| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/psnr.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/quant_common.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/picklpf.h" |
| |
| // AV1 loop filter applies to the whole frame according to mi_rows and mi_cols, |
| // which are calculated based on aligned width and aligned height, |
| // In addition, if super res is enabled, it copies the whole frame |
| // according to the aligned width and height (av1_superres_upscale()). |
| // So we need to copy the whole filtered region, instead of the cropped region. |
| // For example, input image size is: 160x90. |
| // Then src->y_crop_width = 160, src->y_crop_height = 90. |
| // The aligned frame size is: src->y_width = 160, src->y_height = 96. |
| // AV1 aligns frame size to a multiple of 8, if there is |
| // chroma subsampling, it is able to ensure the chroma is also |
| // an integer number of mi units. mi unit is 4x4, 8 = 4 * 2, and 2 luma mi |
| // units correspond to 1 chroma mi unit if there is subsampling. |
| // See: aom_realloc_frame_buffer() in yv12config.c. |
| static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc, |
| YV12_BUFFER_CONFIG *dst_bc, int plane) { |
| switch (plane) { |
| case 0: aom_yv12_copy_y(src_bc, dst_bc, 0); break; |
| case 1: aom_yv12_copy_u(src_bc, dst_bc, 0); break; |
| case 2: aom_yv12_copy_v(src_bc, dst_bc, 0); break; |
| default: assert(plane >= 0 && plane <= 2); break; |
| } |
| } |
| |
| int av1_get_max_filter_level(const AV1_COMP *cpi) { |
| if (is_stat_consumption_stage_twopass(cpi)) { |
| return cpi->ppi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4 |
| : MAX_LOOP_FILTER; |
| } else { |
| return MAX_LOOP_FILTER; |
| } |
| } |
| |
| static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd, |
| AV1_COMP *const cpi, int filt_level, |
| int partial_frame, int plane, int dir) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| int num_workers = mt_info->num_mod_workers[MOD_LPF]; |
| AV1_COMMON *const cm = &cpi->common; |
| int64_t filt_err; |
| |
| assert(plane >= 0 && plane <= 2); |
| int filter_level[2] = { filt_level, filt_level }; |
| if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1]; |
| if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0]; |
| |
| // set base filters for use of av1_get_filter_level when in DELTA_LF mode |
| switch (plane) { |
| case 0: |
| cm->lf.filter_level[0] = filter_level[0]; |
| cm->lf.filter_level[1] = filter_level[1]; |
| break; |
| case 1: cm->lf.filter_level_u = filter_level[0]; break; |
| case 2: cm->lf.filter_level_v = filter_level[0]; break; |
| } |
| |
| // lpf_opt_level = 1 : Enables dual/quad loop-filtering. |
| int lpf_opt_level = is_inter_tx_size_search_level_one(&cpi->sf.tx_sf); |
| |
| av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &cpi->td.mb.e_mbd, plane, |
| plane + 1, partial_frame, mt_info->workers, |
| num_workers, &mt_info->lf_row_sync, lpf_opt_level); |
| |
| filt_err = aom_get_sse_plane(sd, &cm->cur_frame->buf, plane, |
| cm->seq_params->use_highbitdepth); |
| |
| // Re-instate the unfiltered frame |
| yv12_copy_plane(&cpi->last_frame_uf, &cm->cur_frame->buf, plane); |
| |
| return filt_err; |
| } |
| |
| static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, |
| int partial_frame, |
| const int *last_frame_filter_level, int plane, |
| int dir) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int min_filter_level = 0; |
| const int max_filter_level = av1_get_max_filter_level(cpi); |
| int filt_direction = 0; |
| int64_t best_err; |
| int filt_best; |
| |
| // Start the search at the previous frame filter level unless it is now out of |
| // range. |
| int lvl; |
| switch (plane) { |
| case 0: |
| switch (dir) { |
| case 2: |
| lvl = (last_frame_filter_level[0] + last_frame_filter_level[1] + 1) >> |
| 1; |
| break; |
| case 0: |
| case 1: lvl = last_frame_filter_level[dir]; break; |
| default: assert(dir >= 0 && dir <= 2); return 0; |
| } |
| break; |
| case 1: lvl = last_frame_filter_level[2]; break; |
| case 2: lvl = last_frame_filter_level[3]; break; |
| default: assert(plane >= 0 && plane <= 2); return 0; |
| } |
| int filt_mid = clamp(lvl, min_filter_level, max_filter_level); |
