blob: 27587cd1fb9f75bdbe93b07e71b9f073ae313fea [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/variance.h"
#include "av1/common/filter.h"
#include "av1/common/reconinter.h"
uint32_t aom_get_mb_ss_c(const int16_t *a) {
unsigned int i, sum = 0;
for (i = 0; i < 256; ++i) {
sum += a[i] * a[i];
}
return sum;
}
static void variance(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride, int w, int h, uint32_t *sse, int *sum) {
int i, j;
*sum = 0;
*sse = 0;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int diff = a[j] - b[j];
*sum += diff;
*sse += diff * diff;
}
a += a_stride;
b += b_stride;
}
}
uint32_t aom_sse_odd_size(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride, int w, int h) {
uint32_t sse;
int sum;
variance(a, a_stride, b, b_stride, w, h, &sse, &sum);
return sse;
}
// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal
// or vertical direction to produce the filtered output block. Used to implement
// the first-pass of 2-D separable filter.
//
// Produces int16_t output to retain precision for the next pass. Two filter
// taps should sum to FILTER_WEIGHT. pixel_step defines whether the filter is
// applied horizontally (pixel_step = 1) or vertically (pixel_step = stride).
// It defines the offset required to move from one input to the next.
static void var_filter_block2d_bil_first_pass_c(
const uint8_t *a, uint16_t *b, unsigned int src_pixels_per_line,
unsigned int pixel_step, unsigned int output_height,
unsigned int output_width, const uint8_t *filter) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
b[j] = ROUND_POWER_OF_TWO(
(int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS);
++a;
}
a += src_pixels_per_line - output_width;
b += output_width;
}
}
// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal
// or vertical direction to produce the filtered output block. Used to implement
// the second-pass of 2-D separable filter.
//
// Requires 16-bit input as produced by filter_block2d_bil_first_pass. Two
// filter taps should sum to FILTER_WEIGHT. pixel_step defines whether the
// filter is applied horizontally (pixel_step = 1) or vertically
// (pixel_step = stride). It defines the offset required to move from one input
// to the next. Output is 8-bit.
static void var_filter_block2d_bil_second_pass_c(
const uint16_t *a, uint8_t *b, unsigned int src_pixels_per_line,
unsigned int pixel_step, unsigned int output_height,
unsigned int output_width, const uint8_t *filter) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
b[j] = ROUND_POWER_OF_TWO(
(int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS);
++a;
}
a += src_pixels_per_line - output_width;
b += output_width;
}
}
#define VAR(W, H) \
uint32_t aom_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
}
#define SUBPIX_VAR(W, H) \
uint32_t aom_sub_pixel_variance##W##x##H##_c( \
const uint8_t *a, int a_stride, int xoffset, int yoffset, \
const uint8_t *b, int b_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
\
var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
return aom_variance##W##x##H##_c(temp2, W, b, b_stride, sse); \
}
#define SUBPIX_AVG_VAR(W, H) \
uint32_t aom_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *a, int a_stride, int xoffset, int yoffset, \
const uint8_t *b, int b_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
\
var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
aom_comp_avg_pred(temp3, second_pred, W, H, temp2, W); \
\
return aom_variance##W##x##H##_c(temp3, W, b, b_stride, sse); \
} \
uint32_t aom_dist_wtd_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *a, int a_stride, int xoffset, int yoffset, \
const uint8_t *b, int b_stride, uint32_t *sse, \
const uint8_t *second_pred, const DIST_WTD_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
\
var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
aom_dist_wtd_comp_avg_pred(temp3, second_pred, W, H, temp2, W, jcp_param); \
\
return aom_variance##W##x##H(temp3, W, b, b_stride, sse); \
}
void aom_get_var_sse_sum_8x8_quad_c(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
uint32_t *sse8x8, int *sum8x8,
unsigned int *tot_sse, int *tot_sum,
uint32_t *var8x8) {
// Loop over 4 8x8 blocks. Process one 8x32 block.
for (int k = 0; k < 4; k++) {
variance(a + (k * 8), a_stride, b + (k * 8), b_stride, 8, 8, &sse8x8[k],
&sum8x8[k]);
}
// Calculate variance at 8x8 level and total sse, sum of 8x32 block.
*tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3];
*tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3];
for (int i = 0; i < 4; i++)
var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6);
}
void aom_get_var_sse_sum_16x16_dual_c(const uint8_t *src_ptr, int source_stride,
const uint8_t *ref_ptr, int ref_stride,
uint32_t *sse16x16, unsigned int *tot_sse,
int *tot_sum, uint32_t *var16x16) {
int sum16x16[2] = { 0 };
// Loop over two consecutive 16x16 blocks and process as one 16x32 block.
for (int k = 0; k < 2; k++) {
variance(src_ptr + (k * 16), source_stride, ref_ptr + (k * 16), ref_stride,
16, 16, &sse16x16[k], &sum16x16[k]);
}
// Calculate variance at 16x16 level and total sse, sum of 16x32 block.
*tot_sse += sse16x16[0] + sse16x16[1];
*tot_sum += sum16x16[0] + sum16x16[1];
for (int i = 0; i < 2; i++)
var16x16[i] =
sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8);
}
/* Identical to the variance call except it does not calculate the
* sse - sum^2 / w*h and returns sse in addtion to modifying the passed in
* variable.
*/
#define MSE(W, H) \
uint32_t aom_mse##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
return *sse; \
}
/* All three forms of the variance are available in the same sizes. */
#define VARIANCES(W, H) \
VAR(W, H) \
SUBPIX_VAR(W, H) \
SUBPIX_AVG_VAR(W, H)
VARIANCES(128, 128)
VARIANCES(128, 64)
VARIANCES(64, 128)
VARIANCES(64, 64)
VARIANCES(64, 32)
VARIANCES(32, 64)
VARIANCES(32, 32)
VARIANCES(32, 16)
VARIANCES(16, 32)
VARIANCES(16, 16)
VARIANCES(16, 8)
VARIANCES(8, 16)
VARIANCES(8, 8)
VARIANCES(8, 4)
VARIANCES(4, 8)
VARIANCES(4, 4)
// Realtime mode doesn't use rectangular blocks.
#if !CONFIG_REALTIME_ONLY
VARIANCES(4, 16)
VARIANCES(16, 4)
VARIANCES(8, 32)
VARIANCES(32, 8)
VARIANCES(16, 64)
VARIANCES(64, 16)
#endif
MSE(16, 16)
MSE(16, 8)
MSE(8, 16)
MSE(8, 8)
void aom_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width,
int height, const uint8_t *ref, int ref_stride) {
int i, j;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int tmp = pred[j] + ref[j];
comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1);
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
void aom_dist_wtd_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred,
int width, int height, const uint8_t *ref,
int ref_stride,
const DIST_WTD_COMP_PARAMS *jcp_param) {
int i, j;
const int fwd_offset = jcp_param->fwd_offset;
const int bck_offset = jcp_param->bck_offset;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
int tmp = pred[j] * bck_offset + ref[j] * fwd_offset;
tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS);
comp_pred[j] = (uint8_t)tmp;
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_variance64(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint64_t *sse, int64_t *sum) {
const uint16_t *a = CONVERT_TO_SHORTPTR(a8);
const uint16_t *b = CONVERT_TO_SHORTPTR(b8);
int64_t tsum = 0;
uint64_t tsse = 0;
for (int i = 0; i < h; ++i) {
int32_t lsum = 0;
for (int j = 0; j < w; ++j) {
const int diff = a[j] - b[j];
lsum += diff;
tsse += (uint32_t)(diff * diff);
}
tsum += lsum;
a += a_stride;
b += b_stride;
}
*sum = tsum;
*sse = tsse;
}
uint64_t aom_highbd_sse_odd_size(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride, int w, int h) {
uint64_t sse;
int64_t sum;
highbd_variance64(a, a_stride, b, b_stride, w, h, &sse, &sum);
return sse;
}
static void highbd_8_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint32_t *sse, int *sum) {
uint64_t sse_long = 0;
int64_t sum_long = 0;
highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
*sse = (uint32_t)sse_long;
*sum = (int)sum_long;
}
static void highbd_10_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint32_t *sse, int *sum) {
uint64_t sse_long = 0;
int64_t sum_long = 0;
highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 4);
*sum = (int)ROUND_POWER_OF_TWO(sum_long, 2);
}
static void highbd_12_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride, int w, int h,
uint32_t *sse, int *sum) {
uint64_t sse_long = 0;
int64_t sum_long = 0;
highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8);
*sum = (int)ROUND_POWER_OF_TWO(sum_long, 4);
}
#define HIGHBD_VAR(W, H) \
uint32_t aom_highbd_8_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
highbd_8_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
} \
\
uint32_t aom_highbd_10_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
int64_t var; \
highbd_10_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
