blob: 3664ccf29f95f653fb6860c6d51b06e8da43cc0e [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cmath>
#include <cstdlib>
#include <string>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/entropy.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
using libaom_test::ACMRandom;
namespace {
const int kNumIterations = 1000;
typedef int64_t (*ErrorBlockFunc)(const tran_low_t *coeff,
const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz, int bps);
typedef ::testing::tuple<ErrorBlockFunc, ErrorBlockFunc, aom_bit_depth_t>
ErrorBlockParam;
class ErrorBlockTest : public ::testing::TestWithParam<ErrorBlockParam> {
public:
virtual ~ErrorBlockTest() {}
virtual void SetUp() {
error_block_op_ = GET_PARAM(0);
ref_error_block_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
aom_bit_depth_t bit_depth_;
ErrorBlockFunc error_block_op_;
ErrorBlockFunc ref_error_block_op_;
};
TEST_P(ErrorBlockTest, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff[4096]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]);
int err_count_total = 0;
int first_failure = -1;
intptr_t block_size;
int64_t ssz;
int64_t ret;
int64_t ref_ssz;
int64_t ref_ret;
const int msb = bit_depth_ + 8 - 1;
for (int i = 0; i < kNumIterations; ++i) {
int err_count = 0;
block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64
for (int j = 0; j < block_size; j++) {
// coeff and dqcoeff will always have at least the same sign, and this
// can be used for optimization, so generate test input precisely.
if (rnd(2)) {
// Positive number
coeff[j] = rnd(1 << msb);
dqcoeff[j] = rnd(1 << msb);
} else {
// Negative number
coeff[j] = -rnd(1 << msb);
dqcoeff[j] = -rnd(1 << msb);
}
}
ref_ret =
ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_);
ASM_REGISTER_STATE_CHECK(
ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_));
err_count += (ref_ret != ret) | (ref_ssz != ssz);
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Error Block Test, C output doesn't match optimized output. "
<< "First failed at test case " << first_failure;
}
TEST_P(ErrorBlockTest, ExtremeValues) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff[4096]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]);
int err_count_total = 0;
int first_failure = -1;
intptr_t block_size;
int64_t ssz;
int64_t ret;
int64_t ref_ssz;
int64_t ref_ret;
const int msb = bit_depth_ + 8 - 1;
int max_val = ((1 << msb) - 1);
for (int i = 0; i < kNumIterations; ++i) {
int err_count = 0;
int k = (i / 9) % 9;
// Change the maximum coeff value, to test different bit boundaries
if (k == 8 && (i % 9) == 0) {
max_val >>= 1;
}
block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64
for (int j = 0; j < block_size; j++) {
if (k < 4) {
// Test at positive maximum values
coeff[j] = k % 2 ? max_val : 0;
dqcoeff[j] = (k >> 1) % 2 ? max_val : 0;
} else if (k < 8) {
// Test at negative maximum values
coeff[j] = k % 2 ? -max_val : 0;
dqcoeff[j] = (k >> 1) % 2 ? -max_val : 0;
} else {
if (rnd(2)) {
// Positive number
coeff[j] = rnd(1 << 14);
dqcoeff[j] = rnd(1 << 14);
} else {
// Negative number
coeff[j] = -rnd(1 << 14);
dqcoeff[j] = -rnd(1 << 14);
}
}
}
ref_ret =
ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_);
ASM_REGISTER_STATE_CHECK(
ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_));
err_count += (ref_ret != ret) | (ref_ssz != ssz);
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Error Block Test, C output doesn't match optimized output. "
<< "First failed at test case " << first_failure;
}
TEST_P(ErrorBlockTest, DISABLED_Speed) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff[4096]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]);
intptr_t block_size;
int64_t ssz;
int num_iters = 100000;
int64_t ref_ssz;
int k;
const int msb = bit_depth_ + 8 - 1;
for (int i = 0; i < 9; ++i) {
block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64
for (k = 0; k < 9; k++) {
for (int j = 0; j < block_size; j++) {
if (k < 5) {
if (rnd(2)) {
// Positive number
coeff[j] = rnd(1 << msb);
dqcoeff[j] = rnd(1 << msb);
} else {
// Negative number
coeff[j] = -rnd(1 << msb);
dqcoeff[j] = -rnd(1 << msb);
}
} else {
if (rnd(2)) {
// Positive number
coeff[j] = rnd(1 << 14);
dqcoeff[j] = rnd(1 << 14);
} else {
// Negative number
coeff[j] = -rnd(1 << 14);
dqcoeff[j] = -rnd(1 << 14);
}
}
}
aom_usec_timer ref_timer, test_timer;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < num_iters; ++i) {
ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < num_iters; ++i) {
error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
" c_time=%d \t simd_time=%d \t "
"gain=%d \n",
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
}
}
}
#if (HAVE_SSE2 || HAVE_AVX)
using ::testing::make_tuple;
INSTANTIATE_TEST_CASE_P(
SSE2, ErrorBlockTest,
::testing::Values(make_tuple(&av1_highbd_block_error_sse2,
&av1_highbd_block_error_c, AOM_BITS_10),
make_tuple(&av1_highbd_block_error_sse2,
&av1_highbd_block_error_c, AOM_BITS_12),
make_tuple(&av1_highbd_block_error_sse2,
&av1_highbd_block_error_c, AOM_BITS_8)));
#endif // HAVE_SSE2
#if (HAVE_AVX2)
using ::testing::make_tuple;
INSTANTIATE_TEST_CASE_P(
AVX2, ErrorBlockTest,
::testing::Values(make_tuple(&av1_highbd_block_error_avx2,
&av1_highbd_block_error_c, AOM_BITS_10),
make_tuple(&av1_highbd_block_error_avx2,
&av1_highbd_block_error_c, AOM_BITS_12),
make_tuple(&av1_highbd_block_error_avx2,
&av1_highbd_block_error_c, AOM_BITS_8)));
#endif // HAVE_AVX2
} // namespace