blob: 5456b8b7c2b293b8917677a7078dea5532f862d3 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_HIGHBITDEPTH
#define IF_HBD(...) __VA_ARGS__
#else
#define IF_HBD(...)
#endif // CONFIG_HIGHBITDEPTH
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *rate);
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
#if CONFIG_EXT_PARTITION
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
#endif // CONFIG_EXT_PARTITION
};
#if CONFIG_HIGHBITDEPTH
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
#if CONFIG_EXT_PARTITION
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
#endif // CONFIG_EXT_PARTITION
};
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
#if CONFIG_EXT_PARTITION
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
#endif // CONFIG_EXT_PARTITION
};
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16,
#if CONFIG_EXT_PARTITION
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16
#endif // CONFIG_EXT_PARTITION
};
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_FP_MB_STATS
static const uint8_t num_16x16_blocks_wide_lookup[BLOCK_SIZES_ALL] = {
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
4,
4,
IF_EXT_PARTITION(4, 8, 8) 1,
1,
1,
2,
2,
4,
IF_EXT_PARTITION(2, 8)
};
static const uint8_t num_16x16_blocks_high_lookup[BLOCK_SIZES_ALL] = {
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
1,
2,
4,
2,
4,
IF_EXT_PARTITION(8, 4, 8) 1,
1,
2,
1,
4,
2,
IF_EXT_PARTITION(8, 2)
};
#endif // CONFIG_FP_MB_STATS
unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#if CONFIG_HIGHBITDEPTH
unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse);
break;
case 12:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse);
break;
case 8:
default:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse);
break;
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#endif // CONFIG_HIGHBITDEPTH
static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static void set_mode_info_offsets(const AV1_COMP *const cpi,
MACROBLOCK *const x, MACROBLOCKD *const xd,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
static void set_offsets_without_segment_id(const AV1_COMP *const cpi,
const TileInfo *const tile,
MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
set_skip_context(xd, mi_row, mi_col);
xd->above_txfm_context =
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
xd->left_txfm_context = xd->left_txfm_context_buffer +
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_limits.row_min =
-(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
set_plane_n4(xd, mi_width, mi_height);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
#if CONFIG_DEPENDENT_HORZTILES
cm->dependent_horz_tiles,
#endif // CONFIG_DEPENDENT_HORZTILES
cm->mi_rows, cm->mi_cols);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col);
// R/D setup.
x->rdmult = cpi->rd.RDMULT;
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const struct segmentation *const seg = &cm->seg;
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
#if CONFIG_CFL
xd->cfl->mi_row = mi_row;
xd->cfl->mi_col = mi_col;
#endif
mbmi->segment_id = 0;
#if CONFIG_Q_SEGMENTATION
mbmi->q_segment_id = 0;
#endif
// Setup segment ID.
#if CONFIG_Q_SEGMENTATION
if (seg->enabled || seg->q_lvls) {
#else
if (seg->enabled) {
#endif
if (seg->enabled && !cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
#if CONFIG_Q_SEGMENTATION
if (seg->q_lvls)
mbmi->q_segment_id =
get_segment_id(cm, cpi->q_seg_encoding_map, bsize, mi_row, mi_col);
av1_init_plane_quantizers(cpi, x, mbmi->segment_id, mbmi->q_segment_id);
#else
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
#endif
}
}
#if CONFIG_DUAL_FILTER
static void reset_intmv_filter_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi) {
InterpFilter filters[2];
InterpFilter default_filter = av1_unswitchable_filter(cm->interp_filter);
for (int dir = 0; dir < 2; ++dir) {
filters[dir] = ((!has_subpel_mv_component(xd->mi[0], xd, dir) &&
(mbmi->ref_frame[1] == NONE_FRAME ||
!has_subpel_mv_component(xd->mi[0], xd, dir + 2)))
? default_filter
: av1_extract_interp_filter(mbmi->interp_filters, dir));
}
mbmi->interp_filters = av1_make_interp_filters(filters[0], filters[1]);
}
static void update_filter_type_count(uint8_t allow_update_cdf,
FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, dir);
++counts->switchable_interp[ctx][filter];
if (allow_update_cdf)
update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter,
SWITCHABLE_FILTERS);
}
}
}
#endif
static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize,
const MB_MODE_INFO *mbmi,
RD_COUNTS *rdc) {
if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) {
const int num_4x4s =
num_4x4_blocks_wide_lookup[bsize] * num_4x4_blocks_high_lookup[bsize];
int ref;
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s;
}
}
}
static void reset_tx_size(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
const TX_MODE tx_mode) {
if (xd->lossless[mbmi->segment_id]) {
mbmi->tx_size = TX_4X4;
} else if (tx_mode != TX_MODE_SELECT) {
mbmi->tx_size =
tx_size_from_tx_mode(mbmi->sb_type, tx_mode, is_inter_block(mbmi));
}
}
static void set_ref_and_pred_mvs(MACROBLOCK *const x, int_mv *const mi_pred_mv,
int8_t rf_type) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int bw = xd->n8_w << MI_SIZE_LOG2;
const int bh = xd->n8_h << MI_SIZE_LOG2;
int ref_mv_idx = mbmi->ref_mv_idx;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
CANDIDATE_MV *const curr_ref_mv_stack = mbmi_ext->ref_mv_stack[rf_type];
if (has_second_ref(mbmi)) {
// Special case: NEAR_NEWMV and NEW_NEARMV modes use 1 + mbmi->ref_mv_idx
// (like NEARMV) instead
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) ref_mv_idx += 1;
if (compound_ref0_mode(mbmi->mode) == NEWMV) {
int_mv this_mv = curr_ref_mv_stack[ref_mv_idx].this_mv;
clamp_mv_ref(&this_mv.as_mv, bw, bh, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv;
mbmi->pred_mv[0] = this_mv;
mi_pred_mv[0] = this_mv;
}
if (compound_ref1_mode(mbmi->mode) == NEWMV) {
int_mv this_mv = curr_ref_mv_stack[ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, bw, bh, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv;
mbmi->pred_mv[1] = this_mv;
mi_pred_mv[1] = this_mv;
}
} else {
if (mbmi->mode == NEWMV) {
int i;
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
int_mv this_mv = (i == 0) ? curr_ref_mv_stack[ref_mv_idx].this_mv
: curr_ref_mv_stack[ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, bw, bh, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
mbmi->pred_mv[i] = this_mv;
mi_pred_mv[i] = this_mv;
}
}
}
}
static void update_state(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, PICK_MODE_CONTEXT *ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = mi_size_wide[mi->mbmi.sb_type];
const int bh = mi_size_high[mi->mbmi.sb_type];
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int8_t rf_type;
assert(mi->mbmi.sb_type == bsize);
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
#if CONFIG_DUAL_FILTER
reset_intmv_filter_type(cm, xd, mbmi);
#endif
rf_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext->ref_mv_count[rf_type] > 1) {
set_ref_and_pred_mvs(x, mi->mbmi.pred_mv, rf_type);
}
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
reset_tx_size(xd, &mi_addr->mbmi, cm->tx_mode);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
bsize, ctx->rate, ctx->dist, x->skip);
reset_tx_size(xd, &mi_addr->mbmi, cm->tx_mode);
}
}
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
#if CONFIG_LV_MAP
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
#endif // CONFIG_LV_MAP
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
#if CONFIG_MRC_TX
xd->mrc_mask = ctx->mrc_mask;
#endif // CONFIG_MRC_TX
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
#if !CONFIG_EXT_DELTA_Q
if (cpi->oxcf.aq_mode > NO_AQ && cpi->oxcf.aq_mode < DELTA_AQ)
#if CONFIG_Q_SEGMENTATION
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id,
xd->mi[0]->mbmi.q_segment_id);
#else
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#endif
#else
if (cpi->oxcf.aq_mode)
#if CONFIG_Q_SEGMENTATION
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id,
xd->mi[0]->mbmi.q_segment_id);
#else
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#endif
#endif
x->skip = ctx->skip;
for (i = 0; i < 1; ++i)
memcpy(x->blk_skip[i], ctx->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
if (dry_run) return;
#if CONFIG_INTERNAL_STATS
{
unsigned int *const mode_chosen_counts =
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_SMOOTH, /*SMOOTH_PRED*/
THR_SMOOTH_V, /*SMOOTH_V_PRED*/
THR_SMOOTH_H, /*SMOOTH_H_PRED*/
THR_PAETH /*PAETH_PRED*/,
};
++mode_chosen_counts[kf_mode_index[mbmi->mode]];
} else {
// Note how often each mode chosen as best
++mode_chosen_counts[ctx->best_mode_index];
}
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mbmi)) {
av1_update_mv_count(td);
if (bsize >= BLOCK_8X8) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mbmi->mode, bsize, mbmi, rdc);
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi, rdc);
}
}
}
if (cm->interp_filter == SWITCHABLE &&
mbmi->motion_mode != WARPED_CAUSAL &&
!is_nontrans_global_motion(xd)) {
#if CONFIG_DUAL_FILTER
update_filter_type_count(tile_data->allow_update_cdf, td->counts, xd,
mbmi);
#else
(void)tile_data;
const int switchable_ctx = av1_get_pred_context_switchable_interp(xd);
const InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, 0);
++td->counts->switchable_interp[switchable_ctx][filter];
#endif
}
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
#if CONFIG_JNT_COMP
#endif // CONFIG_JNT_COMP
}
#if NC_MODE_INFO
static void set_mode_info_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, int mi_row, int mi_col,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
const TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, 1);
}
static void set_mode_info_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
const int hbs = mi_size_wide[bsize] / 2;
const PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
const int quarter_step = mi_size_wide[bsize] / 4;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
switch (partition) {
case PARTITION_NONE:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, subsize,
&pc_tree->none);
break;
case PARTITION_VERT:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols) {
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col + hbs, subsize,
&pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows) {
set_mode_info_b(cpi, tile_data, td, mi_row + hbs, mi_col, subsize,
&pc_tree->horizontal[1]);
}
break;
case PARTITION_SPLIT:
set_mode_info_sb(cpi, td, tile_data, tp, mi_row, mi_col, subsize,
pc_tree->split[0]);
set_mode_info_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, subsize,
pc_tree->split[1]);
set_mode_info_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, subsize,
pc_tree->split[2]);
set_mode_info_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs,
subsize, pc_tree->split[3]);
break;
#if CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_PARTITION_TYPES_AB
#error NC_MODE_INFO+MOTION_VAR not yet supported for new HORZ/VERT_AB partitions
#endif
case PARTITION_HORZ_A:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, bsize2,
&pc_tree->horizontala[0]);
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col + hbs, bsize2,
&pc_tree->horizontala[1]);
set_mode_info_b(cpi, tile_data, td, mi_row + hbs, mi_col, subsize,
&pc_tree->horizontala[2]);
break;
case PARTITION_HORZ_B:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, subsize,
&pc_tree->horizontalb[0]);
set_mode_info_b(cpi, tile_data, td, mi_row + hbs, mi_col, bsize2,
&pc_tree->horizontalb[1]);
set_mode_info_b(cpi, tile_data, td, mi_row + hbs, mi_col + hbs, bsize2,
&pc_tree->horizontalb[2]);
break;
case PARTITION_VERT_A:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, bsize2,
&pc_tree->verticala[0]);
set_mode_info_b(cpi, tile_data, td, mi_row + hbs, mi_col, bsize2,
&pc_tree->verticala[1]);
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col + hbs, subsize,
&pc_tree->verticala[2]);
break;
case PARTITION_VERT_B:
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col, subsize,
&pc_tree->verticalb[0]);
set_mode_info_b(cpi, tile_data, td, mi_row, mi_col + hbs, bsize2,
&pc_tree->verticalb[1]);
set_mode_info_b(cpi, tile_data, td, mi_row + hbs, mi_col + hbs, bsize2,
&pc_tree->verticalb[2]);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
set_mode_info_b(cpi, tile_data, td, this_mi_row, mi_col, subsize,
&pc_tree->horizontal4[i]);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
set_mode_info_b(cpi, tile_data, td, mi_row, this_mi_col, subsize,
&pc_tree->vertical4[i]);
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0 && "Invalid partition type."); break;
}
}
#endif
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
const int widths[3] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[3] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, x->e_mbd.mi[0]->mbmi.sb_type, buffers[i],
widths[i], heights[i], strides[i], mi_row, mi_col, NULL,
x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
#if CONFIG_Q_SEGMENTATION
int8_t segment_id, int8_t q_segment_id) {
#else
int8_t segment_id) {
#endif
int segment_qindex;
const AV1_COMMON *const cm = &cpi->common;
#if CONFIG_Q_SEGMENTATION
av1_init_plane_quantizers(cpi, x, segment_id, q_segment_id);
#else
av1_init_plane_quantizers(cpi, x, segment_id);
#endif
aom_clear_system_state();
#if CONFIG_Q_SEGMENTATION
segment_qindex =
av1_get_qindex(&cm->seg, segment_id, q_segment_id, cm->base_qindex);
#else
segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
#endif
return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
}
#if CONFIG_DIST_8X8
static void dist_8x8_set_sub8x8_dst(MACROBLOCK *const x, uint8_t *dst8x8,
BLOCK_SIZE bsize, int bw, int bh,
int mi_row, int mi_col) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
const int dst_stride = pd->dst.stride;
uint8_t *dst = pd->dst.buf;
assert(bsize < BLOCK_8X8);
if (bsize < BLOCK_8X8) {
int i, j;
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst8x8_16 = (uint16_t *)dst8x8;
uint16_t *dst_sub8x8 = &dst8x8_16[((mi_row & 1) * 8 + (mi_col & 1)) << 2];
for (j = 0; j < bh; ++j)
for (i = 0; i < bw; ++i)
dst_sub8x8[j * 8 + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];
} else {
#endif
uint8_t *dst_sub8x8 = &dst8x8[((mi_row & 1) * 8 + (mi_col & 1)) << 2];
for (j = 0; j < bh; ++j)
for (i = 0; i < bw; ++i)
dst_sub8x8[j * 8 + i] = dst[j * dst_stride + i];
#if CONFIG_HIGHBITDEPTH
}
#endif
}
}
#endif // CONFIG_DIST_8X8
static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i, orig_rdmult;
aom_clear_system_state();
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
mbmi->sb_type = bsize;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
#if CONFIG_EXT_PARTITION_TYPES
mbmi->partition = partition;
#endif
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
#if CONFIG_LV_MAP
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
#endif
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
#if CONFIG_MRC_TX
xd->mrc_mask = ctx->mrc_mask;
#endif // CONFIG_MRC_TX
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
x->skip_chroma_rd =
!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
#else
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
#endif // CONFIG_HIGHBITDEPTH
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy =
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
mbmi->segment_id = av1_vaq_segment_id(energy);
// Re-initialise quantiser
#if CONFIG_Q_SEGMENTATION
av1_init_plane_quantizers(cpi, x, mbmi->segment_id, mbmi->q_segment_id);
#else
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
#endif
}
#if CONFIG_Q_SEGMENTATION
x->rdmult =
set_segment_rdmult(cpi, x, mbmi->segment_id, mbmi->q_segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult =
set_segment_rdmult(cpi, x, mbmi->segment_id, mbmi->q_segment_id);
#else
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
#endif
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
} else {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd);
} else {
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
bsize, ctx, best_rd);
}
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
(bsize >= BLOCK_16X16) &&
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
cpi->refresh_alt2_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
}
static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode,
int16_t mode_context) {