| int filter_step = filt_mid < 16 ? 4 : filt_mid / 4; |
| // Sum squared error at each filter level |
| int64_t ss_err[MAX_LOOP_FILTER + 1]; |
| |
| const int use_coarse_search = cpi->sf.lpf_sf.use_coarse_filter_level_search; |
| assert(use_coarse_search <= 1); |
| static const int min_filter_step_lookup[2] = { 0, 2 }; |
| // min_filter_step_thesh determines the stopping criteria for the search. |
| // The search is terminated when filter_step equals min_filter_step_thesh. |
| const int min_filter_step_thesh = min_filter_step_lookup[use_coarse_search]; |
| |
| // Set each entry to -1 |
| memset(ss_err, 0xFF, sizeof(ss_err)); |
| yv12_copy_plane(&cm->cur_frame->buf, &cpi->last_frame_uf, plane); |
| best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir); |
| filt_best = filt_mid; |
| ss_err[filt_mid] = best_err; |
| |
| while (filter_step > min_filter_step_thesh) { |
| const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level); |
| const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level); |
| |
| // Bias against raising loop filter in favor of lowering it. |
| int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; |
| |
| if ((is_stat_consumption_stage_twopass(cpi)) && |
| (cpi->ppi->twopass.section_intra_rating < 20)) |
| bias = (bias * cpi->ppi->twopass.section_intra_rating) / 20; |
| |
| // yx, bias less for large block size |
| if (cm->features.tx_mode != ONLY_4X4) bias >>= 1; |
| |
| if (filt_direction <= 0 && filt_low != filt_mid) { |
| // Get Low filter error score |
| if (ss_err[filt_low] < 0) { |
| ss_err[filt_low] = |
| try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir); |
| } |
| // If value is close to the best so far then bias towards a lower loop |
| // filter value. |
| if (ss_err[filt_low] < (best_err + bias)) { |
| // Was it actually better than the previous best? |
| if (ss_err[filt_low] < best_err) { |
| best_err = ss_err[filt_low]; |
| } |
| filt_best = filt_low; |
| } |
| } |
| |
| // Now look at filt_high |
| if (filt_direction >= 0 && filt_high != filt_mid) { |
| if (ss_err[filt_high] < 0) { |
| ss_err[filt_high] = |
| try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir); |
| } |
| // If value is significantly better than previous best, bias added against |
| // raising filter value |
| if (ss_err[filt_high] < (best_err - bias)) { |
| best_err = ss_err[filt_high]; |
| filt_best = filt_high; |
| } |
| } |
| |
| // Half the step distance if the best filter value was the same as last time |
| if (filt_best == filt_mid) { |
| filter_step /= 2; |
| filt_direction = 0; |
| } else { |
| filt_direction = (filt_best < filt_mid) ? -1 : 1; |
| filt_mid = filt_best; |
| } |
| } |
| |
| return filt_best; |
| } |
| |
| void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, |
| LPF_PICK_METHOD method) { |
| AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| const int num_planes = av1_num_planes(cm); |
| struct loopfilter *const lf = &cm->lf; |
| int disable_filter_rt_screen = 0; |
| (void)sd; |
| |
| lf->sharpness_level = 0; |
| |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
| cpi->sf.rt_sf.skip_lf_screen) |
| disable_filter_rt_screen = av1_cyclic_refresh_disable_lf_cdef(cpi); |
| |
| if (disable_filter_rt_screen || |
| cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_NONE || |
| (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_REFERENCE && |
| cpi->ppi->rtc_ref.non_reference_frame)) { |
| lf->filter_level[0] = 0; |
| lf->filter_level[1] = 0; |
| return; |
| } |
| |
| if (method == LPF_PICK_MINIMAL_LPF) { |
| lf->filter_level[0] = 0; |
| lf->filter_level[1] = 0; |
| } else if (method >= LPF_PICK_FROM_Q) { |
| const int min_filter_level = 0; |
| const int max_filter_level = av1_get_max_filter_level(cpi); |
| const int q = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, |
| seq_params->bit_depth); |
| // based on tests result for rtc test set |
| // 0.04590 boosted or 0.02295 non-booseted in 18-bit fixed point |
| const int strength_boost_q_treshold = 0; |
| int inter_frame_multiplier = |
| (q > strength_boost_q_treshold || |
| (cpi->sf.rt_sf.use_nonrd_pick_mode && |
| cpi->common.width * cpi->common.height > 352 * 288)) |
