| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> |
| |
| #include "config/aom_scale_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_dsp/mathutils.h" |
| #include "aom_dsp/psnr.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/restoration.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/picklpf.h" |
| #include "av1/encoder/pickrst.h" |
| |
| // Number of Wiener iterations |
| #define NUM_WIENER_ITERS 5 |
| |
| // Penalty factor for use of dual sgr |
| #define DUAL_SGR_PENALTY_MULT 0.01 |
| |
| // Working precision for Wiener filter coefficients |
| #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16) |
| |
| #define SGRPROJ_EP_GRP1_START_IDX 0 |
| #define SGRPROJ_EP_GRP1_END_IDX 9 |
| #define SGRPROJ_EP_GRP1_SEARCH_COUNT 4 |
| #define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2 |
| static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6, |
| 9 }; |
| static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = { |
| { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 }, |
| { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 } |
| }; |
| |
| #if DEBUG_LR_COSTING |
| RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE] |
| [MAX_LR_UNITS_W * MAX_LR_UNITS_H]; |
| #endif // DEBUG_LR_COSTING |
| |
| typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, |
| const YV12_BUFFER_CONFIG *b); |
| typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, |
| const YV12_BUFFER_CONFIG *b, |
| int hstart, int width, int vstart, |
| int height); |
| typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a, |
| int hstart, int width, int vstart, |
| int height); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| #define NUM_EXTRACTORS (3 * (1 + 1)) |
| #else |
| #define NUM_EXTRACTORS 3 |
| #endif |
| static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { |
| aom_get_y_sse_part, aom_get_u_sse_part, |
| aom_get_v_sse_part, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part, |
| aom_highbd_get_v_sse_part, |
| #endif |
| }; |
| static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = { |
| aom_get_y_var, aom_get_u_var, aom_get_v_var, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var, |
| #endif |
| }; |
| |
| static int64_t sse_restoration_unit(const RestorationTileLimits *limits, |
| const YV12_BUFFER_CONFIG *src, |
| const YV12_BUFFER_CONFIG *dst, int plane, |
| int highbd) { |
| return sse_part_extractors[3 * highbd + plane]( |
| src, dst, limits->h_start, limits->h_end - limits->h_start, |
| limits->v_start, limits->v_end - limits->v_start); |
| } |
| |
| static uint64_t var_restoration_unit(const RestorationTileLimits *limits, |
| const YV12_BUFFER_CONFIG *src, int plane, |
| int highbd) { |
| return var_part_extractors[3 * highbd + plane]( |
| src, limits->h_start, limits->h_end - limits->h_start, limits->v_start, |
| limits->v_end - limits->v_start); |
| } |
| |
| typedef struct { |
| const YV12_BUFFER_CONFIG *src; |
| YV12_BUFFER_CONFIG *dst; |
| |
| const AV1_COMMON *cm; |
| const MACROBLOCK *x; |
| int plane; |
| int plane_w; |
| int plane_h; |
| RestUnitSearchInfo *rusi; |
| |
| // Speed features |
| const LOOP_FILTER_SPEED_FEATURES *lpf_sf; |
| |
| uint8_t *dgd_buffer; |
| int dgd_stride; |
| const uint8_t *src_buffer; |
| int src_stride; |
| |
| // SSE values for each restoration mode for the current RU |
| // These are saved by each search function for use in search_switchable() |
| int64_t sse[RESTORE_SWITCHABLE_TYPES]; |
| |
| // This flag will be set based on the speed feature |
| // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning. |
| uint8_t skip_sgr_eval; |
| |
| // Total rate and distortion so far for each restoration type |
| // These are initialised by reset_rsc in search_rest_type |
| int64_t total_sse[RESTORE_TYPES]; |
| int64_t total_bits[RESTORE_TYPES]; |
| |
| // Reference parameters for delta-coding |
| // |
| // For each restoration type, we need to store the latest parameter set which |
| // has been used, so that we can properly cost up the next parameter set. |
| // Note that we have two sets of these - one for the single-restoration-mode |
| // search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ) |
| // and one for the switchable mode. This is because these two cases can lead |
| // to different sets of parameters being signaled, but we don't know which |
| // we will pick for sure until the end of the search process. |
| WienerInfo ref_wiener; |
| SgrprojInfo ref_sgrproj; |
| WienerInfo switchable_ref_wiener; |
| SgrprojInfo switchable_ref_sgrproj; |
| |
| // Buffers used to hold dgd-avg and src-avg data respectively during SIMD |
| // call of Wiener filter. |
| int16_t *dgd_avg; |
| int16_t *src_avg; |
| } RestSearchCtxt; |
| |
| static inline void rsc_on_tile(void *priv) { |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| set_default_wiener(&rsc->ref_wiener); |
| set_default_sgrproj(&rsc->ref_sgrproj); |
| set_default_wiener(&rsc->switchable_ref_wiener); |
| set_default_sgrproj(&rsc->switchable_ref_sgrproj); |
| } |
| |
| static inline void reset_rsc(RestSearchCtxt *rsc) { |
| memset(rsc->total_sse, 0, sizeof(rsc->total_sse)); |
| memset(rsc->total_bits, 0, sizeof(rsc->total_bits)); |
| } |
| |
| static inline void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm, |
| const MACROBLOCK *x, |
| const LOOP_FILTER_SPEED_FEATURES *lpf_sf, int plane, |
| RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst, |
| RestSearchCtxt *rsc) { |
| rsc->src = src; |
| rsc->dst = dst; |
| rsc->cm = cm; |
| rsc->x = x; |
| rsc->plane = plane; |
| rsc->rusi = rusi; |
| rsc->lpf_sf = lpf_sf; |
| |
| const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; |
| const int is_uv = plane != AOM_PLANE_Y; |
| int plane_w, plane_h; |
| av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
| assert(plane_w == src->crop_widths[is_uv]); |
| assert(plane_h == src->crop_heights[is_uv]); |
| assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]); |
| assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]); |
| |
| rsc->plane_w = plane_w; |
| rsc->plane_h = plane_h; |
| rsc->src_buffer = src->buffers[plane]; |
| rsc->src_stride = src->strides[is_uv]; |
| rsc->dgd_buffer = dgd->buffers[plane]; |
| rsc->dgd_stride = dgd->strides[is_uv]; |
| } |
| |
| static int64_t try_restoration_unit(const RestSearchCtxt *rsc, |
| const RestorationTileLimits *limits, |
| const RestorationUnitInfo *rui) { |
| const AV1_COMMON *const cm = rsc->cm; |
| const int plane = rsc->plane; |
| const int is_uv = plane > 0; |
| const RestorationInfo *rsi = &cm->rst_info[plane]; |
| RestorationLineBuffers rlbs; |
| const int bit_depth = cm->seq_params->bit_depth; |
| const int highbd = cm->seq_params->use_highbitdepth; |
| |
| const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf; |
| // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be |
| // also used in encoder. |
| const int optimized_lr = 0; |
| |
| av1_loop_restoration_filter_unit( |
| limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h, |
| is_uv && cm->seq_params->subsampling_x, |
| is_uv && cm->seq_params->subsampling_y, highbd, bit_depth, |
| fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane], |
| rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error); |
| |
| return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd); |
| } |
| |
| int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, |
| int dat_stride, int32_t *flt0, |
| int flt0_stride, int32_t *flt1, |
| int flt1_stride, int xq[2], |
| const sgr_params_type *params) { |
| int i, j; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| int64_t err = 0; |
| if (params->r[0] > 0 && params->r[1] > 0) { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); |
| assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); |
| const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
| int32_t v = u << SGRPROJ_PRJ_BITS; |
| v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u); |
| const int32_t e = |
| ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| flt0 += flt0_stride; |
| flt1 += flt1_stride; |
| } |
| } else if (params->r[0] > 0) { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); |
| const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
| int32_t v = u << SGRPROJ_PRJ_BITS; |
| v += xq[0] * (flt0[j] - u); |
| const int32_t e = |
| ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| flt0 += flt0_stride; |
| } |
| } else if (params->r[1] > 0) { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); |
| const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
| int32_t v = u << SGRPROJ_PRJ_BITS; |
| v += xq[1] * (flt1[j] - u); |
| const int32_t e = |
| ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| flt1 += flt1_stride; |
| } |
| } else { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t e = (int32_t)(dat[j]) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| } |
| } |
| |
| return err; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, |