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
if (mode == NEWMV) {
++counts->newmv_mode[mode_ctx][0];
return;
} else {
++counts->newmv_mode[mode_ctx][1];
if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) {
return;
}
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
++counts->zeromv_mode[mode_ctx][0];
return;
} else {
++counts->zeromv_mode[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
}
}
}
static void update_stats(const AV1_COMMON *const cm, TileDataEnc *tile_data,
ThreadData *td, int mi_row, int mi_col) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const BLOCK_SIZE bsize = mbmi->sb_type;
FRAME_CONTEXT *fc = xd->tile_ctx;
const uint8_t allow_update_cdf = tile_data->allow_update_cdf;
// delta quant applies to both intra and inter
const int super_block_upper_left = ((mi_row & (cm->mib_size - 1)) == 0) &&
((mi_col & (cm->mib_size - 1)) == 0);
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
const int skip_ctx = av1_get_skip_context(xd);
td->counts->skip[skip_ctx][mbmi->skip]++;
if (allow_update_cdf) update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2);
}
if (cm->delta_q_present_flag && (bsize != cm->sb_size || !mbmi->skip) &&
super_block_upper_left) {
const int dq = (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
const int absdq = abs(dq);
int i;
for (i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
xd->prev_qindex = mbmi->current_q_index;
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
if (cm->delta_lf_present_flag) {
if (cm->delta_lf_multi) {
for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) {
const int delta_lf =
(mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) /
cm->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf_multi[lf_id][i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id];
}
} else {
const int delta_lf =
(mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) /
cm->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf[abs_delta_lf][0]++;
xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base;
}
}
#else
if (cm->delta_lf_present_flag) {
const int dlf =
(mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) /
cm->delta_lf_res;
const int absdlf = abs(dlf);
for (i = 0; i < AOMMIN(absdlf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (absdlf < DELTA_LF_SMALL) td->counts->delta_lf[absdlf][0]++;
xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base;
}
#endif // CONFIG_LOOPFILTER_LEVEL
#endif
}
if (!frame_is_intra_only(cm)) {
FRAME_COUNTS *const counts = td->counts;
RD_COUNTS *rdc = &td->rd_counts;
const int inter_block = is_inter_block(mbmi);
if (!seg_ref_active) {
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
if (allow_update_cdf)
update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
inter_block, 2);
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
if (has_second_ref(mbmi))
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
else
// This flag is also updated for 4x4 blocks
rdc->single_ref_used_flag = 1;
if (is_comp_ref_allowed(mbmi->sb_type)) {
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
if (allow_update_cdf)
update_cdf(av1_get_reference_mode_cdf(cm, xd),
has_second_ref(mbmi), 2);
}
}
if (has_second_ref(mbmi)) {
#if CONFIG_EXT_COMP_REFS
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
[comp_ref_type]++;
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = (ref0 == BWDREF_FRAME);
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0]
[bit]++;
if (!bit) {
const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
[bit1]++;
if (bit1) {
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)]
[2][ref1 == GOLDEN_FRAME]++;
}
}
} else {
#endif // CONFIG_EXT_COMP_REFS
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++;
if (!bit) {
counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1]
[ref0 == LAST_FRAME]++;
} else {
counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2]
[ref0 == GOLDEN_FRAME]++;
}
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0]
[ref1 == ALTREF_FRAME]++;
if (ref1 != ALTREF_FRAME)
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(cm, xd)]
[1][ref1 == ALTREF2_FRAME]++;
#if CONFIG_EXT_COMP_REFS
}
#endif // CONFIG_EXT_COMP_REFS
} else {
const int bit = (ref0 >= BWDREF_FRAME);
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
if (bit) {
assert(ref0 <= ALTREF_FRAME);
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 == ALTREF_FRAME]++;
if (ref0 != ALTREF_FRAME)
counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
[ref0 == ALTREF2_FRAME]++;
} else {
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
counts
->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
if (!bit1) {
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
[ref0 != LAST_FRAME]++;
} else {
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
[ref0 != LAST3_FRAME]++;
}
}
}
if (cm->reference_mode != COMPOUND_REFERENCE &&
cm->allow_interintra_compound && is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
counts->interintra[bsize_group][1]++;
if (allow_update_cdf)
update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
if (allow_update_cdf)
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (is_interintra_wedge_used(bsize)) {
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
if (allow_update_cdf)
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
}
} else {
counts->interintra[bsize_group][0]++;
if (allow_update_cdf)
update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
}
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
const MOTION_MODE motion_allowed =
motion_mode_allowed(0, xd->global_motion, xd, mi);
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed == WARPED_CAUSAL) {
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
if (allow_update_cdf)
update_cdf(fc->motion_mode_cdf[mbmi->sb_type], mbmi->motion_mode,
MOTION_MODES);
} else if (motion_allowed == OBMC_CAUSAL) {
counts->obmc[mbmi->sb_type][mbmi->motion_mode == OBMC_CAUSAL]++;
if (allow_update_cdf)
update_cdf(fc->obmc_cdf[mbmi->sb_type],
mbmi->motion_mode == OBMC_CAUSAL, 2);
}
}
if (cm->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION) {
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
counts
->compound_interinter[bsize][mbmi->interinter_compound_type]++;
if (allow_update_cdf)
update_cdf(fc->compound_type_cdf[bsize],
mbmi->interinter_compound_type, COMPOUND_TYPES);
}
}
}
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int16_t mode_ctx;
const PREDICTION_MODE mode = mbmi->mode;
if (has_second_ref(mbmi)) {
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
if (allow_update_cdf)
update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
} else {
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
update_inter_mode_stats(counts, mode, mode_ctx);
}
int mode_allowed = (mbmi->mode == NEWMV);
mode_allowed |= (mbmi->mode == NEW_NEWMV);
if (mode_allowed) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
if (mbmi->ref_mv_idx == idx) break;
}
}
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
int idx;
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
if (mbmi->ref_mv_idx == idx - 1) break;
}
}
}
#if CONFIG_JNT_COMP
if (has_second_ref(mbmi)) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx,
2);
}
#endif // CONFIG_JNT_COMP
}
}
}
typedef struct {
ENTROPY_CONTEXT a[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
ENTROPY_CONTEXT l[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
PARTITION_CONTEXT sa[MAX_MIB_SIZE];
PARTITION_CONTEXT sl[MAX_MIB_SIZE];
TXFM_CONTEXT *p_ta;
TXFM_CONTEXT *p_tl;
TXFM_CONTEXT ta[2 * MAX_MIB_SIZE];
TXFM_CONTEXT tl[2 * MAX_MIB_SIZE];
} RD_SEARCH_MACROBLOCK_CONTEXT;
static void restore_context(MACROBLOCK *x,
const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide =
block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_blocks_high =
block_size_high[bsize] >> tx_size_high_log2[0];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
int tx_col;
int tx_row;
tx_col = mi_col << (MI_SIZE_LOG2 - tx_size_wide_log2[0]);
tx_row = (mi_row & MAX_MIB_MASK) << (MI_SIZE_LOG2 - tx_size_high_log2[0]);
memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x),
ctx->a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y),
ctx->l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_seg_context + mi_col, ctx->sa,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl,
sizeof(xd->left_seg_context[0]) * mi_height);
xd->above_txfm_context = ctx->p_ta;
xd->left_txfm_context = ctx->p_tl;
memcpy(xd->above_txfm_context, ctx->ta,
sizeof(*xd->above_txfm_context) * (mi_width << TX_UNIT_WIDE_LOG2));
memcpy(xd->left_txfm_context, ctx->tl,
sizeof(*xd->left_txfm_context) * (mi_height << TX_UNIT_HIGH_LOG2));
}
static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide =
block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_blocks_high =
block_size_high[bsize] >> tx_size_high_log2[0];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
int tx_col;
int tx_row;
tx_col = mi_col << (MI_SIZE_LOG2 - tx_size_wide_log2[0]);
tx_row = (mi_row & MAX_MIB_MASK) << (MI_SIZE_LOG2 - tx_size_high_log2[0]);
memcpy(ctx->a + num_4x4_blocks_wide * p,
xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(ctx->l + num_4x4_blocks_high * p,
xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(ctx->sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
memcpy(ctx->ta, xd->above_txfm_context,
sizeof(*xd->above_txfm_context) * (mi_width << TX_UNIT_WIDE_LOG2));
memcpy(ctx->tl, xd->left_txfm_context,
sizeof(*xd->left_txfm_context) * (mi_height << TX_UNIT_HIGH_LOG2));
ctx->p_ta = xd->above_txfm_context;
ctx->p_tl = xd->left_txfm_context;
}
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
PICK_MODE_CONTEXT *ctx, int *rate) {
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
#if CONFIG_NCOBMC || CONFIG_EXT_DELTA_Q
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
#if CONFIG_NCOBMC
int check_ncobmc;
#endif
#endif
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
#if CONFIG_EXT_PARTITION_TYPES
x->e_mbd.mi[0]->mbmi.partition = partition;
#endif
update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, dry_run);
#if CONFIG_NCOBMC
mbmi = &xd->mi[0]->mbmi;
set_ref_ptrs(&cpi->common, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
#endif
#if CONFIG_NCOBMC
const MOTION_MODE motion_allowed =
motion_mode_allowed(0, xd->global_motion, xd, xd->mi[0]);
#endif
#if CONFIG_NCOBMC
check_ncobmc = is_inter_block(mbmi) && motion_allowed >= OBMC_CAUSAL;
if (!dry_run && check_ncobmc) {
av1_check_ncobmc_rd(cpi, x, mi_row, mi_col);
av1_setup_dst_planes(x->e_mbd.plane, bsize,
get_frame_new_buffer(&cpi->common), mi_row, mi_col);
}
#endif
#if CONFIG_LV_MAP
av1_set_coeff_buffer(cpi, x, mi_row, mi_col);
#endif
encode_superblock(cpi, tile_data, td, tp, dry_run, mi_row, mi_col, bsize,
rate);
#if CONFIG_LV_MAP
if (dry_run == 0)
x->cb_offset += block_size_wide[bsize] * block_size_high[bsize];
#endif
if (!dry_run) {
#if CONFIG_EXT_DELTA_Q
mbmi = &xd->mi[0]->mbmi;
if (bsize == cpi->common.sb_size && mbmi->skip == 1 &&
cpi->common.delta_lf_present_flag) {
#if CONFIG_LOOPFILTER_LEVEL
for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id)
mbmi->curr_delta_lf[lf_id] = xd->prev_delta_lf[lf_id];
#endif // CONFIG_LOOPFILTER_LEVEL
mbmi->current_delta_lf_from_base = xd->prev_delta_lf_from_base;
}
#endif
update_stats(&cpi->common, tile_data, td, mi_row, mi_col);
}
}
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
PC_TREE *pc_tree, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int hbs = mi_size_wide[bsize] / 2;
#if CONFIG_EXT_PARTITION_TYPES && CONFIG_EXT_PARTITION_TYPES_AB
const int qbs = mi_size_wide[bsize] / 4;
#endif
const int is_partition_root = bsize >= BLOCK_8X8;
const int ctx = is_partition_root
? partition_plane_context(xd, mi_row, mi_col, bsize)
: -1;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
int quarter_step = mi_size_wide[bsize] / 4;
int i;
#if !CONFIG_EXT_PARTITION_TYPES_AB
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif // !CONFIG_EXT_PARTITION_TYPES_AB
#endif // CONFIG_EXT_PARTITION_TYPES
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (!dry_run && ctx >= 0) td->counts->partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->none, rate);
break;
case PARTITION_VERT:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->vertical[0], rate);
if (mi_col + hbs < cm->mi_cols) {
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->vertical[1], rate);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->horizontal[0], rate);
if (mi_row + hbs < cm->mi_rows) {
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->horizontal[1], rate);
}
break;
case PARTITION_SPLIT:
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->split[0], rate);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
pc_tree->split[1], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
pc_tree->split[2], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
subsize, pc_tree->split[3], rate);
break;
#if CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_PARTITION_TYPES_AB
case PARTITION_HORZ_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run,
get_subsize(bsize, PARTITION_HORZ_4), partition,
&pc_tree->horizontala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + qbs, mi_col, dry_run,
get_subsize(bsize, PARTITION_HORZ_4), partition,
&pc_tree->horizontala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run,
get_subsize(bsize, PARTITION_HORZ_4), partition,
&pc_tree->horizontalb[1], rate);
if (mi_row + 3 * qbs < cm->mi_rows)
encode_b(cpi, tile_data, td, tp, mi_row + 3 * qbs, mi_col, dry_run,
get_subsize(bsize, PARTITION_HORZ_4), partition,
&pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run,
get_subsize(bsize, PARTITION_VERT_4), partition,
&pc_tree->verticala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + qbs, dry_run,
get_subsize(bsize, PARTITION_VERT_4), partition,
&pc_tree->verticala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->verticalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run,
get_subsize(bsize, PARTITION_VERT_4), partition,
&pc_tree->verticalb[1], rate);
if (mi_col + 3 * qbs < cm->mi_cols)
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + 3 * qbs, dry_run,
get_subsize(bsize, PARTITION_VERT_4), partition,
&pc_tree->verticalb[2], rate);
break;
#else
case PARTITION_HORZ_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->horizontala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, &pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->verticalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->verticalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, &pc_tree->verticalb[2], rate);
break;
#endif
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal4[i], rate);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
partition, &pc_tree->vertical4[i], rate);
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0 && "Invalid partition type."); break;
}
#if CONFIG_EXT_PARTITION_TYPES
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
#else
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif // CONFIG_EXT_PARTITION_TYPES
}
// Check to see if the given partition size is allowed for a specified number
// of mi block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return AOMMIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; bsize -= 3) {
*bh = mi_size_high[bsize];
*bw = mi_size_wide[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_sb_partition(const AV1_COMMON *const cm, MODE_INFO *mi,
int bh_in, int bw_in,
int mi_rows_remaining,
int mi_cols_remaining, BLOCK_SIZE bsize,
MODE_INFO **mib) {
int bh = bh_in;
int r, c;
for (r = 0; r < cm->mib_size; r += bh) {
int bw = bw_in;
for (c = 0; c < cm->mib_size; c += bw) {
const int index = r * cm->mi_stride + c;
mib[index] = mi + index;
mib[index]->mbmi.sb_type = find_partition_size(
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
MODE_INFO **mib, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col;
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
// Apply the requested partition size to the SB if it is all "in image"
if ((mi_cols_remaining >= cm->mib_size) &&
(mi_rows_remaining >= cm->mib_size)) {
for (block_row = 0; block_row < cm->mib_size; block_row += bh) {
for (block_col = 0; block_col < cm->mib_size; block_col += bw) {
int index = block_row * cm->mi_stride + block_col;
mib[index] = mi_upper_left + index;
mib[index]->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB.