\
uint32_t aom_highbd_12_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
uint32_t *sse) { \
int sum; \
int64_t var; \
highbd_12_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
#define HIGHBD_MSE(W, H) \
uint32_t aom_highbd_8_mse##W##x##H##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse) { \
int sum; \
highbd_8_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \
return *sse; \
} \
\
uint32_t aom_highbd_10_mse##W##x##H##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse) { \
int sum; \
highbd_10_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \
return *sse; \
} \
\
uint32_t aom_highbd_12_mse##W##x##H##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
uint32_t *sse) { \
int sum; \
highbd_12_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \
return *sse; \
}
void aom_highbd_var_filter_block2d_bil_first_pass(
const uint8_t *src_ptr8, uint16_t *output_ptr,
unsigned int src_pixels_per_line, int pixel_step,
unsigned int output_height, unsigned int output_width,
const uint8_t *filter) {
unsigned int i, j;
uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src_ptr8);
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = ROUND_POWER_OF_TWO(
(int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1],
FILTER_BITS);
++src_ptr;
}
// Next row...
src_ptr += src_pixels_per_line - output_width;
output_ptr += output_width;
}
}
void aom_highbd_var_filter_block2d_bil_second_pass(
const uint16_t *src_ptr, uint16_t *output_ptr,
unsigned int src_pixels_per_line, unsigned int pixel_step,
unsigned int output_height, unsigned int output_width,
const uint8_t *filter) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = ROUND_POWER_OF_TWO(
(int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1],
FILTER_BITS);
++src_ptr;
}
src_ptr += src_pixels_per_line - output_width;
output_ptr += output_width;
}
}
#define HIGHBD_SUBPIX_VAR(W, H) \
uint32_t aom_highbd_8_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_10_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_12_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \
dst, dst_stride, sse); \
}
#define HIGHBD_SUBPIX_AVG_VAR(W, H) \
uint32_t aom_highbd_8_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W); \
\
return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_10_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W); \
\
return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_12_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W); \
\
return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
dst, dst_stride, sse); \
} \
\
uint32_t aom_highbd_8_dist_wtd_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred, const DIST_WTD_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_dist_wtd_comp_avg_pred(CONVERT_TO_BYTEPTR(temp3), second_pred, \
W, H, CONVERT_TO_BYTEPTR(temp2), W, \
jcp_param); \
\
return aom_highbd_8_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \
dst_stride, sse); \
} \
\
uint32_t aom_highbd_10_dist_wtd_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred, const DIST_WTD_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_dist_wtd_comp_avg_pred(CONVERT_TO_BYTEPTR(temp3), second_pred, \
W, H, CONVERT_TO_BYTEPTR(temp2), W, \
jcp_param); \
\
return aom_highbd_10_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \
dst_stride, sse); \
} \
\
uint32_t aom_highbd_12_dist_wtd_sub_pixel_avg_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, uint32_t *sse, \
const uint8_t *second_pred, const DIST_WTD_COMP_PARAMS *jcp_param) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_dist_wtd_comp_avg_pred(CONVERT_TO_BYTEPTR(temp3), second_pred, \
W, H, CONVERT_TO_BYTEPTR(temp2), W, \
jcp_param); \
\
return aom_highbd_12_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \
dst_stride, sse); \
}
/* All three forms of the variance are available in the same sizes. */
#define HIGHBD_VARIANCES(W, H) \
HIGHBD_VAR(W, H) \
HIGHBD_SUBPIX_VAR(W, H) \
HIGHBD_SUBPIX_AVG_VAR(W, H)
HIGHBD_VARIANCES(128, 128)
HIGHBD_VARIANCES(128, 64)
HIGHBD_VARIANCES(64, 128)
HIGHBD_VARIANCES(64, 64)
HIGHBD_VARIANCES(64, 32)
HIGHBD_VARIANCES(32, 64)
HIGHBD_VARIANCES(32, 32)
HIGHBD_VARIANCES(32, 16)
HIGHBD_VARIANCES(16, 32)
HIGHBD_VARIANCES(16, 16)
HIGHBD_VARIANCES(16, 8)
HIGHBD_VARIANCES(8, 16)
HIGHBD_VARIANCES(8, 8)
HIGHBD_VARIANCES(8, 4)
HIGHBD_VARIANCES(4, 8)
HIGHBD_VARIANCES(4, 4)
// Realtime mode doesn't use 4x rectangular blocks.