| int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int xq[2], |
| const sgr_params_type *params) { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| int i, j; |
| int64_t err = 0; |
| const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1); |
| if (params->r[0] > 0 && params->r[1] > 0) { |
| int xq0 = xq[0]; |
| int xq1 = xq[1]; |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t d = dat[j]; |
| const int32_t s = src[j]; |
| const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); |
| int32_t v0 = flt0[j] - u; |
| int32_t v1 = flt1[j] - u; |
| int32_t v = half; |
| v += xq0 * v0; |
| v += xq1 * v1; |
| const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| flt0 += flt0_stride; |
| flt1 += flt1_stride; |
| src += src_stride; |
| } |
| } else if (params->r[0] > 0 || params->r[1] > 0) { |
| int exq; |
| int32_t *flt; |
| int flt_stride; |
| if (params->r[0] > 0) { |
| exq = xq[0]; |
| flt = flt0; |
| flt_stride = flt0_stride; |
| } else { |
| exq = xq[1]; |
| flt = flt1; |
| flt_stride = flt1_stride; |
| } |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t d = dat[j]; |
| const int32_t s = src[j]; |
| const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); |
| int32_t v = half; |
| v += exq * (flt[j] - u); |
| const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| flt += flt_stride; |
| src += src_stride; |
| } |
| } else { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t d = dat[j]; |
| const int32_t s = src[j]; |
| const int32_t e = d - s; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| } |
| } |
| return err; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, |
| int dat_stride, int use_highbitdepth, |
| int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int *xqd, |
| const sgr_params_type *params) { |
| int xq[2]; |
| av1_decode_xq(xqd, xq, params); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_highbitdepth) { |
| return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, xq, params); |
| |
| } else { |
| return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, xq, params); |
| } |
| #else |
| (void)use_highbitdepth; |
| return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, xq, params); |
| #endif |
| } |
| |
| #define USE_SGRPROJ_REFINEMENT_SEARCH 1 |
| static int64_t finer_search_pixel_proj_error( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, |
| int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd, |
| const sgr_params_type *params) { |
| int64_t err = get_pixel_proj_error( |
| src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, |
| flt0_stride, flt1, flt1_stride, xqd, params); |
| (void)start_step; |
| #if USE_SGRPROJ_REFINEMENT_SEARCH |
| int64_t err2; |
| int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; |
| int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; |
| for (int s = start_step; s >= 1; s >>= 1) { |
| for (int p = 0; p < 2; ++p) { |
| if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) { |
| continue; |
| } |
| int skip = 0; |
| do { |
| if (xqd[p] - s >= tap_min[p]) { |
| xqd[p] -= s; |
| err2 = |
| get_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, use_highbitdepth, flt0, |
| flt0_stride, flt1, flt1_stride, xqd, params); |
| if (err2 > err) { |
| xqd[p] += s; |
| } else { |
| err = err2; |
| skip = 1; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| if (skip) break; |
| do { |
| if (xqd[p] + s <= tap_max[p]) { |
| xqd[p] += s; |
| err2 = |
| get_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, use_highbitdepth, flt0, |
| flt0_stride, flt1, flt1_stride, xqd, params); |
| if (err2 > err) { |
| xqd[p] -= s; |
| } else { |
| err = err2; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| } |
| } |
| #endif // USE_SGRPROJ_REFINEMENT_SEARCH |
| return err; |
| } |
| |
| static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) { |
| if (dividend < 0) |
| return (dividend - divisor / 2) / divisor; |
| else |
| return (dividend + divisor / 2) / divisor; |
| } |
| |
| static inline void calc_proj_params_r0_r1_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, |
| int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| H[1][1] += (int64_t)f2 * f2; |
| H[0][1] += (int64_t)f1 * f2; |
| C[0] += (int64_t)f1 * s; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[0][0] /= size; |
| H[0][1] /= size; |
| H[1][1] /= size; |
| H[1][0] = H[0][1]; |
| C[0] /= size; |
| C[1] /= size; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static inline void calc_proj_params_r0_r1_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| H[1][1] += (int64_t)f2 * f2; |
| H[0][1] += (int64_t)f1 * f2; |
| C[0] += (int64_t)f1 * s; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[0][0] /= size; |
| H[0][1] /= size; |
| H[1][1] /= size; |
| H[1][0] = H[0][1]; |
| C[0] /= size; |
| C[1] /= size; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static inline void calc_proj_params_r0_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, |
| int32_t *flt0, int flt0_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| C[0] += (int64_t)f1 * s; |
| } |
| } |
| H[0][0] /= size; |
| C[0] /= size; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static inline void calc_proj_params_r0_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| C[0] += (int64_t)f1 * s; |
| } |
| } |
| H[0][0] /= size; |
| C[0] /= size; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static inline void calc_proj_params_r1_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, |
| int32_t *flt1, int flt1_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[1][1] += (int64_t)f2 * f2; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[1][1] /= size; |
| C[1] /= size; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static inline void calc_proj_params_r1_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[1][1] += (int64_t)f2 * f2; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[1][1] /= size; |
| C[1] /= size; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| // The function calls 3 subfunctions for the following cases : |
| // 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements |
| // of C and H need to be computed. |
| // 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are |
| // non-zero and need to be computed. |
| // 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are |
| // non-zero and need to be computed. |
| void av1_calc_proj_params_c(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, int dat_stride, |
| int32_t *flt0, int flt0_stride, int32_t *flt1, |
| int flt1_stride, int64_t H[2][2], int64_t C[2], |
| const sgr_params_type *params) { |
| if ((params->r[0] > 0) && (params->r[1] > 0)) { |
| calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, flt1, flt1_stride, H, C); |
| } else if (params->r[0] > 0) { |
| calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, H, C); |
| } else if (params->r[1] > 0) { |
| calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt1, flt1_stride, H, C); |
| } |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, |
| int dat_stride, int32_t *flt0, |
| int flt0_stride, int32_t *flt1, |
| int flt1_stride, int64_t H[2][2], |
| int64_t C[2], |
| const sgr_params_type *params) { |
| if ((params->r[0] > 0) && (params->r[1] > 0)) { |
| calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, H, C); |
| } else if (params->r[0] > 0) { |
| calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, H, C); |
| } else if (params->r[1] > 0) { |
| calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt1, flt1_stride, H, C); |
| } |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static inline void get_proj_subspace(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, |
| int dat_stride, int use_highbitdepth, |
| int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int *xq, |
| const sgr_params_type *params) { |
| int64_t H[2][2] = { { 0, 0 }, { 0, 0 } }; |
| int64_t C[2] = { 0, 0 }; |
| |
| // Default values to be returned if the problem becomes ill-posed |
| xq[0] = 0; |
| xq[1] = 0; |
| |
| if (!use_highbitdepth) { |
| if ((width & 0x7) == 0) { |
| av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, flt1, flt1_stride, H, C, params); |
| } else { |
| av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, flt1, flt1_stride, H, C, |
| params); |
| } |
| } |
| #if CONFIG_AV1_HIGHBITDEPTH |
| else { // NOLINT |
| if ((width & 0x7) == 0) { |
| av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, H, C, params); |
| } else { |
| av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, H, C, params); |
| } |
| } |
| #endif |
| |
| if (params->r[0] == 0) { |
| // H matrix is now only the scalar H[1][1] |
| // C vector is now only the scalar C[1] |
| const int64_t Det = H[1][1]; |
| if (Det == 0) return; // ill-posed, return default values |
| xq[0] = 0; |
| xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det); |
| } else if (params->r[1] == 0) { |
| // H matrix is now only the scalar H[0][0] |