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
mi_cols_remaining, bsize, mib);
}
}
static void rd_use_partition(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MODE_INFO **mib,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
int i;
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const PARTITION_TYPE partition =
(bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS last_part_rdc, none_rdc, chosen_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mib[0]->mbmi.sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(num_4x4_blocks_wide_lookup[bsize] ==
num_4x4_blocks_high_lookup[bsize]);
av1_invalid_rd_stats(&last_part_rdc);
av1_invalid_rd_stats(&none_rdc);
av1_invalid_rd_stats(&chosen_rdc);
pc_tree->partitioning = partition;
xd->above_txfm_context =
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
xd->left_txfm_context = xd->left_txfm_context_buffer +
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
save_context(x, &x_ctx, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = av1_block_energy(cpi, x, bsize);
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_NONE,
#endif
bsize, ctx_none, INT64_MAX);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
mib[0]->mbmi.sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_NONE,
#endif
bsize, ctx_none, INT64_MAX);
break;
case PARTITION_HORZ:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[0], INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs < cm->mi_rows) {
RD_STATS tmp_rdc;
PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0];
av1_init_rd_stats(&tmp_rdc);
update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row,
mi_col, subsize, NULL);
rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[1], INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[0], INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs < cm->mi_cols) {
RD_STATS tmp_rdc;
PICK_MODE_CONTEXT *ctx_v = &pc_tree->vertical[0];
av1_init_rd_stats(&tmp_rdc);
update_state(cpi, tile_data, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row,
mi_col, subsize, NULL);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_SPLIT:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
av1_init_rd_stats(&tmp_rdc);
rd_use_partition(cpi, td, tile_data,
mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != 3, pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4: assert(0 && "Cannot handle extended partiton types");
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += x->partition_cost[pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
}
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
(mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) &&
(mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(x, &x_ctx, mi_row, mi_col, bsize);
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&tmp_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_SPLIT,
#endif
split_subsize, &pc_tree->split[i]->none, INT64_MAX);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != 3)
encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
}
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mib[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == cm->sb_size)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
if (bsize == cm->sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
}
/* clang-format off */
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES_ALL] = {
BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2
BLOCK_4X4, // 4x4
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64
#if CONFIG_EXT_PARTITION
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 64x128, 128x64, 128x128
#endif // CONFIG_EXT_PARTITION
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16
#if CONFIG_EXT_PARTITION
BLOCK_16X16, BLOCK_16X16 // 32x128, 128x32
#endif // CONFIG_EXT_PARTITION
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES_ALL] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 2x2, 2x4, 4x2
BLOCK_8X8, // 4x4
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64
#if CONFIG_EXT_PARTITION
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 64x128, 128x64, 128x128
#endif // CONFIG_EXT_PARTITION
BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 4x16, 16x4, 8x32
BLOCK_32X32, BLOCK_LARGEST, BLOCK_LARGEST, // 32x8, 16x64, 64x16
#if CONFIG_EXT_PARTITION
BLOCK_LARGEST, BLOCK_LARGEST // 32x128, 128x32
#endif // CONFIG_EXT_PARTITION
};
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES_ALL] = {
BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2
BLOCK_4X4, // 4x4
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16
BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64
#if CONFIG_EXT_PARTITION
BLOCK_64X64, BLOCK_64X64, BLOCK_128X128, // 64x128, 128x64, 128x128
#endif // CONFIG_EXT_PARTITION
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16
#if CONFIG_EXT_PARTITION
BLOCK_32X32, BLOCK_32X32 // 32x128, 128x32
#endif // CONFIG_EXT_PARTITION
};
/* clang-format on */
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a superblock but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one
// superblock.
static void get_sb_partition_size_range(const AV1_COMMON *const cm,
MACROBLOCKD *xd, MODE_INFO **mib,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < cm->mib_size; ++i) {
for (j = 0; j < cm->mib_size; ++j) {
MODE_INFO *mi = mib[index + j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : BLOCK_4X4;
*min_block_size = AOMMIN(*min_block_size, sb_type);
*max_block_size = AOMMAX(*max_block_size, sb_type);
}
index += xd->mi_stride;
}
}
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile,
MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
AV1_COMMON *const cm = &cpi->common;
MODE_INFO **mi = xd->mi;
const int left_in_image = xd->left_available && mi[-1];
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_LARGEST;
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
min_size = BLOCK_LARGEST;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
MODE_INFO **prev_mi =
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the left superblock
if (left_in_image) {
MODE_INFO **left_sb_mi = &mi[-cm->mib_size];
get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the above suprblock.
if (above_in_image) {
MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->mib_size];
get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size);
}
// Adjust observed min and max for "relaxed" auto partition case.
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
}
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining,
&bh, &bw);
min_size = AOMMIN(min_size, max_size);
// Test for blocks at the edge of the active image.
// This may be the actual edge of the image or where there are formatting
// bars.
if (av1_active_edge_sb(cpi, mi_row, mi_col)) {
min_size = BLOCK_4X4;
} else {
min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size);
}
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (cpi->sf.use_square_partition_only) {
min_size = AOMMIN(min_size, next_square_size[max_size]);
}
*min_block_size = AOMMIN(min_size, cm->sb_size);
*max_block_size = AOMMIN(max_size, cm->sb_size);
}
// TODO(jingning) refactor functions setting partition search range
static void set_partition_range(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE *const min_bs,
BLOCK_SIZE *const max_bs) {
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int idx, idy;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str];
BLOCK_SIZE min_size = cm->sb_size; // default values
BLOCK_SIZE max_size = BLOCK_4X4;
if (prev_mi) {
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
const MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx];
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
}
if (xd->left_available) {
for (idy = 0; idy < mi_height; ++idy) {
const MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1];
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
if (xd->up_available) {
for (idx = 0; idx < mi_width; ++idx) {
const MODE_INFO *const mi = xd->mi[idx - cm->mi_stride];
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
if (min_size == max_size) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
*min_bs = AOMMIN(min_size, cm->sb_size);
*max_bs = AOMMIN(max_size, cm->sb_size);
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if CONFIG_FP_MB_STATS
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
0,
10,
10,
30,
40,
40,
60,
80,
80,
90,
100,
100,
120,
#if CONFIG_EXT_PARTITION
// TODO(debargha): What are the correct numbers here?
130,
130,
150
#endif // CONFIG_EXT_PARTITION
};
const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
0,
3,
3,
7,
15,
15,
30,
40,
40,
60,
80,
80,
120,
#if CONFIG_EXT_PARTITION
// TODO(debargha): What are the correct numbers here?
160,
160,
240
#endif // CONFIG_EXT_PARTITION
};
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
4,
4,
6,
#if CONFIG_EXT_PARTITION
// TODO(debargha): What are the correct numbers here?
8,
8,
10
#endif // CONFIG_EXT_PARTITION
};
typedef enum {
MV_ZERO = 0,
MV_LEFT = 1,
MV_UP = 2,
MV_RIGHT = 3,
MV_DOWN = 4,
MV_INVALID
} MOTION_DIRECTION;
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
return MV_ZERO;
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
return MV_LEFT;
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
return MV_RIGHT;
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
return MV_UP;
} else {
return MV_DOWN;
}
}
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
MOTION_DIRECTION that_mv) {
if (this_mv == that_mv) {
return 0;
} else {
return abs(this_mv - that_mv) == 2 ? 2 : 1;
}
}
#endif
#if CONFIG_EXT_PARTITION_TYPES
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks)
static int rd_try_subblock(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int is_first, int is_last, int mi_row, int mi_col,
BLOCK_SIZE subsize, RD_STATS *best_rdc,
RD_STATS *sum_rdc, RD_STATS *this_rdc,
PARTITION_TYPE partition,
PICK_MODE_CONTEXT *prev_ctx,
PICK_MODE_CONTEXT *this_ctx) {
#define RTS_X_RATE_NOCOEF_ARG
#define RTS_MAX_RDCOST best_rdc->rdcost
MACROBLOCK *const x = &td->mb;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx);
// On the first time around, write the rd stats straight to sum_rdc. Also, we
// should treat sum_rdc as containing zeros (even if it doesn't) to avoid
// having to zero it at the start.
if (is_first) this_rdc = sum_rdc;
const int64_t spent_rdcost = is_first ? 0 : sum_rdc->rdcost;
const int64_t rdcost_remaining = best_rdc->rdcost - spent_rdcost;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc,
RTS_X_RATE_NOCOEF_ARG partition, subsize, this_ctx,
rdcost_remaining);
if (!is_first) {
if (this_rdc->rate == INT_MAX) {
sum_rdc->rdcost = INT64_MAX;
} else {
sum_rdc->rate += this_rdc->rate;
sum_rdc->dist += this_rdc->dist;
sum_rdc->rdcost += this_rdc->rdcost;
}
}
if (sum_rdc->rdcost >= RTS_MAX_RDCOST) return 0;
if (!is_last) {
update_state(cpi, tile_data, td, this_ctx, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col,
subsize, NULL);
}
return 1;
#undef RTS_X_RATE_NOCOEF_ARG
#undef RTS_MAX_RDCOST
}
static void rd_test_partition3(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
PC_TREE *pc_tree, RD_STATS *best_rdc,
PICK_MODE_CONTEXT ctxs[3],
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, PARTITION_TYPE partition,
int mi_row0, int mi_col0, BLOCK_SIZE subsize0,
int mi_row1, int mi_col1, BLOCK_SIZE subsize1,
int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
RD_STATS sum_rdc, this_rdc;
#if CONFIG_EXT_PARTITION_TYPES_AB
const AV1_COMMON *const cm = &cpi->common;
#endif
#define RTP_STX_TRY_ARGS
if (!rd_try_subblock(cpi, td, tile_data, tp, 1, 0, mi_row0, mi_col0, subsize0,
best_rdc, &sum_rdc, &this_rdc,
RTP_STX_TRY_ARGS partition, ctx, &ctxs[0]))
return;
if (!rd_try_subblock(cpi, td, tile_data, tp, 0, 0, mi_row1, mi_col1, subsize1,
best_rdc, &sum_rdc, &this_rdc,
RTP_STX_TRY_ARGS partition, &ctxs[0], &ctxs[1]))
return;
// With the new layout of mixed partitions for PARTITION_HORZ_B and
// PARTITION_VERT_B, the last subblock might start past halfway through the
// main block, so we might signal it even though the subblock lies strictly
// outside the image. In that case, we won't spend any bits coding it and the
// difference (obviously) doesn't contribute to the error.