#if !CONFIG_REALTIME_ONLY
HIGHBD_VARIANCES(4, 16)
HIGHBD_VARIANCES(16, 4)
HIGHBD_VARIANCES(8, 32)
HIGHBD_VARIANCES(32, 8)
HIGHBD_VARIANCES(16, 64)
HIGHBD_VARIANCES(64, 16)
#endif
HIGHBD_MSE(16, 16)
HIGHBD_MSE(16, 8)
HIGHBD_MSE(8, 16)
HIGHBD_MSE(8, 8)
void aom_highbd_comp_avg_pred_c(uint8_t *comp_pred8, const uint8_t *pred8,
int width, int height, const uint8_t *ref8,
int ref_stride) {
int i, j;
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int tmp = pred[j] + ref[j];
comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1);
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
void aom_highbd_dist_wtd_comp_avg_pred_c(
uint8_t *comp_pred8, const uint8_t *pred8, int width, int height,
const uint8_t *ref8, int ref_stride,
const DIST_WTD_COMP_PARAMS *jcp_param) {
int i, j;
const int fwd_offset = jcp_param->fwd_offset;
const int bck_offset = jcp_param->bck_offset;
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
int tmp = pred[j] * bck_offset + ref[j] * fwd_offset;
tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS);
comp_pred[j] = (uint16_t)tmp;
}
comp_pred += width;
pred += width;
ref += ref_stride;
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
void aom_comp_mask_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width,
int height, const uint8_t *ref, int ref_stride,
const uint8_t *mask, int mask_stride,
int invert_mask) {
int i, j;
const uint8_t *src0 = invert_mask ? pred : ref;
const uint8_t *src1 = invert_mask ? ref : pred;
const int stride0 = invert_mask ? width : ref_stride;
const int stride1 = invert_mask ? ref_stride : width;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
comp_pred[j] = AOM_BLEND_A64(mask[j], src0[j], src1[j]);
}
comp_pred += width;
src0 += stride0;
src1 += stride1;
mask += mask_stride;
}
}
#define MASK_SUBPIX_VAR(W, H) \
unsigned int aom_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
\
var_filter_block2d_bil_first_pass_c(src, fdata3, src_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
aom_comp_mask_pred_c(temp3, second_pred, W, H, temp2, W, msk, msk_stride, \
invert_mask); \
return aom_variance##W##x##H##_c(temp3, W, ref, ref_stride, sse); \
}
MASK_SUBPIX_VAR(4, 4)
MASK_SUBPIX_VAR(4, 8)
MASK_SUBPIX_VAR(8, 4)
MASK_SUBPIX_VAR(8, 8)
MASK_SUBPIX_VAR(8, 16)
MASK_SUBPIX_VAR(16, 8)
MASK_SUBPIX_VAR(16, 16)
MASK_SUBPIX_VAR(16, 32)
MASK_SUBPIX_VAR(32, 16)
MASK_SUBPIX_VAR(32, 32)
MASK_SUBPIX_VAR(32, 64)
MASK_SUBPIX_VAR(64, 32)
MASK_SUBPIX_VAR(64, 64)
MASK_SUBPIX_VAR(64, 128)
MASK_SUBPIX_VAR(128, 64)
MASK_SUBPIX_VAR(128, 128)
// Realtime mode doesn't use 4x rectangular blocks.