| ? 12034 |
| : 6017; |
| // Increase strength on base TL0 for temporal layers, for low-resoln, |
| // based on frame source_sad. |
| if (cpi->svc.number_temporal_layers > 1 && |
| cpi->svc.temporal_layer_id == 0 && |
| cpi->common.width * cpi->common.height <= 352 * 288 && |
| cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| if (cpi->rc.frame_source_sad > 100000) |
| inter_frame_multiplier = inter_frame_multiplier << 1; |
| else if (cpi->rc.frame_source_sad > 50000) |
| inter_frame_multiplier = 3 * (inter_frame_multiplier >> 1); |
| } else if (cpi->sf.rt_sf.use_fast_fixed_part) { |
| inter_frame_multiplier = inter_frame_multiplier << 1; |
| } |
| // These values were determined by linear fitting the result of the |
| // searched level for 8 bit depth: |
| // Keyframes: filt_guess = q * 0.06699 - 1.60817 |
| // Other frames: filt_guess = q * inter_frame_multiplier + 2.48225 |
| // |
| // And high bit depth separately: |
| // filt_guess = q * 0.316206 + 3.87252 |
| int filt_guess; |
| switch (seq_params->bit_depth) { |
| case AOM_BITS_8: |
| filt_guess = |
| (cm->current_frame.frame_type == KEY_FRAME) |
| ? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18) |
| : ROUND_POWER_OF_TWO(q * inter_frame_multiplier + 650707, 18); |
| break; |
| case AOM_BITS_10: |
| filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20); |
| break; |
| case AOM_BITS_12: |
| filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22); |
| break; |
| default: |
| assert(0 && |
| "bit_depth should be AOM_BITS_8, AOM_BITS_10 " |
| "or AOM_BITS_12"); |
| return; |
| } |
| if (seq_params->bit_depth != AOM_BITS_8 && |
| cm->current_frame.frame_type == KEY_FRAME) |
| filt_guess -= 4; |
| // TODO(chengchen): retrain the model for Y, U, V filter levels |
| lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level); |
| lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level); |
| lf->filter_level_u = clamp(filt_guess, min_filter_level, max_filter_level); |
| lf->filter_level_v = clamp(filt_guess, min_filter_level, max_filter_level); |
| if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY && |
| !frame_is_intra_only(cm) && !cpi->rc.high_source_sad) { |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { |
| lf->filter_level[0] = 0; |
| lf->filter_level[1] = 0; |
| } else { |
| const int num4x4 = (cm->width >> 2) * (cm->height >> 2); |
| const int newmv_thresh = 7; |
| const int distance_since_key_thresh = 5; |
| if ((cpi->td.rd_counts.newmv_or_intra_blocks * 100 / num4x4) < |
| newmv_thresh && |
| cpi->rc.frames_since_key > distance_since_key_thresh) { |
| lf->filter_level[0] = 0; |
| lf->filter_level[1] = 0; |
| } |
| } |
| } |
| } else { |
| int last_frame_filter_level[4] = { 0 }; |
| if (!frame_is_intra_only(cm)) { |
| last_frame_filter_level[0] = cpi->ppi->filter_level[0]; |
| last_frame_filter_level[1] = cpi->ppi->filter_level[1]; |
| last_frame_filter_level[2] = cpi->ppi->filter_level_u; |
| last_frame_filter_level[3] = cpi->ppi->filter_level_v; |
| } |
| // The frame buffer last_frame_uf is used to store the non-loop filtered |
| // reconstructed frame in search_filter_level(). |
| if (aom_realloc_frame_buffer( |
| &cpi->last_frame_uf, cm->width, cm->height, |
| seq_params->subsampling_x, seq_params->subsampling_y, |
| seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, |
| cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate last frame buffer"); |
| |
| lf->filter_level[0] = lf->filter_level[1] = |
| search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, |
| last_frame_filter_level, 0, 2); |
| if (method != LPF_PICK_FROM_FULL_IMAGE_NON_DUAL) { |
| lf->filter_level[0] = |
| search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, |
| last_frame_filter_level, 0, 0); |
| lf->filter_level[1] = |
| search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, |
| last_frame_filter_level, 0, 1); |
| } |
| |
| if (num_planes > 1) { |
| lf->filter_level_u = |
| search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, |
| last_frame_filter_level, 1, 0); |
| lf->filter_level_v = |
| search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, |
| last_frame_filter_level, 2, 0); |
| } |
| } |
| } |