#if CONFIG_EXT_PARTITION_TYPES_AB
const int try_block2 = mi_row2 < cm->mi_rows && mi_col2 < cm->mi_cols;
#else
const int try_block2 = 1;
#endif
if (try_block2 &&
!rd_try_subblock(cpi, td, tile_data, tp, 0, 1, mi_row2, mi_col2, subsize2,
best_rdc, &sum_rdc, &this_rdc,
RTP_STX_TRY_ARGS partition, &ctxs[1], &ctxs[2]))
return;
if (sum_rdc.rdcost >= best_rdc->rdcost) return;
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += x->partition_cost[pl][partition];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost >= best_rdc->rdcost) return;
*best_rdc = sum_rdc;
pc_tree->partitioning = partition;
#undef RTP_STX_TRY_ARGS
}
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_DIST_8X8
static int64_t dist_8x8_yuv(const AV1_COMP *const cpi, MACROBLOCK *const x,
uint8_t *y_src_8x8) {
MACROBLOCKD *const xd = &x->e_mbd;
int64_t dist_8x8, dist_8x8_uv, total_dist;
const int src_stride = x->plane[0].src.stride;
uint8_t *decoded_8x8;
int plane;
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
decoded_8x8 = CONVERT_TO_BYTEPTR(x->decoded_8x8);
else
#endif
decoded_8x8 = (uint8_t *)x->decoded_8x8;
dist_8x8 = av1_dist_8x8(cpi, x, y_src_8x8, src_stride, decoded_8x8, 8,
BLOCK_8X8, 8, 8, 8, 8, x->qindex)
<< 4;
// Compute chroma distortion for a luma 8x8 block
dist_8x8_uv = 0;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const int src_stride_uv = x->plane[plane].src.stride;
const int dst_stride_uv = xd->plane[plane].dst.stride;
// uv buff pointers now (i.e. the last sub8x8 block) is the same
// to those at the first sub8x8 block because
// uv buff pointer is set only once at first sub8x8 block in a 8x8.
uint8_t *src_uv = x->plane[plane].src.buf;
uint8_t *dst_uv = xd->plane[plane].dst.buf;
unsigned sse;
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(BLOCK_8X8, &xd->plane[plane]));
cpi->fn_ptr[plane_bsize].vf(src_uv, src_stride_uv, dst_uv, dst_stride_uv,
&sse);
dist_8x8_uv += (int64_t)sse << 4;
}
return total_dist = dist_8x8 + dist_8x8_uv;
}
#endif // CONFIG_DIST_8X8
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_STATS *rd_cost, int64_t best_rd,
PC_TREE *pc_tree, int64_t *none_rd) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = mi_size_wide[bsize] / 2;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TOKENEXTRA *const tp_orig = *tp;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
int tmp_partition_cost[PARTITION_TYPES];
BLOCK_SIZE subsize;
RD_STATS this_rdc, sum_rdc, best_rdc;
const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
int do_square_split = bsize_at_least_8x8;
const int pl = bsize_at_least_8x8
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const int *partition_cost =
pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0];
int do_rectangular_split = 1;
#if CONFIG_EXT_PARTITION_TYPES
int64_t split_rd[4] = { 0, 0, 0, 0 };
int64_t horz_rd[4] = { 0, 0 };
int64_t vert_rd[4] = { 0, 0 };
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_PARTITION_TYPES && !CONFIG_EXT_PARTITION_TYPES_AB
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
// Override skipping rectangular partition operations for edge blocks
const int has_rows = (mi_row + mi_step < cm->mi_rows);
const int has_cols = (mi_col + mi_step < cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
BLOCK_SIZE min_size = x->min_partition_size;
BLOCK_SIZE max_size = x->max_partition_size;
if (none_rd) *none_rd = 0;
#if CONFIG_FP_MB_STATS
unsigned int src_diff_var = UINT_MAX;
int none_complexity = 0;
#endif
int partition_none_allowed = has_rows && has_cols;
int partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8;
int partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8;
(void)*tp_orig;
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c)
if (!(has_rows && has_cols)) {
assert(bsize_at_least_8x8 && pl >= 0);
const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl];
for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX;
if (has_cols) {
// At the bottom, the two possibilities are HORZ and SPLIT
aom_cdf_prob bot_cdf[2];
partition_gather_vert_alike(bot_cdf, partition_cdf);
static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map);
} else if (has_rows) {
// At the right, the two possibilities are VERT and SPLIT
aom_cdf_prob rhs_cdf[2];
partition_gather_horz_alike(rhs_cdf, partition_cdf);
static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map);
} else {
// At the bottom right, we always split
tmp_partition_cost[PARTITION_SPLIT] = 0;
}
partition_cost = tmp_partition_cost;
}
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to magic number
// when debugging.
memset(x->blk_skip[0], 234, sizeof(x->blk_skip[0]));
#endif // NDEBUG
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_init_rd_stats(&this_rdc);
av1_init_rd_stats(&sum_rdc);
av1_invalid_rd_stats(&best_rdc);
best_rdc.rdcost = best_rd;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_block_energy(cpi, x, bsize);
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
const int cb_partition_search_ctrl =
((pc_tree->index == 0 || pc_tree->index == 3) +
get_chessboard_index(cm->current_video_frame)) &
0x1;
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
const int no_partition_allowed = (bsize <= max_size && bsize >= min_size);
// Note: Further partitioning is NOT allowed when bsize == min_size already.
const int partition_allowed = (bsize <= max_size && bsize > min_size);
partition_none_allowed &= no_partition_allowed;
partition_horz_allowed &= partition_allowed || !has_rows;
partition_vert_allowed &= partition_allowed || !has_cols;
do_square_split &= bsize > min_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= !has_rows;
partition_vert_allowed &= !has_cols;
}
xd->above_txfm_context =
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
xd->left_txfm_context = xd->left_txfm_context_buffer +
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
save_context(x, &x_ctx, mi_row, mi_col, bsize);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
mi_col, bsize);
}
// Decide whether we shall split directly and skip searching NONE by using
// the first pass block statistics
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split &&
partition_none_allowed && src_diff_var > 4 &&
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
// compute a complexity measure, basically measure inconsistency of motion
// vectors obtained from the first pass in the current block
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
MOTION_DIRECTION this_mv;
MOTION_DIRECTION right_mv;
MOTION_DIRECTION bottom_mv;
this_mv =
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
// to its right
if (c != mb_col_end - 1) {
right_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
none_complexity += get_motion_inconsistency(this_mv, right_mv);
}
// to its bottom
if (r != mb_row_end - 1) {
bottom_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
}
// do not count its left and top neighbors to avoid double counting
}
}
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
partition_none_allowed = 0;
}
}
#endif
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_NONE,
#endif
bsize, ctx_none, best_rdc.rdcost);
if (none_rd) *none_rd = this_rdc.rdcost;
if (this_rdc.rate != INT_MAX) {
if (bsize_at_least_8x8) {
const int pt_cost = partition_cost[PARTITION_NONE] < INT_MAX
? partition_cost[PARTITION_NONE]
: 0;
this_rdc.rate += pt_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
}
if (this_rdc.rdcost < best_rdc.rdcost) {
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]));
const int rate_breakout_thr =
cpi->sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
best_rdc = this_rdc;
if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
// If all y, u, v transform blocks in this partition are skippable, and
// the dist & rate are within the thresholds, the partition search is
// terminated for current branch of the partition search tree.
// The dist & rate thresholds are set to 0 at speed 0 to disable the
// early termination at that speed.
if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] &&
(ctx_none->skippable && best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr)) {
do_square_split = 0;
do_rectangular_split = 0;
}
#if CONFIG_FP_MB_STATS
// Check if every 16x16 first pass block statistics has zero
// motion and the corresponding first pass residue is small enough.
// If that is the case, check the difference variance between the
// current frame and the last frame. If the variance is small enough,
// stop further splitting in RD optimization
if (cpi->use_fp_mb_stats && do_square_split &&
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
int skip = 1;
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_MOTION_ZERO_MASK) ||
!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_ERROR_SMALL_MASK)) {
skip = 0;
break;
}
}
if (skip == 0) {
break;
}
}
if (skip) {
if (src_diff_var == UINT_MAX) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
}
if (src_diff_var < 8) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
}
#endif
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
int64_t temp_best_rdcost = best_rdc.rdcost;
// PARTITION_SPLIT
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_square_split) {
int reached_last_index = 0;
subsize = get_subsize(bsize, PARTITION_SPLIT);
int idx;
for (idx = 0; idx < 4 && sum_rdc.rdcost < temp_best_rdcost; ++idx) {
const int x_idx = (idx & 1) * mi_step;
const int y_idx = (idx >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
pc_tree->split[idx]->index = idx;
#if CONFIG_EXT_PARTITION_TYPES
int64_t *p_split_rd = &split_rd[idx];
#else
int64_t *p_split_rd = NULL;
#endif // CONFIG_EXT_PARTITION_TYPES
rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
subsize, &this_rdc, temp_best_rdcost - sum_rdc.rdcost,
pc_tree->split[idx], p_split_rd);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
break;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
reached_last_index = (idx == 4);
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && reached_last_index &&
sum_rdc.rdcost != INT64_MAX && bsize == BLOCK_8X8) {
const int src_stride = x->plane[0].src.stride;
int64_t dist_8x8;
dist_8x8 = dist_8x8_yuv(cpi, x, x->plane[0].src.buf - 4 * src_stride - 4);
if (x->tune_metric == AOM_TUNE_PSNR) assert(sum_rdc.dist == dist_8x8);
sum_rdc.dist = dist_8x8;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
}
#endif // CONFIG_DIST_8X8
if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
temp_best_rdcost = best_rdc.rdcost;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else if (cpi->sf.less_rectangular_check) {
// skip rectangular partition test when larger block size
// gives better rd cost
do_rectangular_split &= !partition_none_allowed;
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
} // if (do_split)
// PARTITION_HORZ
if (partition_horz_allowed &&
(do_rectangular_split || av1_active_h_edge(cpi, mi_row, mi_step))) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[0].pred_interp_filter =
av1_extract_interp_filter(ctx_none->mic.mbmi.interp_filters, 0);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[0], best_rdc.rdcost);
#if CONFIG_EXT_PARTITION_TYPES
horz_rd[0] = sum_rdc.rdcost;
#endif // CONFIG_EXT_PARTITION_TYPES
if (sum_rdc.rdcost < temp_best_rdcost && has_rows) {
PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0];
update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col,
subsize, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[1].pred_interp_filter =
av1_extract_interp_filter(ctx_h->mic.mbmi.interp_filters, 0);
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[1],
best_rdc.rdcost - sum_rdc.rdcost);
#if CONFIG_EXT_PARTITION_TYPES
horz_rd[1] = this_rdc.rdcost;
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && this_rdc.rate != INT_MAX && bsize == BLOCK_8X8) {
update_state(cpi, tile_data, td, &pc_tree->horizontal[1],
mi_row + mi_step, mi_col, subsize, DRY_RUN_NORMAL);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL,
mi_row + mi_step, mi_col, subsize, NULL);
}
#endif // CONFIG_DIST_8X8
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && sum_rdc.rdcost != INT64_MAX &&
bsize == BLOCK_8X8) {
const int src_stride = x->plane[0].src.stride;
int64_t dist_8x8;
dist_8x8 = dist_8x8_yuv(cpi, x, x->plane[0].src.buf - 4 * src_stride);
if (x->tune_metric == AOM_TUNE_PSNR) assert(sum_rdc.dist == dist_8x8);
sum_rdc.dist = dist_8x8;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
}
#endif // CONFIG_DIST_8X8
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_HORZ];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed &&
(do_rectangular_split || av1_active_v_edge(cpi, mi_col, mi_step))) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[0].pred_interp_filter =
av1_extract_interp_filter(ctx_none->mic.mbmi.interp_filters, 0);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[0], best_rdc.rdcost);
#if CONFIG_EXT_PARTITION_TYPES
vert_rd[0] = sum_rdc.rdcost;
#endif // CONFIG_EXT_PARTITION_TYPES
const int64_t vert_max_rdcost = best_rdc.rdcost;
if (sum_rdc.rdcost < vert_max_rdcost && has_cols) {
update_state(cpi, tile_data, td, &pc_tree->vertical[0], mi_row, mi_col,
subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col,
subsize, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[1].pred_interp_filter =
av1_extract_interp_filter(ctx_none->mic.mbmi.interp_filters, 0);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[1],
best_rdc.rdcost - sum_rdc.rdcost);
#if CONFIG_EXT_PARTITION_TYPES
vert_rd[1] = this_rdc.rdcost;
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && this_rdc.rate != INT_MAX && bsize == BLOCK_8X8) {
update_state(cpi, tile_data, td, &pc_tree->vertical[1], mi_row,
mi_col + mi_step, subsize, DRY_RUN_NORMAL);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row,
mi_col + mi_step, subsize, NULL);
}
#endif // CONFIG_DIST_8X8
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && sum_rdc.rdcost != INT64_MAX &&
bsize == BLOCK_8X8) {
int64_t dist_8x8;
dist_8x8 = dist_8x8_yuv(cpi, x, x->plane[0].src.buf - 4);
if (x->tune_metric == AOM_TUNE_PSNR) assert(sum_rdc.dist == dist_8x8);
sum_rdc.dist = dist_8x8;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
}
#endif // CONFIG_DIST_8X8
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_VERT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#if CONFIG_EXT_PARTITION_TYPES
const int ext_partition_allowed =
do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed;
// horz4_partition_allowed and vert4_partition_allowed encode the requirement
// that we don't choose a block size that wouldn't be allowed by this
// subsampling (stored in the xss and yss variables).
