),
MAX_GF_INTERVAL_RT);
else
p_rc->baseline_gf_interval = FIXED_GF_INTERVAL_RT;
if (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 40)
p_rc->baseline_gf_interval = 16;
}
// Update the segmentation map, and related quantities: cyclic refresh map,
// refresh sb_index, and target number of blocks to be refreshed.
// The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to
// 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock.
// Blocks labeled as BOOST1 may later get set to BOOST2 (during the
// encoding of the superblock).
static void cyclic_refresh_update_map(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
unsigned char *const seg_map = cpi->enc_seg.map;
int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
int xmis, ymis, x, y;
memset(seg_map, CR_SEGMENT_ID_BASE, mi_params->mi_rows * mi_params->mi_cols);
sb_cols = (mi_params->mi_cols + cm->seq_params->mib_size - 1) /
cm->seq_params->mib_size;
sb_rows = (mi_params->mi_rows + cm->seq_params->mib_size - 1) /
cm->seq_params->mib_size;
sbs_in_frame = sb_cols * sb_rows;
// Number of target blocks to get the q delta (segment 1).
block_count =
cr->percent_refresh * mi_params->mi_rows * mi_params->mi_cols / 100;
// Set the segmentation map: cycle through the superblocks, starting at
// cr->mb_index, and stopping when either block_count blocks have been found
// to be refreshed, or we have passed through whole frame.
if (cr->sb_index >= sbs_in_frame) cr->sb_index = 0;
assert(cr->sb_index < sbs_in_frame);
i = cr->sb_index;
cr->target_num_seg_blocks = 0;
do {
int sum_map = 0;
// Get the mi_row/mi_col corresponding to superblock index i.
int sb_row_index = (i / sb_cols);
int sb_col_index = i - sb_row_index * sb_cols;
int mi_row = sb_row_index * cm->seq_params->mib_size;
int mi_col = sb_col_index * cm->seq_params->mib_size;
assert(mi_row >= 0 && mi_row < mi_params->mi_rows);
assert(mi_col >= 0 && mi_col < mi_params->mi_cols);
bl_index = mi_row * mi_params->mi_cols + mi_col;
// Loop through all MI blocks in superblock and update map.
xmis = AOMMIN(mi_params->mi_cols - mi_col, cm->seq_params->mib_size);
ymis = AOMMIN(mi_params->mi_rows - mi_row, cm->seq_params->mib_size);
// cr_map only needed at 8x8 blocks.
for (y = 0; y < ymis; y += 2) {
for (x = 0; x < xmis; x += 2) {
const int bl_index2 = bl_index + y * mi_params->mi_cols + x;
// If the block is as a candidate for clean up then mark it
// for possible boost/refresh (segment 1). The segment id may get
// reset to 0 later if block gets coded anything other than GLOBALMV.
if (cr->map[bl_index2] == 0) {
sum_map += 4;
} else if (cr->map[bl_index2] < 0) {
cr->map[bl_index2]++;
}
}
}
// Enforce constant segment over superblock.
// If segment is at least half of superblock, set to 1.
if (sum_map >= (xmis * ymis) >> 1) {
for (y = 0; y < ymis; y++)
for (x = 0; x < xmis; x++) {
seg_map[bl_index + y * mi_params->mi_cols + x] = CR_SEGMENT_ID_BOOST1;
}
cr->target_num_seg_blocks += xmis * ymis;
}
i++;
if (i == sbs_in_frame) {
i = 0;
}
} while (cr->target_num_seg_blocks < block_count && i != cr->sb_index);
cr->sb_index = i;
}
// Set cyclic refresh parameters.
void av1_cyclic_refresh_update_parameters(AV1_COMP *const cpi) {
// TODO(marpan): Parameters need to be tuned.