| // C vector is now only the scalar C[0] |
| const int64_t Det = H[0][0]; |
| if (Det == 0) return; // ill-posed, return default values |
| xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det); |
| xq[1] = 0; |
| } else { |
| const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0]; |
| if (Det == 0) return; // ill-posed, return default values |
| |
| // If scaling up dividend would overflow, instead scale down the divisor |
| const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1]; |
| if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) || |
| (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1)) |
| xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS)); |
| else |
| xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det); |
| |
| const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0]; |
| if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) || |
| (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2)) |
| xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS)); |
| else |
| xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det); |
| } |
| } |
| |
| static inline void encode_xq(int *xq, int *xqd, const sgr_params_type *params) { |
| if (params->r[0] == 0) { |
| xqd[0] = 0; |
| xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1, |
| SGRPROJ_PRJ_MAX1); |
| } else if (params->r[1] == 0) { |
| xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); |
| xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1, |
| SGRPROJ_PRJ_MAX1); |
| } else { |
| xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); |
| xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1, |
| SGRPROJ_PRJ_MAX1); |
| } |
| } |
| |
| // Apply the self-guided filter across an entire restoration unit. |
| static inline void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width, |
| int height, int dat_stride, int use_highbd, |
| int bit_depth, int pu_width, int pu_height, |
| int32_t *flt0, int32_t *flt1, int flt_stride, |
| struct aom_internal_error_info *error_info) { |
| for (int i = 0; i < height; i += pu_height) { |
| const int h = AOMMIN(pu_height, height - i); |
| int32_t *flt0_row = flt0 + i * flt_stride; |
| int32_t *flt1_row = flt1 + i * flt_stride; |
| const uint8_t *dat8_row = dat8 + i * dat_stride; |
| |
| // Iterate over the stripe in blocks of width pu_width |
| for (int j = 0; j < width; j += pu_width) { |
| const int w = AOMMIN(pu_width, width - j); |
| if (av1_selfguided_restoration( |
| dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, |
| flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) { |
| aom_internal_error( |
| error_info, AOM_CODEC_MEM_ERROR, |
| "Error allocating buffer in av1_selfguided_restoration"); |
| } |
| } |
| } |
| } |
| |
| static inline void compute_sgrproj_err( |
| const uint8_t *dat8, const int width, const int height, |
| const int dat_stride, const uint8_t *src8, const int src_stride, |
| const int use_highbitdepth, const int bit_depth, const int pu_width, |
| const int pu_height, const int ep, int32_t *flt0, int32_t *flt1, |
| const int flt_stride, int *exqd, int64_t *err, |
| struct aom_internal_error_info *error_info) { |
| int exq[2]; |
| apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth, |
| pu_width, pu_height, flt0, flt1, flt_stride, error_info); |
| const sgr_params_type *const params = &av1_sgr_params[ep]; |
| get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, |
| use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq, |
| params); |
| encode_xq(exq, exqd, params); |
| *err = finer_search_pixel_proj_error( |
| src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, |
| flt_stride, flt1, flt_stride, 2, exqd, params); |
| } |
| |
| static inline void get_best_error(int64_t *besterr, const int64_t err, |
| const int *exqd, int *bestxqd, int *bestep, |
| const int ep) { |
| if (*besterr == -1 || err < *besterr) { |
| *bestep = ep; |
| *besterr = err; |
| bestxqd[0] = exqd[0]; |
| bestxqd[1] = exqd[1]; |
| } |
| } |
| |
| static SgrprojInfo search_selfguided_restoration( |
| const uint8_t *dat8, int width, int height, int dat_stride, |
| const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, |
| int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning, |
| struct aom_internal_error_info *error_info) { |
| int32_t *flt0 = rstbuf; |
| int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; |
| int ep, idx, bestep = 0; |
| int64_t besterr = -1; |
| int exqd[2], bestxqd[2] = { 0, 0 }; |
| int flt_stride = ((width + 7) & ~7) + 8; |
| assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || |
| pu_width == RESTORATION_PROC_UNIT_SIZE); |
| assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || |
| pu_height == RESTORATION_PROC_UNIT_SIZE); |
| if (!enable_sgr_ep_pruning) { |
| for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err, error_info); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| } else { |
| // evaluate first four seed ep in first group |
| for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) { |
| ep = sgproj_ep_grp1_seed[idx]; |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err, error_info); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| // evaluate left and right ep of winner in seed ep |
| int bestep_ref = bestep; |
| for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) { |
| if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX) |
| continue; |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err, error_info); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| // evaluate last two group |
| for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) { |
| ep = sgproj_ep_grp2_3[idx][bestep]; |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err, error_info); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| } |
| |
| SgrprojInfo ret; |
| ret.ep = bestep; |
| ret.xqd[0] = bestxqd[0]; |
| ret.xqd[1] = bestxqd[1]; |
| return ret; |
| } |
| |
| static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, |
| SgrprojInfo *ref_sgrproj_info) { |
| int bits = SGRPROJ_PARAMS_BITS; |
| const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; |
| if (params->r[0] > 0) |
| bits += aom_count_primitive_refsubexpfin( |
| SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
| sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
| if (params->r[1] > 0) |
| bits += aom_count_primitive_refsubexpfin( |
| SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
| sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
| return bits; |
| } |
| |
| static inline void search_sgrproj(const RestorationTileLimits *limits, |
| int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, RestorationLineBuffers *rlbs, |
| struct aom_internal_error_info *error_info) { |
| (void)rlbs; |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const MACROBLOCK *const x = rsc->x; |
| const AV1_COMMON *const cm = rsc->cm; |
| const int highbd = cm->seq_params->use_highbitdepth; |
| const int bit_depth = cm->seq_params->bit_depth; |
| |
| const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0]; |
| // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set |
| if (rsc->skip_sgr_eval) { |
| rsc->total_bits[RESTORE_SGRPROJ] += bits_none; |
| rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE; |
| rsc->sse[RESTORE_SGRPROJ] = INT64_MAX; |
| return; |
| } |
| |
| uint8_t *dgd_start = |
| rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start; |
| const uint8_t *src_start = |
| rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start; |
| |
| const int is_uv = rsc->plane > 0; |
| const int ss_x = is_uv && cm->seq_params->subsampling_x; |
| const int ss_y = is_uv && cm->seq_params->subsampling_y; |
| const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; |
| const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; |
| |
| rusi->sgrproj = search_selfguided_restoration( |
| dgd_start, limits->h_end - limits->h_start, |
| limits->v_end - limits->v_start, rsc->dgd_stride, src_start, |
| rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height, |
| tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info); |
| |
| RestorationUnitInfo rui; |
| rui.restoration_type = RESTORE_SGRPROJ; |
| rui.sgrproj_info = rusi->sgrproj; |
| |
| rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui); |
| |
| const int64_t bits_sgr = |
| x->mode_costs.sgrproj_restore_cost[1] + |
| (count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj) |
| << AV1_PROB_COST_SHIFT); |
| double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth); |
| double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth); |
| if (rusi->sgrproj.ep < 10) |
| cost_sgr *= |
| (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); |
| |
| RestorationType rtype = |
| (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE; |
| rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype; |
| |
| #if DEBUG_LR_COSTING |
| // Store ref params for later checking |
| lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info = |