//
// We definitely can't allow (say) a 16x4 block if yss > xss because it would
// subsample to 16x2, which doesn't have an enum. Also, there's no BLOCK_8X2
// or BLOCK_2X8, so we can't do 4:1 or 1:4 partitions for BLOCK_16X16 if there
// is any subsampling.
int horz4_partition_allowed = ext_partition_allowed && partition_horz_allowed;
int vert4_partition_allowed = ext_partition_allowed && partition_vert_allowed;
#if CONFIG_EXT_PARTITION_TYPES_AB
// The alternative AB partitions are allowed iff the corresponding 4:1
// partitions are allowed.
int horzab_partition_allowed = horz4_partition_allowed;
int vertab_partition_allowed = vert4_partition_allowed;
#else
// The standard AB partitions are allowed whenever ext-partition-types are
// allowed
int horzab_partition_allowed = ext_partition_allowed;
int vertab_partition_allowed = ext_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search) {
horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_SPLIT);
vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_SPLIT);
horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
}
int horza_partition_allowed = horzab_partition_allowed;
int horzb_partition_allowed = horzab_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search) {
const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost);
horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost);
}
#endif // CONFIG_EXT_PARTITION_TYPES_AB
// PARTITION_HORZ_A
#if CONFIG_EXT_PARTITION_TYPES_AB
if (partition_horz_allowed && horzab_partition_allowed) {
rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala,
ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, mi_row, mi_col,
get_subsize(bsize, PARTITION_HORZ_4), mi_row + mi_step / 2, mi_col,
get_subsize(bsize, PARTITION_HORZ_4), mi_row + mi_step, mi_col,
get_subsize(bsize, PARTITION_HORZ));
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#else
if (partition_horz_allowed && horza_partition_allowed) {
subsize = get_subsize(bsize, PARTITION_HORZ_A);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize,
PARTITION_HORZ_A, mi_row, mi_col, bsize2, mi_row,
mi_col + mi_step, bsize2, mi_row + mi_step, mi_col,
subsize);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#endif
// PARTITION_HORZ_B
#if CONFIG_EXT_PARTITION_TYPES_AB
if (partition_horz_allowed && horzab_partition_allowed) {
rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb,
ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, mi_row, mi_col,
get_subsize(bsize, PARTITION_HORZ), mi_row + mi_step, mi_col,
get_subsize(bsize, PARTITION_HORZ_4), mi_row + 3 * mi_step / 2, mi_col,
get_subsize(bsize, PARTITION_HORZ_4));
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
(void)vert_rd;
(void)horz_rd;
(void)split_rd;
#else
if (partition_horz_allowed && horzb_partition_allowed) {
subsize = get_subsize(bsize, PARTITION_HORZ_B);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize,
PARTITION_HORZ_B, mi_row, mi_col, subsize,
mi_row + mi_step, mi_col, bsize2, mi_row + mi_step,
mi_col + mi_step, bsize2);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
int verta_partition_allowed = vertab_partition_allowed;
int vertb_partition_allowed = vertab_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search) {
const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost);
vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost);
}
#endif // CONFIG_EXT_PARTITION_TYPES_AB
// PARTITION_VERT_A
#if CONFIG_EXT_PARTITION_TYPES_AB
if (partition_vert_allowed && vertab_partition_allowed) {
rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala,
ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, mi_row, mi_col,
get_subsize(bsize, PARTITION_VERT_4), mi_row, mi_col + mi_step / 2,
get_subsize(bsize, PARTITION_VERT_4), mi_row, mi_col + mi_step,
get_subsize(bsize, PARTITION_VERT));
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#else
if (partition_vert_allowed && verta_partition_allowed) {
subsize = get_subsize(bsize, PARTITION_VERT_A);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->verticala, ctx_none, mi_row, mi_col, bsize,
PARTITION_VERT_A, mi_row, mi_col, bsize2,
mi_row + mi_step, mi_col, bsize2, mi_row,
mi_col + mi_step, subsize);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#endif
// PARTITION_VERT_B
#if CONFIG_EXT_PARTITION_TYPES_AB
if (partition_vert_allowed && vertab_partition_allowed) {
rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb,
ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, mi_row, mi_col,
get_subsize(bsize, PARTITION_VERT), mi_row, mi_col + mi_step,
get_subsize(bsize, PARTITION_VERT_4), mi_row, mi_col + 3 * mi_step / 2,
get_subsize(bsize, PARTITION_VERT_4));
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#else
if (partition_vert_allowed && vertb_partition_allowed) {
subsize = get_subsize(bsize, PARTITION_VERT_B);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize,
PARTITION_VERT_B, mi_row, mi_col, subsize, mi_row,
mi_col + mi_step, bsize2, mi_row + mi_step,
mi_col + mi_step, bsize2);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#endif
// PARTITION_HORZ_4
// TODO(david.barker): For this and PARTITION_VERT_4,
// * Add support for BLOCK_16X16 once we support 2x8 and 8x2 blocks for the
// chroma plane
if (cpi->sf.prune_ext_partition_types_search) {
horz4_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_HORZ_A ||
pc_tree->partitioning == PARTITION_HORZ_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
}
if (horz4_partition_allowed && has_rows &&
(do_rectangular_split || av1_active_h_edge(cpi, mi_row, mi_step))) {
const int quarter_step = mi_size_high[bsize] / 4;
PICK_MODE_CONTEXT *ctx_prev = ctx_none;
subsize = get_subsize(bsize, PARTITION_HORZ_4);
for (int i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i];
if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 0), (i == 3),
this_mi_row, mi_col, subsize, &best_rdc, &sum_rdc,
&this_rdc, PARTITION_HORZ_4, ctx_prev, ctx_this))
break;
ctx_prev = ctx_this;
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_HORZ_4];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ_4;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
// PARTITION_VERT_4
if (cpi->sf.prune_ext_partition_types_search) {
vert4_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_VERT_A ||
pc_tree->partitioning == PARTITION_VERT_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
}
if (vert4_partition_allowed && has_cols &&
(do_rectangular_split || av1_active_v_edge(cpi, mi_row, mi_step))) {
const int quarter_step = mi_size_wide[bsize] / 4;
PICK_MODE_CONTEXT *ctx_prev = ctx_none;
subsize = get_subsize(bsize, PARTITION_VERT_4);
for (int i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i];
if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 0), (i == 3), mi_row,
this_mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc,
PARTITION_VERT_4, ctx_prev, ctx_this))
break;
ctx_prev = ctx_this;
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_VERT_4];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT_4;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#endif // CONFIG_EXT_PARTITION_TYPES
// TODO(jbb): This code added so that we avoid static analysis
// warning related to the fact that best_rd isn't used after this
// point. This code should be refactored so that the duplicate
// checks occur in some sub function and thus are used...
(void)best_rd;
*rd_cost = best_rdc;
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
pc_tree->index != 3) {
if (bsize == cm->sb_size) {
#if NC_MODE_INFO
set_mode_info_sb(cpi, td, tile_data, tp, mi_row, mi_col, bsize, pc_tree);
#endif
#if CONFIG_LV_MAP
x->cb_offset = 0;
#endif
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && best_rdc.rate < INT_MAX &&
best_rdc.dist < INT64_MAX && bsize == BLOCK_4X4 && pc_tree->index == 3) {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
#endif // CONFIG_DIST_8X8
if (bsize == cm->sb_size) {
#if !CONFIG_LV_MAP
assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip));
#endif
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TOKENEXTRA **tp) {
AV1_COMMON *const cm = &cpi->common;
const TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
SPEED_FEATURES *const sf = &cpi->sf;
int mi_col;
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256;
#else
const int leaf_nodes = 64;
#endif // CONFIG_EXT_PARTITION
// Initialize the left context for the new SB row
av1_zero_left_context(xd);
// Reset delta for every tile
if (cm->delta_q_present_flag)
if (mi_row == tile_info->mi_row_start) xd->prev_qindex = cm->base_qindex;
#if CONFIG_EXT_DELTA_Q
if (cm->delta_lf_present_flag) {
#if CONFIG_LOOPFILTER_LEVEL
if (mi_row == tile_info->mi_row_start)
for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id)
xd->prev_delta_lf[lf_id] = 0;
#endif // CONFIG_LOOPFILTER_LEVEL
if (mi_row == tile_info->mi_row_start) xd->prev_delta_lf_from_base = 0;
}
#endif
// Code each SB in the row
for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
mi_col += cm->mib_size) {
const struct segmentation *const seg = &cm->seg;
int dummy_rate;
int64_t dummy_dist;
RD_STATS dummy_rdc;
int i;
int seg_skip = 0;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
PC_TREE *const pc_root = td->pc_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
#if CONFIG_LV_MAP
av1_fill_coeff_costs(&td->mb, xd->tile_ctx);
#else
av1_fill_token_costs_from_cdf(x->token_head_costs,
x->e_mbd.tile_ctx->coef_head_cdfs);
av1_fill_token_costs_from_cdf(x->token_tail_costs,
x->e_mbd.tile_ctx->coef_tail_cdfs);
#endif
av1_fill_mode_rates(cm, x, xd->tile_ctx);
if (sf->adaptive_pred_interp_filter) {
for (i = 0; i < leaf_nodes; ++i) {
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
x->tx_rd_record.num = x->tx_rd_record.index_start = 0;
av1_zero(x->pred_mv);
pc_root->index = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
int segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
#if CONFIG_AMVR
xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv;
#endif
if (cm->delta_q_present_flag) {
// Test mode for delta quantization
int sb_row = mi_row >> 3;
int sb_col = mi_col >> 3;
int sb_stride = (cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2;
int index = ((sb_row * sb_stride + sb_col + 8) & 31) - 16;
// Ensure divisibility of delta_qindex by delta_q_res
int offset_qindex = (index < 0 ? -index - 8 : index - 8);
int qmask = ~(cm->delta_q_res - 1);
int current_qindex = clamp(cm->base_qindex + offset_qindex,
cm->delta_q_res, 256 - cm->delta_q_res);
current_qindex =
((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) +
cm->base_qindex;
assert(current_qindex > 0);
xd->delta_qindex = current_qindex - cm->base_qindex;
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
xd->mi[0]->mbmi.current_q_index = current_qindex;
#if !CONFIG_EXT_DELTA_Q
xd->mi[0]->mbmi.segment_id = 0;
#if CONFIG_Q_SEGMENTATION
xd->mi[0]->mbmi.q_segment_id = 0;
#endif
#endif // CONFIG_EXT_DELTA_Q
#if CONFIG_Q_SEGMENTATION
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id,
xd->mi[0]->mbmi.q_segment_id);
#else
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#endif
#if CONFIG_EXT_DELTA_Q
if (cpi->oxcf.deltaq_mode == DELTA_Q_LF) {
int j, k;
int lfmask = ~(cm->delta_lf_res - 1);
int current_delta_lf_from_base = offset_qindex / 2;
current_delta_lf_from_base =
((current_delta_lf_from_base + cm->delta_lf_res / 2) & lfmask);
// pre-set the delta lf for loop filter. Note that this value is set
// before mi is assigned for each block in current superblock
for (j = 0; j < AOMMIN(cm->mib_size, cm->mi_rows - mi_row); j++) {
for (k = 0; k < AOMMIN(cm->mib_size, cm->mi_cols - mi_col); k++) {
cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)]
.mbmi.current_delta_lf_from_base = clamp(
current_delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
#if CONFIG_LOOPFILTER_LEVEL
for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) {
cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)]
.mbmi.curr_delta_lf[lf_id] =
clamp(current_delta_lf_from_base, -MAX_LOOP_FILTER,
MAX_LOOP_FILTER);
}
#endif // CONFIG_LOOPFILTER_LEVEL
}
}
}
#endif // CONFIG_EXT_DELTA_Q
}
x->source_variance = UINT_MAX;
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
bsize = seg_skip ? cm->sb_size : sf->always_this_block_size;
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
} else if (cpi->partition_search_skippable_frame) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
} else {
// If required set upper and lower partition size limits
if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
&x->min_partition_size, &x->max_partition_size);
}
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->sb_size,
&dummy_rdc, INT64_MAX, pc_root, NULL);
}
#if CONFIG_LPF_SB
if (USE_LOOP_FILTER_SUPERBLOCK) {
// apply deblocking filtering right after each superblock is encoded.
const int guess_filter_lvl = FAKE_FILTER_LEVEL;
av1_loop_filter_frame(get_frame_new_buffer(cm), cm, xd, guess_filter_lvl,
0, 1, mi_row, mi_col);
}
#endif // CONFIG_LPF_SB
}
}
static void init_encode_frame_mb_context(AV1_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
// Copy data over into macro block data structures.