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const AV1_COMMON *const cm = &cpi->common;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
int num4x4bl = cm->mi_params.MBs << 4;
int target_refresh = 0;
double weight_segment_target = 0;
double weight_segment = 0;
int qp_thresh = AOMMIN(20, rc->best_quality << 1);
int qp_max_thresh = 118 * MAXQ >> 7;
// Although this segment feature for RTC is only used for
// blocks >= 8X8, for more efficient coding of the seg map
// cur_frame->seg_map needs to set at 4x4 along with the
// function av1_cyclic_reset_segment_skip(). Skipping over
// 4x4 will therefore have small bdrate loss (~0.2%), so
// we use it only for speed > 9 for now.
// Also if loop-filter deltas is applied via segment, then
// we need to set cr->skip_over4x4 = 1.
cr->skip_over4x4 = (cpi->oxcf.speed > 9) ? 1 : 0;
cr->apply_cyclic_refresh = 1;
if (frame_is_intra_only(cm) || is_lossless_requested(&cpi->oxcf.rc_cfg) ||
cpi->svc.temporal_layer_id > 0 ||
p_rc->avg_frame_qindex[INTER_FRAME] < qp_thresh ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) ||
(rc->frames_since_key > 20 &&
p_rc->avg_frame_qindex[INTER_FRAME] > qp_max_thresh) ||
(rc->avg_frame_low_motion && rc->avg_frame_low_motion < 30 &&
rc->frames_since_key > 40)) {
cr->apply_cyclic_refresh = 0;
return;
}
cr->percent_refresh = 10;
// Increase the amount of refresh for #temporal_layers > 2, and for some
// frames after scene change that is encoded at high Q.
if (cpi->svc.number_temporal_layers > 2)
cr->percent_refresh = 15;
else if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
cr->counter_encode_maxq_scene_change < 20)
cr->percent_refresh = 20;
cr->max_qdelta_perc = 60;
cr->time_for_refresh = 0;
cr->motion_thresh = 32;
cr->rate_boost_fac =
(cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) ? 10 : 15;
// Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4)
// periods of the refresh cycle, after a key frame.
// Account for larger interval on base layer for temporal layers.
if (cr->percent_refresh > 0 &&
rc->frames_since_key <
(4 * cpi->svc.number_temporal_layers) * (100 / cr->percent_refresh)) {
cr->rate_ratio_qdelta = 3.0;
} else {
cr->rate_ratio_qdelta = 2.0;
}
// Adjust some parameters for low resolutions.
if (cm->width * cm->height <= 352 * 288) {
if (rc->avg_frame_bandwidth < 3000) {
cr->motion_thresh = 16;
cr->rate_boost_fac = 13;
} else {
cr->max_qdelta_perc = 50;
cr->rate_ratio_qdelta = AOMMAX(cr->rate_ratio_qdelta, 2.0);
}
}
if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
// To be adjusted for VBR mode, e.g., based on gf period and boost.
// For now use smaller qp-delta (than CBR), no second boosted seg, and
// turn-off (no refresh) on golden refresh (since it's already boosted).
cr->percent_refresh = 10;
cr->rate_ratio_qdelta = 1.5;
cr->rate_boost_fac = 10;
if (cpi->refresh_frame.golden_frame) {
cr->percent_refresh = 0;
cr->rate_ratio_qdelta = 1.0;
}
}
// Weight for segment prior to encoding: take the average of the target
// number for the frame to be encoded and the actual from the previous frame.
// Use the target if its less. To be used for setting the base qp for the
// frame in av1_rc_regulate_q.
target_refresh =
cr->percent_refresh * cm->mi_params.mi_rows * cm->mi_params.mi_cols / 100;
weight_segment_target = (double)(target_refresh) / num4x4bl;
weight_segment = (double)((target_refresh + cr->actual_num_seg1_blocks +
cr->actual_num_seg2_blocks) >>
1) /
num4x4bl;
if (weight_segment_target < 7 * weight_segment / 8)
weight_segment = weight_segment_target;
cr->weight_segment = weight_segment;
if (rc->rtc_external_ratectrl) {
cr->actual_num_seg1_blocks = cr->percent_refresh * cm->mi_params.mi_rows *
cm->mi_params.mi_cols / 100;
cr->actual_num_seg2_blocks = 0;
cr->weight_segment = (double)(cr->actual_num_seg1_blocks) / num4x4bl;
}
}
// Setup cyclic background refresh: set delta q and segmentation map.
