| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <tuple> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_ports/aom_timer.h" |
| #include "av1/encoder/ml.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| #include "test/util.h" |
| #include "test/register_state_check.h" |
| #include "test/acm_random.h" |
| |
| namespace { |
| typedef void (*NnPredict_Func)(const float *const input_nodes, |
| const NN_CONFIG *const nn_config, |
| int reduce_prec, float *const output); |
| |
| typedef std::tuple<const NnPredict_Func> NnPredictTestParam; |
| |
| const float epsilon = 1e-3f; // Error threshold for functional equivalence |
| |
| class NnPredictTest : public ::testing::TestWithParam<NnPredictTestParam> { |
| public: |
| void SetUp() override { |
| const int MAX_NODES2 = NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; |
| // Allocate two massive buffers on the heap for edge weights and node bias |
| // Then set-up the double-dimension arrays pointing into the big buffers |
| weights_buf = (float *)aom_malloc(MAX_NODES2 * (NN_MAX_HIDDEN_LAYERS + 1) * |
| sizeof(*weights_buf)); |
| bias_buf = |
| (float *)aom_malloc(NN_MAX_NODES_PER_LAYER * |
| (NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*bias_buf)); |
| ASSERT_NE(weights_buf, nullptr); |
| ASSERT_NE(bias_buf, nullptr); |
| for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { |
| weights[i] = &weights_buf[i * MAX_NODES2]; |
| bias[i] = &bias_buf[i * NN_MAX_NODES_PER_LAYER]; |
| } |
| target_func_ = GET_PARAM(0); |
| } |
| void TearDown() override { |
| aom_free(weights_buf); |
| aom_free(bias_buf); |
| } |
| void RunNnPredictTest(const NN_CONFIG *const shape); |
| void RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times); |
| void RunNnPredictTest_all(const NN_CONFIG *const shapes, |
| const int num_shapes); |
| void RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, |
| const int num_shapes, const int run_times); |
| |
| private: |
| NnPredict_Func target_func_; |
| libaom_test::ACMRandom rng_; |
| float *weights[NN_MAX_HIDDEN_LAYERS + 1] = {}; |
| float *bias[NN_MAX_HIDDEN_LAYERS + 1] = {}; |
| float *weights_buf = nullptr, *bias_buf = nullptr; |
| }; |
| GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(NnPredictTest); |
| |
| void NnPredictTest::RunNnPredictTest(const NN_CONFIG *const shape) { |
| float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; |
| float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; |
| float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; |
| |
| NN_CONFIG nn_config; |
| memcpy(&nn_config, shape, sizeof(nn_config)); |
| |
| char shape_str[32] = { 0 }; |
| snprintf(shape_str, sizeof(shape_str), "%d", shape->num_inputs); |
| for (int layer = 0; layer < shape->num_hidden_layers; layer++) |
| snprintf(&shape_str[strlen(shape_str)], |
| sizeof(shape_str) - strlen(shape_str), "x%d", |
| shape->num_hidden_nodes[layer]); |
| snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str), |
| "x%d", shape->num_outputs); |
| |
| for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { |
| nn_config.weights[i] = weights[i]; |
| nn_config.bias[i] = bias[i]; |
| } |
| |
| for (int iter = 0; iter < 10000 && !HasFatalFailure(); ++iter) { |
| for (int node = 0; node < shape->num_inputs; node++) { |
| inputs[node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); |
| } |
| for (int layer = 0; layer < shape->num_hidden_layers; layer++) { |
| for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { |
| bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); |
| } |
| for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; |
| node++) { |
| weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); |
| } |
| } |
| // Now the outputs: |
| int layer = shape->num_hidden_layers; |
| for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { |
| bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); |
| } |
| for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; |
| node++) { |
| weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); |
| } |
| |
| av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); |
| target_func_(inputs, &nn_config, 0, outputs_test); |
| |
| for (int node = 0; node < shape->num_outputs; node++) { |
| if (outputs_ref[node] < epsilon) { |
| ASSERT_LE(outputs_test[node], epsilon) |
| << "Reference output was near-zero, test output was not (" |
| << shape_str << ")"; |
| } else { |
| const float error = outputs_ref[node] - outputs_test[node]; |
| const float relative_error = fabsf(error / outputs_ref[node]); |
| ASSERT_LE(relative_error, epsilon) |
| << "Excessive relative error between reference and test (" |
| << shape_str << ")"; |
| } |
| } |
| } |
| } |
| |
| void NnPredictTest::RunNnPredictSpeedTest(const NN_CONFIG *const shape, |
| const int run_times) { |
| float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; |
| float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; |
| float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; |
| |
| NN_CONFIG nn_config; |
| memcpy(&nn_config, shape, sizeof(nn_config)); |
| |
| for (int i = 0; i < NN_MAX_HIDDEN_LAYERS; i++) { |
| nn_config.weights[i] = weights[i]; |
| nn_config.bias[i] = bias[i]; |
| } |
| // Don't bother actually changing the values for inputs/weights/bias: it |
| // shouldn't make any difference for a speed test. |
| |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < run_times; ++i) { |
| av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); |
| } |
| aom_usec_timer_mark(&timer); |
| const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < run_times; ++i) { |
| target_func_(inputs, &nn_config, 0, outputs_test); |
| } |
| aom_usec_timer_mark(&timer); |
| const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); |
| |
| printf("%d", shape->num_inputs); |
| for (int layer = 0; layer < shape->num_hidden_layers; layer++) |
| printf("x%d", shape->num_hidden_nodes[layer]); |
| printf("x%d: ", shape->num_outputs); |
| printf("%7.2f/%7.2fns (%3.2f)\n", time1, time2, time1 / time2); |
| } |
| |
| // This is all the neural network shapes observed executed in a few different |
| // runs of the encoder. It also conveniently covers all the kernels |
| // implemented. |
| static const NN_CONFIG kShapes[] = { |
| { 37, 1, 2, { 16, 24 }, {}, {} }, { 24, 24, 1, { 12 }, {}, {} }, |
| { 10, 16, 1, { 64 }, {}, {} }, { 12, 1, 1, { 12 }, {}, {} }, |
| { 12, 1, 1, { 24 }, {}, {} }, { 12, 1, 1, { 32 }, {}, {} }, |
| { 18, 4, 1, { 24 }, {}, {} }, { 18, 4, 1, { 32 }, {}, {} }, |
| { 4, 1, 1, { 16 }, {}, {} }, { 8, 1, 0, { 0 }, {}, {} }, |
| { 8, 4, 1, { 16 }, {}, {} }, { 8, 1, 1, { 32 }, {}, {} }, |
| { 9, 3, 1, { 32 }, {}, {} }, { 8, 4, 0, { 0 }, {}, {} }, |
| { 8, 8, 0, { 0 }, {}, {} }, { 4, 4, 1, { 8 }, {}, {} }, |
| { 4, 3, 0, { 64 }, {}, {} }, |
| }; |
| |
| void NnPredictTest::RunNnPredictTest_all(const NN_CONFIG *const shapes, |
| const int num_shapes) { |
| for (int i = 0; i < num_shapes; i++) RunNnPredictTest(&shapes[i]); |
| } |
| |
| void NnPredictTest::RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, |
| const int num_shapes, |
| const int run_times) { |
| for (int i = 0; i < num_shapes; i++) |
| NnPredictTest::RunNnPredictSpeedTest(&shapes[i], run_times); |
| } |
| |
| TEST_P(NnPredictTest, RandomValues) { |
| RunNnPredictTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0])); |
| } |
| |
| TEST_P(NnPredictTest, DISABLED_Speed) { |
| RunNnPredictSpeedTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0]), |
| 10000000); |
| } |
| |
| #if !CONFIG_EXCLUDE_SIMD_MISMATCH |
| #if HAVE_SSE3 |
| INSTANTIATE_TEST_SUITE_P(SSE3, NnPredictTest, |
| ::testing::Values(av1_nn_predict_sse3)); |
| #endif |
| |
| #if HAVE_AVX2 |
| INSTANTIATE_TEST_SUITE_P(AVX2, NnPredictTest, |
| ::testing::Values(av1_nn_predict_avx2)); |
| #endif |
| |
| #if HAVE_NEON |
| INSTANTIATE_TEST_SUITE_P(NEON, NnPredictTest, |
| ::testing::Values(av1_nn_predict_neon)); |
| #endif |
| #endif // !CONFIG_EXCLUDE_SIMD_MISMATCH |
| |
| } // namespace |