av1_setup_src_planes(x, cpi->source, 0, 0);
av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
}
#if !CONFIG_REF_ADAPT && !CONFIG_JNT_COMP
static int check_dual_ref_flags(AV1_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & AOM_GOLD_FLAG) + !!(ref_flags & AOM_LAST_FLAG) +
!!(ref_flags & AOM_LAST2_FLAG) + !!(ref_flags & AOM_LAST3_FLAG) +
!!(ref_flags & AOM_BWD_FLAG) + !!(ref_flags & AOM_ALT2_FLAG) +
!!(ref_flags & AOM_ALT_FLAG)) >= 2;
}
}
#endif // !CONFIG_REF_ADAPT
static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) {
if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME;
// We will not update the golden frame with an internal overlay frame
else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) ||
cpi->rc.is_src_frame_ext_arf)
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame ||
cpi->refresh_alt_ref_frame)
return GOLDEN_FRAME;
else
// TODO(zoeliu): To investigate whether a frame_type other than
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
return LAST_FRAME;
}
#if CONFIG_SIMPLIFY_TX_MODE
static TX_MODE select_tx_mode(const AV1_COMP *cpi) {
if (cpi->common.all_lossless) return ONLY_4X4;
#if CONFIG_VAR_TX_NO_TX_MODE
return TX_MODE_SELECT;
#else
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return TX_MODE_LARGEST;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
cpi->sf.tx_size_search_method == USE_FAST_RD)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
#endif // CONFIG_VAR_TX_NO_TX_MODE
}
#else
static TX_MODE select_tx_mode(const AV1_COMP *cpi) {
if (cpi->common.all_lossless) return ONLY_4X4;
#if CONFIG_VAR_TX_NO_TX_MODE
return TX_MODE_SELECT;
#else
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return ALLOW_32X32 + CONFIG_TX64X64;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
cpi->sf.tx_size_search_method == USE_FAST_RD)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
#endif // CONFIG_VAR_TX_NO_TX_MODE
}
#endif // CONFIG_SIMPLIFY_TX_MODE
void av1_init_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
unsigned int tile_tok = 0;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
CHECK_MEM_ERROR(
cm, cpi->tile_data,
aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
int i, j;
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
tile_data->thresh_freq_fact[i][j] = 32;
tile_data->mode_map[i][j] = j;
}
}
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
TileInfo *const tile_info = &tile_data->tile_info;
av1_tile_init(tile_info, cm, tile_row, tile_col);
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = cpi->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(*tile_info, cm->mib_size_log2 + MI_SIZE_LOG2,
av1_num_planes(cm));
#if CONFIG_EXT_TILE
tile_data->allow_update_cdf = !cm->large_scale_tile;
#else
tile_data->allow_update_cdf = 1;
#endif // CONFIG_EXT_TILE
}
}
}
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
int mi_row;
#if CONFIG_DEPENDENT_HORZTILES
if ((!cm->dependent_horz_tiles) || (tile_row == 0) ||
tile_info->tg_horz_boundary) {
av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end);
}
#else
av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end);
#endif
// Set up pointers to per thread motion search counters.
this_tile->m_search_count = 0; // Count of motion search hits.
this_tile->ex_search_count = 0; // Exhaustive mesh search hits.
td->mb.m_search_count_ptr = &this_tile->m_search_count;
td->mb.ex_search_count_ptr = &this_tile->ex_search_count;
this_tile->tctx = *cm->fc;
td->mb.e_mbd.tile_ctx = &this_tile->tctx;
#if CONFIG_CFL
MACROBLOCKD *const xd = &td->mb.e_mbd;
xd->cfl = &this_tile->cfl;
cfl_init(xd->cfl, cm);
#endif
#if CONFIG_LOOPFILTERING_ACROSS_TILES
if (!cm->loop_filter_across_tiles_enabled)
av1_setup_across_tile_boundary_info(cm, tile_info);
#endif
av1_crc_calculator_init(&td->mb.tx_rd_record.crc_calculator, 24, 0x5D6DCB);
#if CONFIG_INTRABC
td->intrabc_used_this_tile = 0;
#endif // CONFIG_INTRABC
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += cm->mib_size) {
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
}
#if CONFIG_INTRABC
cpi->intrabc_used |= td->intrabc_used_this_tile;
#endif // CONFIG_INTRABC
cpi->tok_count[tile_row][tile_col] =
(unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
assert(cpi->tok_count[tile_row][tile_col] <=
allocated_tokens(*tile_info, cm->mib_size_log2 + MI_SIZE_LOG2,
av1_num_planes(cm)));
}
static void encode_tiles(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int tile_col, tile_row;
av1_init_tile_data(cpi);
for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row)
for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col)
av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
}
#if CONFIG_FP_MB_STATS
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
AV1_COMMON *cm, uint8_t **this_frame_mb_stats) {
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
*this_frame_mb_stats = mb_stats_in;
return 1;
}
#endif
#define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search
static int gm_get_params_cost(const WarpedMotionParams *gm,
const WarpedMotionParams *ref_gm, int allow_hp) {
assert(gm->wmtype < GLOBAL_TRANS_TYPES);
int params_cost = 0;
int trans_bits, trans_prec_diff;
switch (gm->wmtype) {
case AFFINE:
case ROTZOOM:
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS),
(gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF),
(gm->wmmat[3] >> GM_ALPHA_PREC_DIFF));
if (gm->wmtype >= AFFINE) {
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF),
(gm->wmmat[4] >> GM_ALPHA_PREC_DIFF));
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
}
AOM_FALLTHROUGH_INTENDED;
case TRANSLATION:
trans_bits = (gm->wmtype == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
trans_prec_diff = (gm->wmtype == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
params_cost += aom_count_signed_primitive_refsubexpfin(
(1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_gm->wmmat[0] >> trans_prec_diff),
(gm->wmmat[0] >> trans_prec_diff));
params_cost += aom_count_signed_primitive_refsubexpfin(
(1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_gm->wmmat[1] >> trans_prec_diff),
(gm->wmmat[1] >> trans_prec_diff));
AOM_FALLTHROUGH_INTENDED;
case IDENTITY: break;
default: assert(0);
}
return (params_cost << AV1_PROB_COST_SHIFT);
}
static int do_gm_search_logic(SPEED_FEATURES *const sf, int num_refs_using_gm,
int frame) {
(void)num_refs_using_gm;
(void)frame;
switch (sf->gm_search_type) {
case GM_FULL_SEARCH: return 1;
case GM_REDUCED_REF_SEARCH:
return !(frame == LAST2_FRAME || frame == LAST3_FRAME);
case GM_DISABLE_SEARCH: return 0;
default: assert(0);
}
return 1;
}
// Estimate if the source frame is screen content, based on the portion of
// blocks that have no more than 4 (experimentally selected) luma colors.
static int is_screen_content(const uint8_t *src,
#if CONFIG_HIGHBITDEPTH
int use_hbd, int bd,
#endif // CONFIG_HIGHBITDEPTH
int stride, int width, int height) {
assert(src != NULL);
int counts = 0;
const int blk_w = 16;
const int blk_h = 16;
const int limit = 4;
for (int r = 0; r + blk_h <= height; r += blk_h) {
for (int c = 0; c + blk_w <= width; c += blk_w) {
const int n_colors =
#if CONFIG_HIGHBITDEPTH
use_hbd ? av1_count_colors_highbd(src + r * stride + c, stride, blk_w,
blk_h, bd)
:
#endif // CONFIG_HIGHBITDEPTH
av1_count_colors(src + r * stride + c, stride, blk_w, blk_h);
if (n_colors > 1 && n_colors <= limit) counts++;
}
}
// The threshold is 10%.
return counts * blk_h * blk_w * 10 > width * height;
}
#if CONFIG_FRAME_MARKER
static int refs_are_one_sided(const AV1_COMMON *cm) {
int one_sided_refs = 1;
if (cm->cur_frame->lst_frame_offset > cm->frame_offset ||
cm->cur_frame->lst2_frame_offset > cm->frame_offset ||
cm->cur_frame->lst3_frame_offset > cm->frame_offset ||
cm->cur_frame->gld_frame_offset > cm->frame_offset ||
cm->cur_frame->bwd_frame_offset > cm->frame_offset ||
cm->cur_frame->alt2_frame_offset > cm->frame_offset ||
cm->cur_frame->alt_frame_offset > cm->frame_offset)
one_sided_refs = 0;
return one_sided_refs;
}
// Enforce the number of references for each arbitrary frame limited to
// (INTER_REFS_PER_FRAME - 1)
static void enforce_max_ref_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
static const int flag_list[TOTAL_REFS_PER_FRAME] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
MV_REFERENCE_FRAME ref_frame;
int total_valid_refs = 0;
(void)flag_list;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) total_valid_refs++;
}
// NOTE(zoeliu): When all the possible reference frames are availble, we
// reduce the number of reference frames by 1, following the rules of:
// (1) Retain GOLDEN_FARME/ALTEF_FRAME;
// (2) Check the earliest 2 remaining reference frames, and remove the one
// with the lower quality factor, otherwise if both have been coded at
// the same quality level, remove the earliest reference frame.
if (total_valid_refs == INTER_REFS_PER_FRAME) {
unsigned int min_ref_offset = UINT_MAX;
unsigned int second_min_ref_offset = UINT_MAX;
MV_REFERENCE_FRAME earliest_ref_frames[2] = { LAST3_FRAME, LAST2_FRAME };
int earliest_buf_idxes[2] = { 0 };
// Locate the earliest two reference frames except GOLDEN/ALTREF.
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Retain GOLDEN/ALTERF
if (ref_frame == GOLDEN_FRAME || ref_frame == ALTREF_FRAME) continue;
const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx;
if (buf_idx >= 0) {
const unsigned int ref_offset =
cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset;
if (min_ref_offset == UINT_MAX) {
min_ref_offset = ref_offset;
earliest_ref_frames[0] = ref_frame;
earliest_buf_idxes[0] = buf_idx;
} else {
if (ref_offset < min_ref_offset) {
second_min_ref_offset = min_ref_offset;
earliest_ref_frames[1] = earliest_ref_frames[0];
earliest_buf_idxes[1] = earliest_buf_idxes[0];
min_ref_offset = ref_offset;
earliest_ref_frames[0] = ref_frame;
earliest_buf_idxes[0] = buf_idx;
} else if (ref_offset < second_min_ref_offset) {
second_min_ref_offset = ref_offset;
earliest_ref_frames[1] = ref_frame;
earliest_buf_idxes[1] = buf_idx;
}
}
}
}
// Check the coding quality factors of the two earliest reference frames.
RATE_FACTOR_LEVEL ref_rf_level[2];
double ref_rf_deltas[2];
for (int i = 0; i < 2; ++i) {
ref_rf_level[i] = cpi->frame_rf_level[earliest_buf_idxes[i]];
ref_rf_deltas[i] = rate_factor_deltas[ref_rf_level[i]];
}
(void)ref_rf_level;
(void)ref_rf_deltas;
#define USE_RF_LEVEL_TO_ENFORCE 1
#if USE_RF_LEVEL_TO_ENFORCE
// If both earliest two reference frames are coded using the same rate-
// factor, disable the earliest reference frame; Otherwise disable the
// reference frame that uses a lower rate-factor delta.
const MV_REFERENCE_FRAME ref_frame_to_disable =
(ref_rf_deltas[0] <= ref_rf_deltas[1]) ? earliest_ref_frames[0]
: earliest_ref_frames[1];
#else
// Always disable the earliest reference frame
const MV_REFERENCE_FRAME ref_frame_to_disable = earliest_ref_frames[0];
#endif // USE_RF_LEVEL_TO_ENFORCE
#undef USE_RF_LEVEL_TO_ENFORCE
#if 0
printf("===Enforce: Frame_offset=%d, earliest refs: %d-%d(%d,%4.2f) and "
"%d-%d(%d,%4.2f), ref_frame_to_disable=%d\n",
cm->frame_offset, earliest_ref_frames[0], min_ref_offset,
ref_rf_level[0], ref_rf_deltas[0], earliest_ref_frames[1],
second_min_ref_offset, ref_rf_level[1], ref_rf_deltas[1],
ref_frame_to_disable);
#endif // 0
switch (ref_frame_to_disable) {
case LAST_FRAME: cpi->ref_frame_flags &= ~AOM_LAST_FLAG; break;
case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break;
case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break;
case BWDREF_FRAME: cpi->ref_frame_flags &= ~AOM_BWD_FLAG; break;
case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break;
default: break;
}
}
}
#endif // CONFIG_FRAME_MARKER
static void encode_frame_internal(AV1_COMP *cpi) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
int i;
const int last_fb_buf_idx = get_ref_frame_buf_idx(cpi, LAST_FRAME);
#if CONFIG_ADAPT_SCAN
av1_deliver_eob_threshold(cm, xd);
#endif
x->min_partition_size = AOMMIN(x->min_partition_size, cm->sb_size);
x->max_partition_size = AOMMIN(x->max_partition_size, cm->sb_size);
#if CONFIG_DIST_8X8
x->using_dist_8x8 = cpi->oxcf.using_dist_8x8;
x->tune_metric = cpi->oxcf.tuning;
#endif
cm->setup_mi(cm);
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
av1_zero(*td->counts);
av1_zero(rdc->comp_pred_diff);
if (frame_is_intra_only(cm)) {
cm->allow_screen_content_tools =
cpi->oxcf.content == AOM_CONTENT_SCREEN ||
is_screen_content(cpi->source->y_buffer,
#if CONFIG_HIGHBITDEPTH
cpi->source->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_HIGHBITDEPTH
cpi->source->y_stride, cpi->source->y_width,
cpi->source->y_height);
}
#if CONFIG_INTRABC
// Allow intrabc when screen content tools are enabled.