| rsc->ref_sgrproj; |
| #endif // DEBUG_LR_COSTING |
| |
| rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype]; |
| rsc->total_bits[RESTORE_SGRPROJ] += |
| (cost_sgr < cost_none) ? bits_sgr : bits_none; |
| if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj; |
| } |
| |
| static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src, |
| int dgd_stride, int h_start, int h_end, |
| uint8_t avg, const int wiener_halfwin, |
| const int wiener_win2, int32_t *M_int32, |
| int32_t *H_int32, int count) { |
| int j, k, l; |
| int16_t Y[WIENER_WIN2]; |
| |
| for (j = h_start; j < h_end; j++) { |
| const int16_t X = (int16_t)src[j] - (int16_t)avg; |
| int idx = 0; |
| for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { |
| for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { |
| Y[idx] = |
| (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg; |
| idx++; |
| } |
| } |
| assert(idx == wiener_win2); |
| for (k = 0; k < wiener_win2; ++k) { |
| M_int32[k] += (int32_t)Y[k] * X; |
| for (l = k; l < wiener_win2; ++l) { |
| // H is a symmetric matrix, so we only need to fill out the upper |
| // triangle here. We can copy it down to the lower triangle outside |
| // the (i, j) loops. |
| H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l]; |
| } |
| } |
| } |
| } |
| |
| void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, |
| int16_t *dgd_avg, int16_t *src_avg, int h_start, |
| int h_end, int v_start, int v_end, int dgd_stride, |
| int src_stride, int64_t *M, int64_t *H, |
| int use_downsampled_wiener_stats) { |
| (void)dgd_avg; |
| (void)src_avg; |
| int i, k, l; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin = (wiener_win >> 1); |
| uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); |
| int32_t M_row[WIENER_WIN2] = { 0 }; |
| int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 }; |
| int downsample_factor = |
| use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; |
| |
| memset(M, 0, sizeof(*M) * wiener_win2); |
| memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
| |
| for (i = v_start; i < v_end; i = i + downsample_factor) { |
| if (use_downsampled_wiener_stats && |
| (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { |
| downsample_factor = v_end - i; |
| } |
| |
| memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2); |
| memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2); |
| acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end, |
| avg, wiener_halfwin, wiener_win2, M_row, H_row, i); |
| |
| for (k = 0; k < wiener_win2; ++k) { |
| // Scale M matrix based on the downsampling factor |
| M[k] += ((int64_t)M_row[k] * downsample_factor); |
| for (l = k; l < wiener_win2; ++l) { |
| // H is a symmetric matrix, so we only need to fill out the upper |
| // triangle here. We can copy it down to the lower triangle outside |
| // the (i, j) loops. |
| // Scale H Matrix based on the downsampling factor |
| H[k * wiener_win2 + l] += |
| ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor); |
| } |
| } |
| } |
| |
| for (k = 0; k < wiener_win2; ++k) { |
| for (l = k + 1; l < wiener_win2; ++l) { |
| H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; |
| } |
| } |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8, |
| const uint8_t *src8, int16_t *dgd_avg, |
| int16_t *src_avg, int h_start, int h_end, |
| int v_start, int v_end, int dgd_stride, |
| int src_stride, int64_t *M, int64_t *H, |
| aom_bit_depth_t bit_depth) { |
| (void)dgd_avg; |
| (void)src_avg; |
| int i, j, k, l; |
| int32_t Y[WIENER_WIN2]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin = (wiener_win >> 1); |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); |
| uint16_t avg = |
| find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); |
| |
| uint8_t bit_depth_divider = 1; |
| if (bit_depth == AOM_BITS_12) |
| bit_depth_divider = 16; |
| else if (bit_depth == AOM_BITS_10) |
| bit_depth_divider = 4; |
| |
| memset(M, 0, sizeof(*M) * wiener_win2); |
| memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
| for (i = v_start; i < v_end; i++) { |
| for (j = h_start; j < h_end; j++) { |
| const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg; |
| int idx = 0; |
| for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { |
| for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { |
| Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg; |
| idx++; |
| } |
| } |
| assert(idx == wiener_win2); |
| for (k = 0; k < wiener_win2; ++k) { |
| M[k] += (int64_t)Y[k] * X; |
| for (l = k; l < wiener_win2; ++l) { |
| // H is a symmetric matrix, so we only need to fill out the upper |
| // triangle here. We can copy it down to the lower triangle outside |
| // the (i, j) loops. |
| H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l]; |
| } |
| } |
| } |
| } |
| for (k = 0; k < wiener_win2; ++k) { |
| M[k] /= bit_depth_divider; |
| H[k * wiener_win2 + k] /= bit_depth_divider; |
| for (l = k + 1; l < wiener_win2; ++l) { |
| H[k * wiener_win2 + l] /= bit_depth_divider; |
| H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; |
| } |
| } |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static inline int wrap_index(int i, int wiener_win) { |
| const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
| return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); |
| } |
| |
| // Splits each w[i] into smaller components w1[i] and w2[i] such that |
| // w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]. |
| static inline void split_wiener_filter_coefficients(int wiener_win, |
| const int32_t *w, |
| int32_t *w1, int32_t *w2) { |
| for (int i = 0; i < wiener_win; i++) { |
| w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR; |
| w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR; |
| assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]); |
| } |
| } |
| |
| // Calculates x * w / WIENER_TAP_SCALE_FACTOR, where |
| // w = w1 * WIENER_TAP_SCALE_FACTOR + w2. |
| // |
| // The multiplication x * w may overflow, so we multiply x by the components of |
| // w (w1 and w2) and combine the multiplication with the division. |
| static inline int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) { |
| // Let y = x * w / WIENER_TAP_SCALE_FACTOR |
| // = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR |
| const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR; |
| return y; |
| } |
| |
| // Solve linear equations to find Wiener filter tap values |
| // Taps are output scaled by WIENER_FILT_STEP |
| static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b, |
| int64_t *x) { |
| for (int k = 0; k < n - 1; k++) { |
| // Partial pivoting: bring the row with the largest pivot to the top |
| for (int i = n - 1; i > k; i--) { |
| // If row i has a better (bigger) pivot than row (i-1), swap them |
| if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) { |
| for (int j = 0; j < n; j++) { |
| const int64_t c = A[i * stride + j]; |
| A[i * stride + j] = A[(i - 1) * stride + j]; |
| A[(i - 1) * stride + j] = c; |
| } |
| const int64_t c = b[i]; |
| b[i] = b[i - 1]; |
| b[i - 1] = c; |
| } |
| } |
| |
| // b/278065963: The multiplies |
| // c / 256 * A[k * stride + j] / cd * 256 |
| // and |
| // c / 256 * b[k] / cd * 256 |
| // within Gaussian elimination can cause a signed integer overflow. Rework |
| // the multiplies so that larger scaling is used without significantly |
| // impacting the overall precision. |
| // |
| // Precision guidance: |
| // scale_threshold: Pick as high as possible. |
| // For max_abs_akj >= scale_threshold scenario: |
| // scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j]. |
| // scaler_c: Pick as low as possible while maintaining scaler_c >= |
| // (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1]. |
| int64_t max_abs_akj = 0; |
| for (int j = 0; j < n; j++) { |
| const int64_t abs_akj = llabs(A[k * stride + j]); |
| if (abs_akj > max_abs_akj) max_abs_akj = abs_akj; |
| } |
| const int scale_threshold = 1 << 22; |
| const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 6); |
| const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7); |
| const int scaler = scaler_c * scaler_A; |
| |
| // Forward elimination (convert A to row-echelon form) |
| for (int i = k; i < n - 1; i++) { |
| if (A[k * stride + k] == 0) return 0; |
| const int64_t c = A[(i + 1) * stride + k] / scaler_c; |
| const int64_t cd = A[k * stride + k]; |
| for (int j = 0; j < n; j++) { |
| A[(i + 1) * stride + j] -= |
| A[k * stride + j] / scaler_A * c / cd * scaler; |
| } |
| b[i + 1] -= c * b[k] / cd * scaler_c; |
| } |
| } |
| // Back-substitution |
| for (int i = n - 1; i >= 0; i--) { |
| if (A[i * stride + i] == 0) return 0; |
| int64_t c = 0; |
| for (int j = i + 1; j <= n - 1; j++) { |
| c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR; |
| } |
| // Store filter taps x in scaled form. |
| x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i]; |
| } |
| |
| return 1; |
| } |
| |