#if !CONFIG_REALTIME_ONLY
MASK_SUBPIX_VAR(4, 16)
MASK_SUBPIX_VAR(16, 4)
MASK_SUBPIX_VAR(8, 32)
MASK_SUBPIX_VAR(32, 8)
MASK_SUBPIX_VAR(16, 64)
MASK_SUBPIX_VAR(64, 16)
#endif
#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_comp_mask_pred_c(uint8_t *comp_pred8, const uint8_t *pred8,
int width, int height, const uint8_t *ref8,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask) {
int i, j;
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
if (!invert_mask)
comp_pred[j] = AOM_BLEND_A64(mask[j], ref[j], pred[j]);
else
comp_pred[j] = AOM_BLEND_A64(mask[j], pred[j], ref[j]);
}
comp_pred += width;
pred += width;
ref += ref_stride;
mask += mask_stride;
}
}
#define HIGHBD_MASK_SUBPIX_VAR(W, H) \
unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_mask_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \
invert_mask); \
\
return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
ref, ref_stride, sse); \
} \
\
unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_mask_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \
invert_mask); \
\
return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
ref, ref_stride, sse); \
} \
\
unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
aom_highbd_comp_mask_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \
CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \
invert_mask); \
\
return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \
ref, ref_stride, sse); \
}
HIGHBD_MASK_SUBPIX_VAR(4, 4)
HIGHBD_MASK_SUBPIX_VAR(4, 8)
HIGHBD_MASK_SUBPIX_VAR(8, 4)
HIGHBD_MASK_SUBPIX_VAR(8, 8)
HIGHBD_MASK_SUBPIX_VAR(8, 16)
HIGHBD_MASK_SUBPIX_VAR(16, 8)
HIGHBD_MASK_SUBPIX_VAR(16, 16)
HIGHBD_MASK_SUBPIX_VAR(16, 32)
HIGHBD_MASK_SUBPIX_VAR(32, 16)
HIGHBD_MASK_SUBPIX_VAR(32, 32)
HIGHBD_MASK_SUBPIX_VAR(32, 64)
HIGHBD_MASK_SUBPIX_VAR(64, 32)
HIGHBD_MASK_SUBPIX_VAR(64, 64)
HIGHBD_MASK_SUBPIX_VAR(64, 128)
HIGHBD_MASK_SUBPIX_VAR(128, 64)
HIGHBD_MASK_SUBPIX_VAR(128, 128)
#if !CONFIG_REALTIME_ONLY
HIGHBD_MASK_SUBPIX_VAR(4, 16)
HIGHBD_MASK_SUBPIX_VAR(16, 4)
HIGHBD_MASK_SUBPIX_VAR(8, 32)
HIGHBD_MASK_SUBPIX_VAR(32, 8)
HIGHBD_MASK_SUBPIX_VAR(16, 64)
HIGHBD_MASK_SUBPIX_VAR(64, 16)
#endif
#endif // CONFIG_AV1_HIGHBITDEPTH
#if !CONFIG_REALTIME_ONLY
static INLINE void obmc_variance(const uint8_t *pre, int pre_stride,
const int32_t *wsrc, const int32_t *mask,
int w, int h, unsigned int *sse, int *sum) {
int i, j;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
int diff = ROUND_POWER_OF_TWO_SIGNED(wsrc[j] - pre[j] * mask[j], 12);
*sum += diff;
*sse += diff * diff;
}
pre += pre_stride;
wsrc += w;
mask += w;
}
}
#define OBMC_VAR(W, H) \
unsigned int aom_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \
}
#define OBMC_SUBPIX_VAR(W, H) \
unsigned int aom_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
\
var_filter_block2d_bil_first_pass_c(pre, fdata3, pre_stride, 1, H + 1, W, \