cm->allow_intrabc = cm->allow_screen_content_tools;
// Reset the flag.
cpi->intrabc_used = 0;
#endif // CONFIG_INTRABC
#if CONFIG_HASH_ME
if (cpi->oxcf.pass != 1 && cpi->common.allow_screen_content_tools) {
// add to hash table
const int pic_width = cpi->source->y_crop_width;
const int pic_height = cpi->source->y_crop_height;
uint32_t *block_hash_values[2][2];
int8_t *is_block_same[2][3];
int k, j;
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
CHECK_MEM_ERROR(cm, block_hash_values[k][j],
aom_malloc(sizeof(uint32_t) * pic_width * pic_height));
}
for (j = 0; j < 3; j++) {
CHECK_MEM_ERROR(cm, is_block_same[k][j],
aom_malloc(sizeof(int8_t) * pic_width * pic_height));
}
}
av1_hash_table_create(&cm->cur_frame->hash_table);
av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0],
is_block_same[0]);
av1_generate_block_hash_value(cpi->source, 4, block_hash_values[0],
block_hash_values[1], is_block_same[0],
is_block_same[1]);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2],
pic_width, pic_height, 4);
av1_generate_block_hash_value(cpi->source, 8, block_hash_values[1],
block_hash_values[0], is_block_same[1],
is_block_same[0]);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2],
pic_width, pic_height, 8);
av1_generate_block_hash_value(cpi->source, 16, block_hash_values[0],
block_hash_values[1], is_block_same[0],
is_block_same[1]);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2],
pic_width, pic_height, 16);
av1_generate_block_hash_value(cpi->source, 32, block_hash_values[1],
block_hash_values[0], is_block_same[1],
is_block_same[0]);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2],
pic_width, pic_height, 32);
av1_generate_block_hash_value(cpi->source, 64, block_hash_values[0],
block_hash_values[1], is_block_same[0],
is_block_same[1]);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2],
pic_width, pic_height, 64);
av1_generate_block_hash_value(cpi->source, 128, block_hash_values[1],
block_hash_values[0], is_block_same[1],
is_block_same[0]);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2],
pic_width, pic_height, 128);
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
aom_free(block_hash_values[k][j]);
}
for (j = 0; j < 3; j++) {
aom_free(is_block_same[k][j]);
}
}
}
#endif
av1_zero(rdc->global_motion_used);
av1_zero(cpi->gmparams_cost);
if (cpi->common.frame_type == INTER_FRAME && cpi->source &&
!cpi->global_motion_search_done) {
YV12_BUFFER_CONFIG *ref_buf[TOTAL_REFS_PER_FRAME];
int frame;
double params_by_motion[RANSAC_NUM_MOTIONS * (MAX_PARAMDIM - 1)];
const double *params_this_motion;
int inliers_by_motion[RANSAC_NUM_MOTIONS];
WarpedMotionParams tmp_wm_params;
static const double kIdentityParams[MAX_PARAMDIM - 1] = {
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
};
int num_refs_using_gm = 0;
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
ref_buf[frame] = get_ref_frame_buffer(cpi, frame);
int pframe;
cm->global_motion[frame] = default_warp_params;
const WarpedMotionParams *ref_params =
cm->error_resilient_mode ? &default_warp_params
: &cm->prev_frame->global_motion[frame];
// check for duplicate buffer
for (pframe = LAST_FRAME; pframe < frame; ++pframe) {
if (ref_buf[frame] == ref_buf[pframe]) break;
}
if (pframe < frame) {
memcpy(&cm->global_motion[frame], &cm->global_motion[pframe],
sizeof(WarpedMotionParams));
} else if (ref_buf[frame] &&
ref_buf[frame]->y_crop_width == cpi->source->y_crop_width &&
ref_buf[frame]->y_crop_height == cpi->source->y_crop_height &&
do_gm_search_logic(&cpi->sf, num_refs_using_gm, frame)) {
TransformationType model;
const int64_t ref_frame_error = av1_frame_error(
#if CONFIG_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_HIGHBITDEPTH
ref_buf[frame]->y_buffer, ref_buf[frame]->y_stride,
cpi->source->y_buffer, cpi->source->y_width, cpi->source->y_height,
cpi->source->y_stride);
if (ref_frame_error == 0) continue;
aom_clear_system_state();
for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) {
int64_t best_warp_error = INT64_MAX;
// Initially set all params to identity.
for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
memcpy(params_by_motion + (MAX_PARAMDIM - 1) * i, kIdentityParams,
(MAX_PARAMDIM - 1) * sizeof(*params_by_motion));
}
compute_global_motion_feature_based(
model, cpi->source, ref_buf[frame],
#if CONFIG_HIGHBITDEPTH
cpi->common.bit_depth,
#endif // CONFIG_HIGHBITDEPTH
inliers_by_motion, params_by_motion, RANSAC_NUM_MOTIONS);
for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
if (inliers_by_motion[i] == 0) continue;
params_this_motion = params_by_motion + (MAX_PARAMDIM - 1) * i;
convert_model_to_params(params_this_motion, &tmp_wm_params);
if (tmp_wm_params.wmtype != IDENTITY) {
const int64_t warp_error = refine_integerized_param(
&tmp_wm_params, tmp_wm_params.wmtype,
#if CONFIG_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_HIGHBITDEPTH
ref_buf[frame]->y_buffer, ref_buf[frame]->y_width,
ref_buf[frame]->y_height, ref_buf[frame]->y_stride,
cpi->source->y_buffer, cpi->source->y_width,
cpi->source->y_height, cpi->source->y_stride, 5,
best_warp_error);
if (warp_error < best_warp_error) {
best_warp_error = warp_error;
// Save the wm_params modified by refine_integerized_param()
// rather than motion index to avoid rerunning refine() below.
memcpy(&(cm->global_motion[frame]), &tmp_wm_params,
sizeof(WarpedMotionParams));
}
}
}
if (cm->global_motion[frame].wmtype <= AFFINE)
if (!get_shear_params(&cm->global_motion[frame]))
cm->global_motion[frame] = default_warp_params;
if (cm->global_motion[frame].wmtype == TRANSLATION) {
cm->global_motion[frame].wmmat[0] =
convert_to_trans_prec(cm->allow_high_precision_mv,
cm->global_motion[frame].wmmat[0]) *
GM_TRANS_ONLY_DECODE_FACTOR;
cm->global_motion[frame].wmmat[1] =
convert_to_trans_prec(cm->allow_high_precision_mv,
cm->global_motion[frame].wmmat[1]) *
GM_TRANS_ONLY_DECODE_FACTOR;
}
// If the best error advantage found doesn't meet the threshold for
// this motion type, revert to IDENTITY.
if (!is_enough_erroradvantage(
(double)best_warp_error / ref_frame_error,
gm_get_params_cost(&cm->global_motion[frame], ref_params,
cm->allow_high_precision_mv))) {
cm->global_motion[frame] = default_warp_params;
}
if (cm->global_motion[frame].wmtype != IDENTITY) break;
}
aom_clear_system_state();
}
if (cm->global_motion[frame].wmtype != IDENTITY) num_refs_using_gm++;
cpi->gmparams_cost[frame] =
gm_get_params_cost(&cm->global_motion[frame], ref_params,
cm->allow_high_precision_mv) +
cpi->gmtype_cost[cm->global_motion[frame].wmtype] -
cpi->gmtype_cost[IDENTITY];
}
cpi->global_motion_search_done = 1;
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
TOTAL_REFS_PER_FRAME * sizeof(WarpedMotionParams));
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
#if CONFIG_Q_SEGMENTATION
? av1_get_qindex(&cm->seg, i, i, cm->base_qindex)
#else
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
#endif
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 &&
cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0;
xd->qindex[i] = qindex;
}
cm->all_lossless = all_lossless(cm, xd);
if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0;
cm->tx_mode = select_tx_mode(cpi);
// Fix delta q resolution for the moment
cm->delta_q_res = DEFAULT_DELTA_Q_RES;
// Set delta_q_present_flag before it is used for the first time
#if CONFIG_EXT_DELTA_Q
cm->delta_lf_res = DEFAULT_DELTA_LF_RES;
// update delta_q_present_flag and delta_lf_present_flag based on base_qindex
cm->delta_q_present_flag &= cm->base_qindex > 0;
cm->delta_lf_present_flag &= cm->base_qindex > 0;
#else
cm->delta_q_present_flag =
cpi->oxcf.aq_mode == DELTA_AQ && cm->base_qindex > 0;
#endif // CONFIG_EXT_DELTA_Q
av1_frame_init_quantizer(cpi);
av1_initialize_rd_consts(cpi);
av1_initialize_me_consts(cpi, x, cm->base_qindex);
init_encode_frame_mb_context(cpi);
// NOTE(zoeliu): As cm->prev_frame can take neither a frame of
// show_exisiting_frame=1, nor can it take a frame not used as
// a reference, it is probable that by the time it is being
// referred to, the frame buffer it originally points to may
// already get expired and have been reassigned to the current
// newly coded frame. Hence, we need to check whether this is
// the case, and if yes, we have 2 choices:
// (1) Simply disable the use of previous frame mvs; or
// (2) Have cm->prev_frame point to one reference frame buffer,
// e.g. LAST_FRAME.
if (!enc_is_ref_frame_buf(cpi, cm->prev_frame)) {
// Reassign the LAST_FRAME buffer to cm->prev_frame.
cm->prev_frame = last_fb_buf_idx != INVALID_IDX
? &cm->buffer_pool->frame_bufs[last_fb_buf_idx]
: NULL;
}
#if CONFIG_TEMPMV_SIGNALING
cm->use_prev_frame_mvs &= frame_can_use_prev_frame_mvs(cm);
#else
if (cm->prev_frame) {
cm->use_prev_frame_mvs = !cm->error_resilient_mode &&
#if CONFIG_FRAME_SUPERRES
cm->width == cm->last_width &&
cm->height == cm->last_height &&
#else
cm->width == cm->prev_frame->buf.y_crop_width &&
cm->height == cm->prev_frame->buf.y_crop_height &&
#endif // CONFIG_FRAME_SUPERRES
!cm->intra_only && cm->last_show_frame;
} else {
cm->use_prev_frame_mvs = 0;
}
#endif // CONFIG_TEMPMV_SIGNALING
// Special case: set prev_mi to NULL when the previous mode info
// context cannot be used.
cm->prev_mi =
cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
x->txb_split_count = 0;
av1_zero(x->blk_skip_drl);
#if CONFIG_MFMV
av1_setup_motion_field(cm);
#endif // CONFIG_MFMV
#if CONFIG_FRAME_MARKER
cpi->all_one_sided_refs = refs_are_one_sided(cm);
#endif // CONFIG_FRAME_MARKER
{
struct aom_usec_timer emr_timer;
aom_usec_timer_start(&emr_timer);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
&cpi->twopass.this_frame_mb_stats);
}
#endif
av1_setup_frame_boundary_info(cm);
// If allowed, encoding tiles in parallel with one thread handling one tile.
// TODO(geza.lore): The multi-threaded encoder is not safe with more than
// 1 tile rows, as it uses the single above_context et al arrays from
// cpi->common
if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols) > 1 && cm->tile_rows == 1)
av1_encode_tiles_mt(cpi);
else
encode_tiles(cpi);
aom_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer);
}
#if CONFIG_INTRABC
// If intrabc is allowed but never selected, reset the allow_intrabc flag.
if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0;
#endif // CONFIG_INTRABC
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static void make_consistent_compound_tools(AV1_COMMON *cm) {
(void)cm;
if (frame_is_intra_only(cm) || cm->reference_mode == COMPOUND_REFERENCE)
cm->allow_interintra_compound = 0;
if (frame_is_intra_only(cm) || cm->reference_mode == SINGLE_REFERENCE)
cm->allow_masked_compound = 0;
}
void av1_encode_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Indicates whether or not to use a default reduced set for ext-tx
// rather than the potential full set of 16 transforms
cm->reduced_tx_set_used = 0;
#if CONFIG_ADAPT_SCAN
#if CONFIG_EXT_TILE
if (cm->large_scale_tile)
cm->use_adapt_scan = 0;
else
#endif // CONFIG_EXT_TILE
cm->use_adapt_scan = 1;
// TODO(angiebird): call av1_init_scan_order only when use_adapt_scan
// switches from 1 to 0
if (cm->use_adapt_scan == 0) av1_init_scan_order(cm);
#endif
#if CONFIG_FRAME_MARKER
if (cm->show_frame == 0) {
int arf_offset = AOMMIN(
(MAX_GF_INTERVAL - 1),
cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]);
int brf_offset =
cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index];
arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset);
cm->frame_offset = cm->current_video_frame + arf_offset;
} else {
cm->frame_offset = cm->current_video_frame;
}
av1_setup_frame_buf_refs(cm);
if (cpi->sf.selective_ref_frame >= 2) enforce_max_ref_frames(cpi);
#if CONFIG_FRAME_SIGN_BIAS
av1_setup_frame_sign_bias(cm);
#endif // CONFIG_FRAME_SIGN_BIAS
#endif // CONFIG_FRAME_MARKER
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
cpi->allow_comp_inter_inter = 1;
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF2_FRAME;
cm->comp_bwd_ref[2] = ALTREF_FRAME;
} else {
cpi->allow_comp_inter_inter = 0;
}
if (cpi->sf.frame_parameter_update) {
int i;
RD_OPT *const rd_opt = &cpi->rd;
FRAME_COUNTS *counts = cpi->td.counts;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
// This code does a single RD pass over the whole frame assuming
// either compound, single or hybrid prediction as per whatever has
// worked best for that type of frame in the past.