| // Fix vector b, update vector a |
| static inline void update_a_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc, |
| int32_t *a, const int32_t *b) { |
| int i, j; |
| int64_t S[WIENER_WIN]; |
| int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; |
| int32_t b1[WIENER_WIN], b2[WIENER_WIN]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
| memset(A, 0, sizeof(A)); |
| memset(B, 0, sizeof(B)); |
| for (i = 0; i < wiener_win; i++) { |
| for (j = 0; j < wiener_win; ++j) { |
| const int jj = wrap_index(j, wiener_win); |
| A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR; |
| } |
| } |
| split_wiener_filter_coefficients(wiener_win, b, b1, b2); |
| |
| for (i = 0; i < wiener_win; i++) { |
| for (j = 0; j < wiener_win; j++) { |
| int k, l; |
| for (k = 0; k < wiener_win; ++k) { |
| const int kk = wrap_index(k, wiener_win); |
| for (l = 0; l < wiener_win; ++l) { |
| const int ll = wrap_index(l, wiener_win); |
| // Calculate |
| // B[ll * wiener_halfwin1 + kk] += |
| // Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / |
| // WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR; |
| // |
| // The last multiplication may overflow, so we combine the last |
| // multiplication with the last division. |
| const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / |
| WIENER_TAP_SCALE_FACTOR; |
| // b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j] |
| B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]); |
| } |
| } |
| } |
| } |
| // Normalization enforcement in the system of equations itself |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| A[i] -= |
| A[wiener_halfwin1 - 1] * 2 + |
| B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; |
| } |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| for (j = 0; j < wiener_halfwin1 - 1; ++j) { |
| B[i * wiener_halfwin1 + j] -= |
| 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + |
| B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + |
| (wiener_halfwin1 - 1)]); |
| } |
| } |
| if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { |
| S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; |
| for (i = wiener_halfwin1; i < wiener_win; ++i) { |
| S[i] = S[wiener_win - 1 - i]; |
| S[wiener_halfwin1 - 1] -= 2 * S[i]; |
| } |
| for (i = 0; i < wiener_win; ++i) { |
| a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), |
| (1 << (WIENER_FILT_BITS - 1)) - 1); |
| } |
| } |
| } |
| |
| // Fix vector a, update vector b |
| static inline void update_b_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc, |
| const int32_t *a, int32_t *b) { |
| int i, j; |
| int64_t S[WIENER_WIN]; |
| int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; |
| int32_t a1[WIENER_WIN], a2[WIENER_WIN]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
| memset(A, 0, sizeof(A)); |
| memset(B, 0, sizeof(B)); |
| for (i = 0; i < wiener_win; i++) { |
| const int ii = wrap_index(i, wiener_win); |
| for (j = 0; j < wiener_win; j++) { |
| A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR; |
| } |
| } |
| split_wiener_filter_coefficients(wiener_win, a, a1, a2); |
| |
| for (i = 0; i < wiener_win; i++) { |
| const int ii = wrap_index(i, wiener_win); |
| for (j = 0; j < wiener_win; j++) { |
| const int jj = wrap_index(j, wiener_win); |
| int k, l; |
| for (k = 0; k < wiener_win; ++k) { |
| for (l = 0; l < wiener_win; ++l) { |
| // Calculate |
| // B[jj * wiener_halfwin1 + ii] += |
| // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / |
| // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR; |
| // |
| // The last multiplication may overflow, so we combine the last |
| // multiplication with the last division. |
| const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / |
| WIENER_TAP_SCALE_FACTOR; |
| // a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l] |
| B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]); |
| } |
| } |
| } |
| } |
| // Normalization enforcement in the system of equations itself |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| A[i] -= |
| A[wiener_halfwin1 - 1] * 2 + |
| B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; |
| } |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| for (j = 0; j < wiener_halfwin1 - 1; ++j) { |
| B[i * wiener_halfwin1 + j] -= |
| 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + |
| B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + |
| (wiener_halfwin1 - 1)]); |
| } |
| } |
| if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { |
| S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; |
| for (i = wiener_halfwin1; i < wiener_win; ++i) { |
| S[i] = S[wiener_win - 1 - i]; |
| S[wiener_halfwin1 - 1] -= 2 * S[i]; |
| } |
| for (i = 0; i < wiener_win; ++i) { |
| b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), |
| (1 << (WIENER_FILT_BITS - 1)) - 1); |
| } |
| } |
| } |
| |
| static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H, |
| int32_t *a, int32_t *b) { |
| static const int32_t init_filt[WIENER_WIN] = { |
| WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, |
| WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, |
| WIENER_FILT_TAP0_MIDV, |
| }; |
| int64_t *Hc[WIENER_WIN2]; |
| int64_t *Mc[WIENER_WIN]; |
| int i, j, iter; |
| const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
| const int wiener_win2 = wiener_win * wiener_win; |
| for (i = 0; i < wiener_win; i++) { |
| a[i] = b[i] = |
| WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off]; |
| } |
| for (i = 0; i < wiener_win; i++) { |
| Mc[i] = M + i * wiener_win; |
| for (j = 0; j < wiener_win; j++) { |
| Hc[i * wiener_win + j] = |
| H + i * wiener_win * wiener_win2 + j * wiener_win; |
| } |
| } |
| |
| iter = 1; |
| while (iter < NUM_WIENER_ITERS) { |
| update_a_sep_sym(wiener_win, Mc, Hc, a, b); |
| update_b_sep_sym(wiener_win, Mc, Hc, a, b); |
| iter++; |
| } |
| } |
| |
| // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares |
| // against identity filters; Final score is defined as the difference between |
| // the function values |
| static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H, |
| InterpKernel vfilt, InterpKernel hfilt) { |
| int32_t ab[WIENER_WIN * WIENER_WIN]; |
| int16_t a[WIENER_WIN], b[WIENER_WIN]; |
| int64_t P = 0, Q = 0; |
| int64_t iP = 0, iQ = 0; |
| int64_t Score, iScore; |
| int i, k, l; |
| const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
| const int wiener_win2 = wiener_win * wiener_win; |
| |
| a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP; |
| for (i = 0; i < WIENER_HALFWIN; ++i) { |
| a[i] = a[WIENER_WIN - i - 1] = vfilt[i]; |
| b[i] = b[WIENER_WIN - i - 1] = hfilt[i]; |
| a[WIENER_HALFWIN] -= 2 * a[i]; |
| b[WIENER_HALFWIN] -= 2 * b[i]; |
| } |
| memset(ab, 0, sizeof(ab)); |
| for (k = 0; k < wiener_win; ++k) { |
| for (l = 0; l < wiener_win; ++l) |
| ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; |
| } |
| for (k = 0; k < wiener_win2; ++k) { |
| P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP; |
| for (l = 0; l < wiener_win2; ++l) { |
| Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP / |
| WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP; |
| } |
| } |
| Score = Q - 2 * P; |
| |
| iP = M[wiener_win2 >> 1]; |
| iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; |
| iScore = iQ - 2 * iP; |
| |
| return Score - iScore; |
| } |
| |
| static inline void finalize_sym_filter(int wiener_win, int32_t *f, |
| InterpKernel fi) { |
| int i; |
| const int wiener_halfwin = (wiener_win >> 1); |
| |
| for (i = 0; i < wiener_halfwin; ++i) { |
| const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP; |
| const int64_t divisor = WIENER_TAP_SCALE_FACTOR; |
| // Perform this division with proper rounding rather than truncation |
| if (dividend < 0) { |
| fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor); |
| } else { |
| fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor); |
| } |
| } |
| // Specialize for 7-tap filter |
| if (wiener_win == WIENER_WIN) { |
| fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); |
| fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); |
| fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); |
| } else { |
| fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); |
| fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); |
| fi[0] = 0; |
| } |
| // Satisfy filter constraints |
| fi[WIENER_WIN - 1] = fi[0]; |
| fi[WIENER_WIN - 2] = fi[1]; |
| fi[WIENER_WIN - 3] = fi[2]; |
| // The central element has an implicit +WIENER_FILT_STEP |
| fi[3] = -2 * (fi[0] + fi[1] + fi[2]); |
| } |
| |
| static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, |
| WienerInfo *ref_wiener_info) { |
| int bits = 0; |
| if (wiener_win == WIENER_WIN) |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); |
| if (wiener_win == WIENER_WIN) |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); |
| return bits; |
| } |
| |
| static int64_t finer_search_wiener(const RestSearchCtxt *rsc, |
| const RestorationTileLimits *limits, |