bilinear_filters_2t[xoffset]); \
var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \
bilinear_filters_2t[yoffset]); \
\
return aom_obmc_variance##W##x##H##_c(temp2, W, wsrc, mask, sse); \
}
OBMC_VAR(4, 4)
OBMC_SUBPIX_VAR(4, 4)
OBMC_VAR(4, 8)
OBMC_SUBPIX_VAR(4, 8)
OBMC_VAR(8, 4)
OBMC_SUBPIX_VAR(8, 4)
OBMC_VAR(8, 8)
OBMC_SUBPIX_VAR(8, 8)
OBMC_VAR(8, 16)
OBMC_SUBPIX_VAR(8, 16)
OBMC_VAR(16, 8)
OBMC_SUBPIX_VAR(16, 8)
OBMC_VAR(16, 16)
OBMC_SUBPIX_VAR(16, 16)
OBMC_VAR(16, 32)
OBMC_SUBPIX_VAR(16, 32)
OBMC_VAR(32, 16)
OBMC_SUBPIX_VAR(32, 16)
OBMC_VAR(32, 32)
OBMC_SUBPIX_VAR(32, 32)
OBMC_VAR(32, 64)
OBMC_SUBPIX_VAR(32, 64)
OBMC_VAR(64, 32)
OBMC_SUBPIX_VAR(64, 32)
OBMC_VAR(64, 64)
OBMC_SUBPIX_VAR(64, 64)
OBMC_VAR(64, 128)
OBMC_SUBPIX_VAR(64, 128)
OBMC_VAR(128, 64)
OBMC_SUBPIX_VAR(128, 64)
OBMC_VAR(128, 128)
OBMC_SUBPIX_VAR(128, 128)
OBMC_VAR(4, 16)
OBMC_SUBPIX_VAR(4, 16)
OBMC_VAR(16, 4)
OBMC_SUBPIX_VAR(16, 4)
OBMC_VAR(8, 32)
OBMC_SUBPIX_VAR(8, 32)
OBMC_VAR(32, 8)
OBMC_SUBPIX_VAR(32, 8)
OBMC_VAR(16, 64)
OBMC_SUBPIX_VAR(16, 64)
OBMC_VAR(64, 16)
OBMC_SUBPIX_VAR(64, 16)
#if CONFIG_AV1_HIGHBITDEPTH
static INLINE void highbd_obmc_variance64(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
uint64_t *sse, int64_t *sum) {
int i, j;
uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
*sse = 0;
*sum = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
int diff = ROUND_POWER_OF_TWO_SIGNED(wsrc[j] - pre[j] * mask[j], 12);
*sum += diff;
*sse += diff * diff;
}
pre += pre_stride;
wsrc += w;
mask += w;
}
}
static INLINE void highbd_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64;
uint64_t sse64;
highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64);
*sum = (int)sum64;
*sse = (unsigned int)sse64;
}
static INLINE void highbd_10_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64;
uint64_t sse64;
highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64);
*sum = (int)ROUND_POWER_OF_TWO(sum64, 2);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 4);
}
static INLINE void highbd_12_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64;
uint64_t sse64;
highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64);
*sum = (int)ROUND_POWER_OF_TWO(sum64, 4);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 8);
}
#define HIGHBD_OBMC_VAR(W, H) \
unsigned int aom_highbd_8_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
highbd_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \
} \
\
unsigned int aom_highbd_10_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
int64_t var; \
highbd_10_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
\
unsigned int aom_highbd_12_obmc_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
int64_t var; \
highbd_12_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
#define HIGHBD_OBMC_SUBPIX_VAR(W, H) \