void av1_cyclic_refresh_setup(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
struct segmentation *const seg = &cm->seg;
const int scene_change_detected =
cpi->rc.high_source_sad ||
(cpi->ppi->use_svc && cpi->svc.high_source_sad_superframe);
const int resolution_change =
cm->prev_frame && (cm->width != cm->prev_frame->width ||
cm->height != cm->prev_frame->height);
if (resolution_change) av1_cyclic_refresh_reset_resize(cpi);
if (!cr->apply_cyclic_refresh) {
// Set segmentation map to 0 and disable.
unsigned char *const seg_map = cpi->enc_seg.map;
memset(seg_map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
av1_disable_segmentation(&cm->seg);
if (cm->current_frame.frame_type == KEY_FRAME || scene_change_detected) {
cr->sb_index = 0;
cr->counter_encode_maxq_scene_change = 0;
}
return;
} else {
cr->counter_encode_maxq_scene_change++;
const double q = av1_convert_qindex_to_q(cm->quant_params.base_qindex,
cm->seq_params->bit_depth);
// Set rate threshold to some multiple (set to 2 for now) of the target
// rate (target is given by sb64_target_rate and scaled by 256).
cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2;
// Distortion threshold, quadratic in Q, scale factor to be adjusted.
// q will not exceed 457, so (q * q) is within 32bit; see:
// av1_convert_qindex_to_q(), av1_ac_quant(), ac_qlookup*[].
cr->thresh_dist_sb = ((int64_t)(q * q)) << 2;
// For low-resoln or lower speeds, the rate/dist thresholds need to be
// tuned/updated.
if (cpi->oxcf.speed <= 7 || (cm->width * cm->height < 640 * 360)) {
cr->thresh_dist_sb = 0;
cr->thresh_rate_sb = INT64_MAX;
}
// Set up segmentation.
// Clear down the segment map.
av1_enable_segmentation(&cm->seg);
av1_clearall_segfeatures(seg);
// Note: setting temporal_update has no effect, as the seg-map coding method
// (temporal or spatial) is determined in
// av1_choose_segmap_coding_method(),
// based on the coding cost of each method. For error_resilient mode on the
// last_frame_seg_map is set to 0, so if temporal coding is used, it is
// relative to 0 previous map.
// seg->temporal_update = 0;
// Segment BASE "Q" feature is disabled so it defaults to the baseline Q.
av1_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q);
// Use segment BOOST1 for in-frame Q adjustment.
av1_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q);
// Use segment BOOST2 for more aggressive in-frame Q adjustment.
av1_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q);
// Set the q delta for segment BOOST1.
const CommonQuantParams *const quant_params = &cm->quant_params;
int qindex_delta =
compute_deltaq(cpi, quant_params->base_qindex, cr->rate_ratio_qdelta);
cr->qindex_delta[1] = qindex_delta;
// Compute rd-mult for segment BOOST1.
const int qindex2 = clamp(
quant_params->base_qindex + quant_params->y_dc_delta_q + qindex_delta,
0, MAXQ);
cr->rdmult = av1_compute_rd_mult(cpi, qindex2);
av1_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta);
// Set a more aggressive (higher) q delta for segment BOOST2.
qindex_delta = compute_deltaq(
cpi, quant_params->base_qindex,
AOMMIN(CR_MAX_RATE_TARGET_RATIO,
0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta));
cr->qindex_delta[2] = qindex_delta;
av1_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
// Update the segmentation and refresh map.
cyclic_refresh_update_map(cpi);
}
}
int av1_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
return cr->rdmult;
}
void av1_cyclic_refresh_reset_resize(AV1_COMP *const cpi) {
const AV1_COMMON *const cm = &cpi->common;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
memset(cr->map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
cr->sb_index = 0;
cpi->refresh_frame.golden_frame = true;
cr->apply_cyclic_refresh = 0;
cr->counter_encode_maxq_scene_change = 0;
}