| RestorationUnitInfo *rui, int wiener_win) { |
| const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
| int64_t err = try_restoration_unit(rsc, limits, rui); |
| |
| if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err; |
| |
| // Refinement search around the wiener filter coefficients. |
| int64_t err2; |
| int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, |
| WIENER_FILT_TAP2_MINV }; |
| int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, |
| WIENER_FILT_TAP2_MAXV }; |
| |
| WienerInfo *plane_wiener = &rui->wiener_info; |
| |
| // printf("err pre = %"PRId64"\n", err); |
| const int start_step = 4; |
| for (int s = start_step; s >= 1; s >>= 1) { |
| for (int p = plane_off; p < WIENER_HALFWIN; ++p) { |
| int skip = 0; |
| do { |
| if (plane_wiener->hfilter[p] - s >= tap_min[p]) { |
| plane_wiener->hfilter[p] -= s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; |
| err2 = try_restoration_unit(rsc, limits, rui); |
| if (err2 > err) { |
| plane_wiener->hfilter[p] += s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; |
| } else { |
| err = err2; |
| skip = 1; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| if (skip) break; |
| do { |
| if (plane_wiener->hfilter[p] + s <= tap_max[p]) { |
| plane_wiener->hfilter[p] += s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; |
| err2 = try_restoration_unit(rsc, limits, rui); |
| if (err2 > err) { |
| plane_wiener->hfilter[p] -= s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; |
| } else { |
| err = err2; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| } |
| for (int p = plane_off; p < WIENER_HALFWIN; ++p) { |
| int skip = 0; |
| do { |
| if (plane_wiener->vfilter[p] - s >= tap_min[p]) { |
| plane_wiener->vfilter[p] -= s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; |
| err2 = try_restoration_unit(rsc, limits, rui); |
| if (err2 > err) { |
| plane_wiener->vfilter[p] += s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; |
| } else { |
| err = err2; |
| skip = 1; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| if (skip) break; |
| do { |
| if (plane_wiener->vfilter[p] + s <= tap_max[p]) { |
| plane_wiener->vfilter[p] += s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; |
| err2 = try_restoration_unit(rsc, limits, rui); |
| if (err2 > err) { |
| plane_wiener->vfilter[p] -= s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; |
| } else { |
| err = err2; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| } |
| } |
| // printf("err post = %"PRId64"\n", err); |
| return err; |
| } |
| |
| static inline void search_wiener(const RestorationTileLimits *limits, |
| int rest_unit_idx, void *priv, int32_t *tmpbuf, |
| RestorationLineBuffers *rlbs, |
| struct aom_internal_error_info *error_info) { |
| (void)tmpbuf; |
| (void)rlbs; |
| (void)error_info; |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const MACROBLOCK *const x = rsc->x; |
| const int64_t bits_none = x->mode_costs.wiener_restore_cost[0]; |
| |
| // Skip Wiener search for low variance contents |
| if (rsc->lpf_sf->prune_wiener_based_on_src_var) { |
| const int scale[3] = { 0, 1, 2 }; |
| // Obtain the normalized Qscale |
| const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0, |
| rsc->cm->seq_params->bit_depth) >> |
| 3; |
| // Derive threshold as sqr(normalized Qscale) * scale / 16, |
| const uint64_t thresh = |
| (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4; |
| const int highbd = rsc->cm->seq_params->use_highbitdepth; |
| const uint64_t src_var = |
| var_restoration_unit(limits, rsc->src, rsc->plane, highbd); |
| // Do not perform Wiener search if source variance is lower than threshold |
| // or if the reconstruction error is zero |
| int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0); |
| if (prune_wiener) { |
| rsc->total_bits[RESTORE_WIENER] += bits_none; |
| rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
| rsc->sse[RESTORE_WIENER] = INT64_MAX; |
| if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1; |
| return; |
| } |
| } |
| |
| const int wiener_win = |
| (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; |
| |
| int reduced_wiener_win = wiener_win; |
| if (rsc->lpf_sf->reduce_wiener_window_size) { |
| reduced_wiener_win = |
| (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA; |
| } |
| |
| int64_t M[WIENER_WIN2]; |
| int64_t H[WIENER_WIN2 * WIENER_WIN2]; |
| int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN]; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const AV1_COMMON *const cm = rsc->cm; |
| if (cm->seq_params->use_highbitdepth) { |
| // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD |
| // functions. Optimize intrinsics of HBD design similar to LBD (i.e., |
| // pre-calculate d and s buffers and avoid most of the C operations). |
| av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer, |
| rsc->src_buffer, rsc->dgd_avg, rsc->src_avg, |
| limits->h_start, limits->h_end, limits->v_start, |
| limits->v_end, rsc->dgd_stride, rsc->src_stride, M, |
| H, cm->seq_params->bit_depth); |
| } else { |
| av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, |
| rsc->dgd_avg, rsc->src_avg, limits->h_start, |
| limits->h_end, limits->v_start, limits->v_end, |
| rsc->dgd_stride, rsc->src_stride, M, H, |
| rsc->lpf_sf->use_downsampled_wiener_stats); |
| } |
| #else |
| av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, |
| rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end, |
| limits->v_start, limits->v_end, rsc->dgd_stride, |
| rsc->src_stride, M, H, |
| rsc->lpf_sf->use_downsampled_wiener_stats); |
| #endif |
| |
| wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter); |
| |
| RestorationUnitInfo rui; |
| memset(&rui, 0, sizeof(rui)); |
| rui.restoration_type = RESTORE_WIENER; |
| finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter); |
| finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter); |
| |
| // Filter score computes the value of the function x'*A*x - x'*b for the |
| // learned filter and compares it against identity filer. If there is no |
| // reduction in the function, the filter is reverted back to identity |
| if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter, |
| rui.wiener_info.hfilter) > 0) { |
| rsc->total_bits[RESTORE_WIENER] += bits_none; |
| rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
| rsc->sse[RESTORE_WIENER] = INT64_MAX; |
| if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1; |
| return; |
| } |
| |
| rsc->sse[RESTORE_WIENER] = |
| finer_search_wiener(rsc, limits, &rui, reduced_wiener_win); |
| rusi->wiener = rui.wiener_info; |
| |
| if (reduced_wiener_win != WIENER_WIN) { |
| assert(rui.wiener_info.vfilter[0] == 0 && |
| rui.wiener_info.vfilter[WIENER_WIN - 1] == 0); |
| assert(rui.wiener_info.hfilter[0] == 0 && |
| rui.wiener_info.hfilter[WIENER_WIN - 1] == 0); |
| } |
| |
| const int64_t bits_wiener = |
| x->mode_costs.wiener_restore_cost[1] + |
| (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener) |
| << AV1_PROB_COST_SHIFT); |
| |
| double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], |
| rsc->cm->seq_params->bit_depth); |
| double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER], |
| rsc->cm->seq_params->bit_depth); |
| |
| RestorationType rtype = |
| (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE; |
| rusi->best_rtype[RESTORE_WIENER - 1] = rtype; |
| |
| // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and |
| // RESTORE_NONE or based on best_rtype |
| if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) { |
| rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none); |
| } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) { |
| rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE; |
| } |
| |
| #if DEBUG_LR_COSTING |
| // Store ref params for later checking |
| lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info = |
| rsc->ref_wiener; |
| #endif // DEBUG_LR_COSTING |
| |
| rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype]; |
| rsc->total_bits[RESTORE_WIENER] += |
| (cost_wiener < cost_none) ? bits_wiener : bits_none; |
| if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener; |
| } |
| |
| static inline void search_norestore( |
| const RestorationTileLimits *limits, int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, RestorationLineBuffers *rlbs, |
| struct aom_internal_error_info *error_info) { |
| (void)rest_unit_idx; |
| (void)tmpbuf; |
| (void)rlbs; |
| (void)error_info; |
| |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| |
| const int highbd = rsc->cm->seq_params->use_highbitdepth; |
| rsc->sse[RESTORE_NONE] = sse_restoration_unit( |
| limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd); |
| |
| rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE]; |
| } |
| |
| static inline void search_switchable( |
| const RestorationTileLimits *limits, int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, RestorationLineBuffers *rlbs, |