// It also predicts whether another coding mode would have worked
// better than this coding mode. If that is the case, it remembers
// that for subsequent frames.
// It does the same analysis for transform size selection also.
//
// TODO(zoeliu): To investigate whether a frame_type other than
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
#if CONFIG_REF_ADAPT
// NOTE(zoeliu): "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames
if (is_alt_ref || !cpi->allow_comp_inter_inter)
cm->reference_mode = SINGLE_REFERENCE;
else
cm->reference_mode = REFERENCE_MODE_SELECT;
#else
#if CONFIG_BGSPRITE
(void)is_alt_ref;
if (!cpi->allow_comp_inter_inter)
#else
if (is_alt_ref || !cpi->allow_comp_inter_inter)
#endif // CONFIG_BGSPRITE
cm->reference_mode = SINGLE_REFERENCE;
#if !CONFIG_JNT_COMP
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
cm->reference_mode = COMPOUND_REFERENCE;
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
cm->reference_mode = SINGLE_REFERENCE;
#endif // CONFIG_JNT_COMP
else
cm->reference_mode = REFERENCE_MODE_SELECT;
#endif // CONFIG_REF_ADAPT
#if CONFIG_DUAL_FILTER
cm->interp_filter = SWITCHABLE;
#endif
make_consistent_compound_tools(cm);
rdc->single_ref_used_flag = 0;
rdc->compound_ref_used_flag = 0;
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i)
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
// Use a flag that includes 4x4 blocks
if (rdc->compound_ref_used_flag == 0) {
cm->reference_mode = SINGLE_REFERENCE;
av1_zero(counts->comp_inter);
#if !CONFIG_REF_ADAPT
// Use a flag that includes 4x4 blocks
} else if (rdc->single_ref_used_flag == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
av1_zero(counts->comp_inter);
#endif // !CONFIG_REF_ADAPT
}
}
make_consistent_compound_tools(cm);
if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0)
#if CONFIG_SIMPLIFY_TX_MODE
cm->tx_mode = TX_MODE_LARGEST;
#else
cm->tx_mode = ALLOW_32X32 + CONFIG_TX64X64;
#endif // CONFIG_SIMPLIFY_TX_MODE
} else {
make_consistent_compound_tools(cm);
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(FRAME_COUNTS *counts, MACROBLOCKD *xd,
const MODE_INFO *mi, const MODE_INFO *above_mi,
const MODE_INFO *left_mi, const int intraonly,
const int mi_row, const int mi_col,
uint8_t allow_update_cdf) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const PREDICTION_MODE y_mode = mbmi->mode;
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
(void)counts;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (intraonly) {
#if CONFIG_ENTROPY_STATS
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, 0);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, 0);
#if CONFIG_KF_CTX
int above_ctx = intra_mode_context[above];
int left_ctx = intra_mode_context[left];
++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
#else
++counts->kf_y_mode[above][left][y_mode];
#endif
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(get_y_mode_cdf(fc, mi, above_mi, left_mi, 0), y_mode,
INTRA_MODES);
} else {
#if CONFIG_ENTROPY_STATS
++counts->y_mode[size_group_lookup[bsize]][y_mode];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
}
#if CONFIG_FILTER_INTRA
if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0 &&
av1_filter_intra_allowed_txsize(mbmi->tx_size)) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra_mode[0];
#if CONFIG_ENTROPY_STATS
++counts->filter_intra_mode[0][mbmi->filter_intra_mode_info
.filter_intra_mode[0]];
++counts->filter_intra_tx[mbmi->tx_size][use_filter_intra_mode];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->filter_intra_mode_cdf[0],
mbmi->filter_intra_mode_info.filter_intra_mode[0],
FILTER_INTRA_MODES);
update_cdf(fc->filter_intra_cdfs[mbmi->tx_size], use_filter_intra_mode,
2);
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA && CONFIG_EXT_INTRA_MOD
if (av1_is_directional_mode(mbmi->mode, bsize) &&
av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[mbmi->mode - V_PRED]
[mbmi->angle_delta[0] + MAX_ANGLE_DELTA];
#endif
if (allow_update_cdf)
update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
mbmi->angle_delta[0] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
#endif // CONFIG_EXT_INTRA && CONFIG_EXT_INTRA_MOD
if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y))
return;
#if CONFIG_EXT_INTRA && CONFIG_EXT_INTRA_MOD
if (av1_is_directional_mode(get_uv_mode(mbmi->uv_mode), bsize) &&
av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[mbmi->uv_mode - V_PRED]
[mbmi->angle_delta[1] + MAX_ANGLE_DELTA];
#endif
if (allow_update_cdf)
update_cdf(fc->angle_delta_cdf[mbmi->uv_mode - V_PRED],
mbmi->angle_delta[1] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
#endif // CONFIG_EXT_INTRA && CONFIG_EXT_INTRA_MOD
#if CONFIG_ENTROPY_STATS
++counts->uv_mode[y_mode][uv_mode];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(fc->uv_mode_cdf[y_mode], uv_mode, UV_INTRA_MODES);
}
// TODO(anybody) We can add stats accumulation here to train entropy models for
// palette modes
static void update_palette_cdf(MACROBLOCKD *xd, const MODE_INFO *mi) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_LARGEST);
const int block_palette_idx = bsize - BLOCK_8X8;
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
int palette_y_mode_ctx = 0;
if (above_mi) {
palette_y_mode_ctx +=
(above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
}
if (left_mi) {
palette_y_mode_ctx +=
(left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
}
update_cdf(fc->palette_y_mode_cdf[block_palette_idx][palette_y_mode_ctx],
n > 0, 2);
}
if (mbmi->uv_mode == UV_DC_PRED) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
}
}
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
if (depth == MAX_VARTX_DEPTH) {
// Don't add to counts in this case
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
if (tx_size == plane_tx_size) {
++counts->txfm_partition[ctx][0];
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
++counts->txfm_partition[ctx][1];
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
++x->txb_split_count;
if (sub_txs == TX_4X4) {
mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = row;
int offsetc = col;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc, allow_update_cdf);
}
}
}
}
static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE plane_bsize, int mi_row,
int mi_col, FRAME_COUNTS *td_counts,
uint8_t allow_update_cdf) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
TX_SIZE max_tx_size = get_vartx_max_txsize(&xd->mi[0]->mbmi, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context =
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
xd->left_txfm_context = xd->left_txfm_context_buffer +
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
allow_update_cdf);
}
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
int blk_col) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
int offsetr = (i >> 1) * bsl;
int offsetc = (i & 0x01) * bsl;
set_txfm_context(xd, sub_txs, blk_row + offsetr, blk_col + offsetc);
}
}
}
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize,
int mi_row, int mi_col) {
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0];
TX_SIZE max_tx_size = get_vartx_max_txsize(&xd->mi[0]->mbmi, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context =
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
xd->left_txfm_context = xd->left_txfm_context_buffer +
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
set_txfm_context(xd, max_tx_size, idy, idx);
}
void av1_update_tx_type_count(const AV1_COMMON *cm, MACROBLOCKD *xd,
#if CONFIG_TXK_SEL
int blk_row, int blk_col, int block, int plane,
#endif
BLOCK_SIZE bsize, TX_SIZE tx_size,
FRAME_COUNTS *counts, uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int is_inter = is_inter_block(mbmi);
FRAME_CONTEXT *fc = xd->tile_ctx;
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
#if !CONFIG_TXK_SEL
TX_TYPE tx_type = mbmi->tx_type;
#else
(void)blk_row;
(void)blk_col;
// Only y plane's tx_type is updated
if (plane > 0) return;
TX_TYPE tx_type =
av1_get_tx_type(PLANE_TYPE_Y, xd, blk_row, blk_col, block, tx_size);
#endif
if (get_ext_tx_types(tx_size, bsize, is_inter, cm->reduced_tx_set_used) > 1 &&
cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const int eset =
get_ext_tx_set(tx_size, bsize, is_inter, cm->reduced_tx_set_used);
if (eset > 0) {
const TxSetType tx_set_type = get_ext_tx_set_type(
tx_size, bsize, is_inter, cm->reduced_tx_set_used);
if (is_inter) {
if (allow_update_cdf)
update_cdf(fc->inter_ext_tx_cdf[eset][txsize_sqr_map[tx_size]],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
#if CONFIG_ENTROPY_STATS
++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]][tx_type];
#endif // CONFIG_ENTROPY_STATS
} else {
#if CONFIG_FILTER_INTRA
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0])
intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode[0]];
else
intra_dir = mbmi->mode;
#if CONFIG_ENTROPY_STATS
++counts
->intra_ext_tx[eset][txsize_sqr_map[tx_size]][intra_dir][tx_type];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(
fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][intra_dir],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
#else
#if CONFIG_ENTROPY_STATS
++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][mbmi->mode]
[tx_type];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(
fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][mbmi->mode],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
#endif
}
}
}
}
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *rate) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi;
MODE_INFO *mi = mi_8x8[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi);
const BLOCK_SIZE block_size = bsize;
const int num_planes = av1_num_planes(cm);
if (!is_inter) {
#if CONFIG_CFL
xd->cfl->store_y = 1;
#endif // CONFIG_CFL
mbmi->skip = 1;
for (int plane = 0; plane < num_planes; ++plane) {
av1_encode_intra_block_plane((AV1_COMMON *)cm, x, block_size, plane, 1,
mi_row, mi_col);
}
#if CONFIG_CFL
xd->cfl->store_y = 0;
#endif // CONFIG_CFL
if (!dry_run) {
sum_intra_stats(td->counts, xd, mi, xd->above_mi, xd->left_mi,
frame_is_intra_only(cm), mi_row, mi_col,
tile_data->allow_update_cdf);
if (av1_allow_palette(cm->allow_screen_content_tools, bsize) &&
tile_data->allow_update_cdf)
update_palette_cdf(xd, mi);
}
if (bsize >= BLOCK_8X8) {
for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
if (!dry_run)
av1_tokenize_color_map(x, plane, 0, t, bsize, mbmi->tx_size,
PALETTE_MAP);
else if (dry_run == DRY_RUN_COSTCOEFFS)
rate += av1_cost_color_map(x, plane, 0, bsize, mbmi->tx_size,
PALETTE_MAP);
}
}
}
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#if CONFIG_LV_MAP
av1_update_txb_context(cpi, td, dry_run, block_size, rate, mi_row, mi_col,
tile_data->allow_update_cdf);
#else // CONFIG_LV_MAP
av1_tokenize_sb(cpi, td, t, dry_run, block_size, rate, mi_row, mi_col,
tile_data->allow_update_cdf);
#endif // CONFIG_LV_MAP
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
#if CONFIG_INTRABC
assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
#else
assert(cfg != NULL);
#endif // !CONFIG_INTRABC
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
}
av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, block_size);
if (mbmi->motion_mode == OBMC_CAUSAL) {
#if CONFIG_NCOBMC
if (dry_run == OUTPUT_ENABLED)
av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
else
#endif
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
}
av1_encode_sb((AV1_COMMON *)cm, x, block_size, mi_row, mi_col);
if (mbmi->skip) mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, block_size, rate,
tile_data->allow_update_cdf);
}
#if CONFIG_DIST_8X8
if (x->using_dist_8x8 && bsize < BLOCK_8X8) {
dist_8x8_set_sub8x8_dst(x, (uint8_t *)x->decoded_8x8, bsize,
block_size_wide[bsize], block_size_high[bsize],
mi_row, mi_col);
}
#endif // CONFIG_DIST_8X8
if (!dry_run) {
#if CONFIG_INTRABC
if (av1_allow_intrabc(bsize, cm))
if (is_intrabc_block(mbmi)) td->intrabc_used_this_tile = 1;
#endif // CONFIG_INTRABC
TX_SIZE tx_size =
is_inter && !mbmi->skip ? mbmi->min_tx_size : mbmi->tx_size;
if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] &&
mbmi->sb_type > BLOCK_4X4 && !(is_inter && (mbmi->skip || seg_skip))) {
if (is_inter) {
tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts,
tile_data->allow_update_cdf);
} else {
if (tx_size != get_max_rect_tx_size(bsize, 0)) ++x->txb_split_count;
}
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
} else {
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
}
} else {
intra_tx_size = tx_size;
}
++td->counts->tx_size_implied[max_txsize_lookup[bsize]]
[txsize_sqr_up_map[tx_size]];
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows)
mi_8x8[mis * j + i]->mbmi.tx_size = intra_tx_size;
mbmi->min_tx_size = get_min_tx_size(intra_tx_size);
if (intra_tx_size != get_max_rect_tx_size(bsize, is_inter))
++x->txb_split_count;
}
#if !CONFIG_TXK_SEL
av1_update_tx_type_count(cm, xd, bsize, tx_size, td->counts,
tile_data->allow_update_cdf);
#endif
}
if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type > BLOCK_4X4 && is_inter &&
!(mbmi->skip || seg_skip) && !xd->lossless[mbmi->segment_id]) {
if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col);
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
tx_size = TX_4X4;
} else {
tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, is_inter);
}
} else {
tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
}
mbmi->tx_size = tx_size;
set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, (mbmi->skip || seg_skip), xd);
}
#if CONFIG_CFL
CFL_CTX *const cfl = xd->cfl;
if (is_inter_block(mbmi) &&
!is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x,
cfl->subsampling_y)) {
cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size);
}
#endif // CONFIG_CFL
}