unsigned int aom_highbd_8_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_8_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
W, wsrc, mask, sse); \
} \
\
unsigned int aom_highbd_10_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_10_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
W, wsrc, mask, sse); \
} \
\
unsigned int aom_highbd_12_obmc_sub_pixel_variance##W##x##H##_c( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint16_t temp2[H * W]; \
\
aom_highbd_var_filter_block2d_bil_first_pass( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_highbd_var_filter_block2d_bil_second_pass( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_highbd_12_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
W, wsrc, mask, sse); \
}
HIGHBD_OBMC_VAR(4, 4)
HIGHBD_OBMC_SUBPIX_VAR(4, 4)
HIGHBD_OBMC_VAR(4, 8)
HIGHBD_OBMC_SUBPIX_VAR(4, 8)
HIGHBD_OBMC_VAR(8, 4)
HIGHBD_OBMC_SUBPIX_VAR(8, 4)
HIGHBD_OBMC_VAR(8, 8)
HIGHBD_OBMC_SUBPIX_VAR(8, 8)
HIGHBD_OBMC_VAR(8, 16)
HIGHBD_OBMC_SUBPIX_VAR(8, 16)
HIGHBD_OBMC_VAR(16, 8)
HIGHBD_OBMC_SUBPIX_VAR(16, 8)
HIGHBD_OBMC_VAR(16, 16)
HIGHBD_OBMC_SUBPIX_VAR(16, 16)
HIGHBD_OBMC_VAR(16, 32)
HIGHBD_OBMC_SUBPIX_VAR(16, 32)
HIGHBD_OBMC_VAR(32, 16)
HIGHBD_OBMC_SUBPIX_VAR(32, 16)
HIGHBD_OBMC_VAR(32, 32)
HIGHBD_OBMC_SUBPIX_VAR(32, 32)
HIGHBD_OBMC_VAR(32, 64)
HIGHBD_OBMC_SUBPIX_VAR(32, 64)
HIGHBD_OBMC_VAR(64, 32)
HIGHBD_OBMC_SUBPIX_VAR(64, 32)
HIGHBD_OBMC_VAR(64, 64)
HIGHBD_OBMC_SUBPIX_VAR(64, 64)
HIGHBD_OBMC_VAR(64, 128)
HIGHBD_OBMC_SUBPIX_VAR(64, 128)
HIGHBD_OBMC_VAR(128, 64)
HIGHBD_OBMC_SUBPIX_VAR(128, 64)
HIGHBD_OBMC_VAR(128, 128)
HIGHBD_OBMC_SUBPIX_VAR(128, 128)
HIGHBD_OBMC_VAR(4, 16)
HIGHBD_OBMC_SUBPIX_VAR(4, 16)
HIGHBD_OBMC_VAR(16, 4)
HIGHBD_OBMC_SUBPIX_VAR(16, 4)
HIGHBD_OBMC_VAR(8, 32)
HIGHBD_OBMC_SUBPIX_VAR(8, 32)
HIGHBD_OBMC_VAR(32, 8)
HIGHBD_OBMC_SUBPIX_VAR(32, 8)
HIGHBD_OBMC_VAR(16, 64)
HIGHBD_OBMC_SUBPIX_VAR(16, 64)
HIGHBD_OBMC_VAR(64, 16)
HIGHBD_OBMC_SUBPIX_VAR(64, 16)
#endif // CONFIG_AV1_HIGHBITDEPTH
#endif // !CONFIG_REALTIME_ONLY
uint64_t aom_mse_wxh_16bit_c(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int w, int h) {
uint64_t sum = 0;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
int e = (uint16_t)dst[i * dstride + j] - src[i * sstride + j];
sum += e * e;
}
}
return sum;
}
uint64_t aom_mse_16xh_16bit_c(uint8_t *dst, int dstride, uint16_t *src, int w,
int h) {
uint16_t *src_temp = src;
uint8_t *dst_temp = dst;
const int num_blks = 16 / w;
int64_t sum = 0;
for (int i = 0; i < num_blks; i++) {
sum += aom_mse_wxh_16bit_c(dst_temp, dstride, src_temp, w, w, h);
dst_temp += w;
src_temp += (w * h);
}
return sum;
}
uint64_t aom_mse_wxh_16bit_highbd_c(uint16_t *dst, int dstride, uint16_t *src,
int sstride, int w, int h) {
uint64_t sum = 0;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
int e = dst[i * dstride + j] - src[i * sstride + j];
sum += e * e;
}
}
return sum;
}