| struct aom_internal_error_info *error_info) { |
| (void)limits; |
| (void)tmpbuf; |
| (void)rlbs; |
| (void)error_info; |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const MACROBLOCK *const x = rsc->x; |
| |
| const int wiener_win = |
| (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; |
| |
| double best_cost = 0; |
| int64_t best_bits = 0; |
| RestorationType best_rtype = RESTORE_NONE; |
| |
| for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { |
| // If this restoration mode was skipped, or could not find a solution |
| // that was better than RESTORE_NONE, then we can't select it here either. |
| // |
| // Note: It is possible for the restoration search functions to find a |
| // filter which is better than RESTORE_NONE when looking purely at SSE, but |
| // for it to be rejected overall due to its rate cost. In this case, there |
| // is a chance that it may be have a lower rate cost when looking at |
| // RESTORE_SWITCHABLE, and so it might be acceptable here. |
| // |
| // Therefore we prune based on SSE, rather than on whether or not the |
| // previous search function selected this mode. |
| if (r > RESTORE_NONE) { |
| if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue; |
| } |
| |
| const int64_t sse = rsc->sse[r]; |
| int64_t coeff_pcost = 0; |
| switch (r) { |
| case RESTORE_NONE: coeff_pcost = 0; break; |
| case RESTORE_WIENER: |
| coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener, |
| &rsc->switchable_ref_wiener); |
| break; |
| case RESTORE_SGRPROJ: |
| coeff_pcost = |
| count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj); |
| break; |
| default: assert(0); break; |
| } |
| const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT; |
| const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits; |
| double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth); |
| if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10) |
| cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); |
| if (r == 0 || cost < best_cost) { |
| best_cost = cost; |
| best_bits = bits; |
| best_rtype = r; |
| } |
| } |
| |
| rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; |
| |
| #if DEBUG_LR_COSTING |
| // Store ref params for later checking |
| lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info = |
| rsc->switchable_ref_wiener; |
| lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info = |
| rsc->switchable_ref_sgrproj; |
| #endif // DEBUG_LR_COSTING |
| |
| rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype]; |
| rsc->total_bits[RESTORE_SWITCHABLE] += best_bits; |
| if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener; |
| if (best_rtype == RESTORE_SGRPROJ) |
| rsc->switchable_ref_sgrproj = rusi->sgrproj; |
| } |
| |
| static inline void copy_unit_info(RestorationType frame_rtype, |
| const RestUnitSearchInfo *rusi, |
| RestorationUnitInfo *rui) { |
| assert(frame_rtype > 0); |
| rui->restoration_type = rusi->best_rtype[frame_rtype - 1]; |
| if (rui->restoration_type == RESTORE_WIENER) |
| rui->wiener_info = rusi->wiener; |
| else |
| rui->sgrproj_info = rusi->sgrproj; |
| } |
| |
| static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc, |
| bool *disable_lr_filter) { |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| const int mib_size_log2 = cm->seq_params->mib_size_log2; |
| const CommonTileParams *tiles = &cm->tiles; |
| const int is_uv = plane > 0; |
| const int ss_y = is_uv && cm->seq_params->subsampling_y; |
| RestorationInfo *rsi = &cm->rst_info[plane]; |
| const int ru_size = rsi->restoration_unit_size; |
| const int ext_size = ru_size * 3 / 2; |
| |
| int plane_w, plane_h; |
| av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
| |
| static const rest_unit_visitor_t funs[RESTORE_TYPES] = { |
| search_norestore, search_wiener, search_sgrproj, search_switchable |
| }; |
| |
| const int plane_num_units = rsi->num_rest_units; |
| const RestorationType num_rtypes = |
| (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; |
| |
| reset_rsc(rsc); |
| |
| // Iterate over restoration units in encoding order, so that each RU gets |
| // the correct reference parameters when we cost it up. This is effectively |
| // a nested iteration over: |
| // * Each tile, order does not matter |
| // * Each superblock within that tile, in raster order |
| // * Each LR unit which is coded within that superblock, in raster order |
| for (int tile_row = 0; tile_row < tiles->rows; tile_row++) { |
| int sb_row_start = tiles->row_start_sb[tile_row]; |
| int sb_row_end = tiles->row_start_sb[tile_row + 1]; |
| for (int tile_col = 0; tile_col < tiles->cols; tile_col++) { |
| int sb_col_start = tiles->col_start_sb[tile_col]; |
| int sb_col_end = tiles->col_start_sb[tile_col + 1]; |
| |
| // Reset reference parameters for delta-coding at the start of each tile |
| rsc_on_tile(rsc); |
| |
| for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) { |
| int mi_row = sb_row << mib_size_log2; |
| for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) { |
| int mi_col = sb_col << mib_size_log2; |
| |
| int rcol0, rcol1, rrow0, rrow1; |
| int has_lr_info = av1_loop_restoration_corners_in_sb( |
| cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0, |
| &rrow1); |
| |
| if (!has_lr_info) continue; |
| |
| RestorationTileLimits limits; |
| for (int rrow = rrow0; rrow < rrow1; rrow++) { |
| int y0 = rrow * ru_size; |
| int remaining_h = plane_h - y0; |
| int h = (remaining_h < ext_size) ? remaining_h : ru_size; |
| |
| limits.v_start = y0; |
| limits.v_end = y0 + h; |
| assert(limits.v_end <= plane_h); |
| // Offset upwards to align with the restoration processing stripe |
| const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; |
| limits.v_start = AOMMAX(0, limits.v_start - voffset); |
| if (limits.v_end < plane_h) limits.v_end -= voffset; |
| |
| for (int rcol = rcol0; rcol < rcol1; rcol++) { |
| int x0 = rcol * ru_size; |
| int remaining_w = plane_w - x0; |
| int w = (remaining_w < ext_size) ? remaining_w : ru_size; |
| |
| limits.h_start = x0; |
| limits.h_end = x0 + w; |
| assert(limits.h_end <= plane_w); |
| |
| const int unit_idx = rrow * rsi->horz_units + rcol; |
| |
| rsc->skip_sgr_eval = 0; |
| for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) { |
| if (disable_lr_filter[r]) continue; |
| |
| funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL, |
| cm->error); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static inline void av1_derive_flags_for_lr_processing( |
| const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) { |
| const bool is_wiener_disabled = lpf_sf->disable_wiener_filter; |
| const bool is_sgr_disabled = lpf_sf->disable_sgr_filter; |
| |
| // Enable None Loop restoration filter if either of Wiener or Self-guided is |
| // enabled. |
| disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled); |
| |
| disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled; |
| disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled; |
| |
| // Enable Swicthable Loop restoration filter if both of the Wiener and |
| // Self-guided are enabled. |
| disable_lr_filter[RESTORE_SWITCHABLE] = |
| (is_wiener_disabled || is_sgr_disabled); |
| } |
| |
| #define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0 |
| // Allocate both decoder-side and encoder-side info structs for a single plane. |
| // The unit size passed in should be the minimum size which we are going to |
| // search; before each search, set_restoration_unit_size() must be called to |
| // configure the actual size. |
| static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm, |
| RestorationInfo *rsi, |
| int is_uv, |
| int min_luma_unit_size) { |
| #if COUPLED_CHROMA_FROM_LUMA_RESTORATION |
| int sx = cm->seq_params.subsampling_x; |
| int sy = cm->seq_params.subsampling_y; |
| int s = (p > 0) ? AOMMIN(sx, sy) : 0; |
| #else |
| int s = 0; |
| #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION |
| int min_unit_size = min_luma_unit_size >> s; |
| |
| int plane_w, plane_h; |
| av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
| |
| const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w); |
| const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h); |
| const int max_num_units = max_horz_units * max_vert_units; |
| |
| aom_free(rsi->unit_info); |
| CHECK_MEM_ERROR(cm, rsi->unit_info, |
| (RestorationUnitInfo *)aom_memalign( |
| 16, sizeof(*rsi->unit_info) * max_num_units)); |
| |
| RestUnitSearchInfo *rusi; |
| CHECK_MEM_ERROR( |
| cm, rusi, |
| (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units)); |
| |
| // If the restoration unit dimensions are not multiples of |
| // rsi->restoration_unit_size then some elements of the rusi array may be |
| // left uninitialised when we reach copy_unit_info(...). This is not a |
| // problem, as these elements are ignored later, but in order to quiet |
| // Valgrind's warnings we initialise the array below. |
| memset(rusi, 0, sizeof(*rusi) * max_num_units); |
| |
| return rusi; |
| } |
| |
| static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi, |
| int is_uv, int luma_unit_size) { |
| #if COUPLED_CHROMA_FROM_LUMA_RESTORATION |
| int sx = cm->seq_params.subsampling_x; |
| int sy = cm->seq_params.subsampling_y; |
| int s = (p > 0) ? AOMMIN(sx, sy) : 0; |
| #else |
| int s = 0; |
| #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION |
| int unit_size = luma_unit_size >> s; |
| |
| int plane_w, plane_h; |
| av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
| |
| const int horz_units = av1_lr_count_units(unit_size, plane_w); |
| const int vert_units = av1_lr_count_units(unit_size, plane_h); |
| |
| rsi->restoration_unit_size = unit_size; |
| rsi->num_rest_units = horz_units * vert_units; |
| rsi->horz_units = horz_units; |
| rsi->vert_units = vert_units; |
| } |
| |
| void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf; |
| const int num_planes = av1_num_planes(cm); |
| const int highbd = cm->seq_params->use_highbitdepth; |
| assert(!cm->features.all_lossless); |
| |
| av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx); |
| |
| // Select unit size based on speed feature settings, and allocate |
| // rui structs based on this size |
| int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size; |
| int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size; |
| |
| // The minimum allowed unit size at a syntax level is 1 superblock. |
| // Apply this constraint here so that the speed features code which sets |
| // cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size |
| min_lr_unit_size = |
| AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]); |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs( |
| cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size); |
| } |
| |
| x->rdmult = cpi->rd.RDMULT; |
| |
| // Allocate the frame buffer trial_frame_rst, which is used to temporarily |
| // store the loop restored frame. |
| if (aom_realloc_frame_buffer( |
| &cpi->trial_frame_rst, cm->superres_upscaled_width, |
| cm->superres_upscaled_height, seq_params->subsampling_x, |
| seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER, |
| cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate trial restored frame buffer"); |
| |
| RestSearchCtxt rsc; |
| |
| // The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers. |
| // These buffers are only required for the AVX2 and NEON implementations of |
| // av1_compute_stats. The buffer size required is calculated based on maximum |
| // width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5 |
| // times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width |
| // and height aligned to multiple of 16 is considered for intrinsic purpose. |
| rsc.dgd_avg = NULL; |
| rsc.src_avg = NULL; |
| #if HAVE_AVX2 || HAVE_SVE |
| // The buffers allocated below are used during Wiener filter processing. |
| // Hence, allocate the same when Wiener filter is enabled. Make sure to |
| // allocate these buffers only for the SIMD extensions that make use of them |
| // (i.e. AVX2 for low bitdepth and SVE for low and high bitdepth). |
| #if HAVE_AVX2 |
| bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd; |
| #elif HAVE_SVE |
| bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter; |
| #endif |
| if (allocate_buffers) { |
| const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 * |
| RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX; |
| CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg, |
| (int16_t *)aom_memalign(32, buf_size)); |
| |
| rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg; |
| // When LRU width isn't multiple of 16, the 256 bits load instruction used |
| // in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to |
| // silence Valgrind warning this buffer is initialized with zero. Overhead |
| // due to this initialization is negligible since it is done at frame level. |
| memset(rsc.dgd_avg, 0, buf_size); |
| rsc.src_avg = |
| rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX; |
| // Asserts the starting address of src_avg is always 32-bytes aligned. |
| assert(!((intptr_t)rsc.src_avg % 32)); |
| } |
| #endif |
| |
| // Initialize all planes, so that any planes we skip searching will still have |
| // valid data |
| for (int plane = 0; plane < num_planes; plane++) { |
| cm->rst_info[plane].frame_restoration_type = RESTORE_NONE; |
| } |
| |
| // Decide which planes to search |
| int plane_start, plane_end; |
| |
| if (lpf_sf->disable_loop_restoration_luma) { |
| plane_start = AOM_PLANE_U; |
| } else { |
| plane_start = AOM_PLANE_Y; |
| } |
| |
| if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) { |
| plane_end = AOM_PLANE_Y; |
| } else { |
| plane_end = AOM_PLANE_V; |
| } |
| |
| // Derive the flags to enable/disable Loop restoration filters based on the |
| // speed features 'disable_wiener_filter' and 'disable_sgr_filter'. |
| bool disable_lr_filter[RESTORE_TYPES] = { false }; |
| av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter); |
| |
| for (int plane = plane_start; plane <= plane_end; plane++) { |
| const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; |
| const int is_uv = plane != AOM_PLANE_Y; |
| int plane_w, plane_h; |
| av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); |
| av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv], |
| RESTORATION_BORDER, RESTORATION_BORDER, highbd); |
| } |
| |
| double best_cost = DBL_MAX; |
| int best_luma_unit_size = max_lr_unit_size; |
| for (int luma_unit_size = max_lr_unit_size; |
| luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) { |
| int64_t bits_this_size = 0; |
| int64_t sse_this_size = 0; |
| RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE, |
| RESTORE_NONE }; |
| for (int plane = plane_start; plane <= plane_end; ++plane) { |
| set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0, |
| luma_unit_size); |
| init_rsc(src, &cpi->common, x, lpf_sf, plane, |
| cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc); |
| |
| restoration_search(cm, plane, &rsc, disable_lr_filter); |
| |
| const int plane_num_units = cm->rst_info[plane].num_rest_units; |
| const RestorationType num_rtypes = |
| (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; |
| double best_cost_this_plane = DBL_MAX; |
| for (RestorationType r = 0; r < num_rtypes; ++r) { |
| // Disable Loop restoration filter based on the flags set using speed |
| // feature 'disable_wiener_filter' and 'disable_sgr_filter'. |
| if (disable_lr_filter[r]) continue; |
| |
| double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r], |
| cm->seq_params->bit_depth); |
| |
| if (cost_this_plane < best_cost_this_plane) { |
| best_cost_this_plane = cost_this_plane; |
| best_rtype[plane] = r; |
| } |
| } |
| |
| bits_this_size += rsc.total_bits[best_rtype[plane]]; |
| sse_this_size += rsc.total_sse[best_rtype[plane]]; |
| } |
| |
| double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| x->rdmult, bits_this_size >> 4, sse_this_size, |
| cm->seq_params->bit_depth); |
| |
| if (cost_this_size < best_cost) { |
| best_cost = cost_this_size; |
| best_luma_unit_size = luma_unit_size; |
| // Copy parameters out of rusi struct, before we overwrite it at |
| // the start of the next iteration |
| bool all_none = true; |
| for (int plane = plane_start; plane <= plane_end; ++plane) { |
| cm->rst_info[plane].frame_restoration_type = best_rtype[plane]; |
| if (best_rtype[plane] != RESTORE_NONE) { |
| all_none = false; |
| const int plane_num_units = cm->rst_info[plane].num_rest_units; |
| for (int u = 0; u < plane_num_units; ++u) { |
| copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u], |
| &cm->rst_info[plane].unit_info[u]); |
| } |
| } |
| } |
| // Heuristic: If all best_rtype entries are RESTORE_NONE, this means we |
| // couldn't find any good filters at this size. So we likely won't find |
| // any good filters at a smaller size either, so skip |
| if (all_none) { |
| break; |
| } |
| } else { |
| // Heuristic: If this size is worse than the previous (larger) size, then |
| // the next size down will likely be even worse, so skip |
| break; |
| } |
| } |
| |
| // Final fixup to set the correct unit size |
| // We set this for all planes, even ones we have skipped searching, |
| // so that other code does not need to care which planes were and weren't |
| // searched |
| for (int plane = 0; plane < num_planes; ++plane) { |
| set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0, |
| best_luma_unit_size); |
| } |
| |
| #if HAVE_AVX2 || HAVE_SVE |
| #if HAVE_AVX2 |
| bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd; |
| #elif HAVE_SVE |
| bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter; |
| #endif |
| if (free_buffers) { |
| aom_free(cpi->pick_lr_ctxt.dgd_avg); |
| cpi->pick_lr_ctxt.dgd_avg = NULL; |
| } |
| #endif |
| for (int plane = 0; plane < num_planes; plane++) { |
| aom_free(cpi->pick_lr_ctxt.rusi[plane]); |
| cpi->pick_lr_ctxt.rusi[plane] = NULL; |
| } |
| } |