blob: d1698fc1fa123bae5a04456255e29650f6402f49 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdlib.h>
#include <ostream>
#include <string>
#include <tuple>
#include "gtest/gtest.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"
namespace {
using libaom_test::ACMRandom;
template <typename Pixel>
class AverageTestBase : public ::testing::Test {
public:
AverageTestBase(int width, int height, int bit_depth = 8)
: width_(width), height_(height), source_data_(nullptr),
source_stride_(0), bit_depth_(bit_depth) {}
void TearDown() override {
aom_free(source_data_);
source_data_ = nullptr;
}
protected:
// Handle blocks up to 4 blocks 64x64 with stride up to 128
static const int kDataAlignment = 16;
static const int kDataBlockWidth = 128;
static const int kDataBlockHeight = 128;
static const int kDataBlockSize = kDataBlockWidth * kDataBlockHeight;
void SetUp() override {
const testing::TestInfo *const test_info =
testing::UnitTest::GetInstance()->current_test_info();
// Skip the speed test for C code as the baseline uses the same function.
if (std::string(test_info->test_suite_name()).find("C/") == 0 &&
std::string(test_info->name()).find("DISABLED_Speed") !=
std::string::npos) {
GTEST_SKIP();
}
source_data_ = static_cast<Pixel *>(
aom_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0])));
ASSERT_NE(source_data_, nullptr);
memset(source_data_, 0, kDataBlockSize * sizeof(source_data_[0]));
source_stride_ = (width_ + 31) & ~31;
bit_depth_ = 8;
rnd_.Reset(ACMRandom::DeterministicSeed());
}
// Sum Pixels
static unsigned int ReferenceAverage8x8(const Pixel *source, int pitch) {
unsigned int average = 0;
for (int h = 0; h < 8; ++h) {
for (int w = 0; w < 8; ++w) average += source[h * pitch + w];
}
return (average + 32) >> 6;
}
static void ReferenceAverage8x8_quad(const uint8_t *source, int pitch,
int x16_idx, int y16_idx, int *avg) {
for (int k = 0; k < 4; k++) {
int average = 0;
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
for (int h = 0; h < 8; ++h) {
for (int w = 0; w < 8; ++w)
average += source[(h + y8_idx) * pitch + w + x8_idx];
}
avg[k] = (average + 32) >> 6;
}
}
static unsigned int ReferenceAverage4x4(const Pixel *source, int pitch) {
unsigned int average = 0;
for (int h = 0; h < 4; ++h) {
for (int w = 0; w < 4; ++w) average += source[h * pitch + w];
}
return (average + 8) >> 4;
}
void FillConstant(Pixel fill_constant) {
for (int i = 0; i < width_ * height_; ++i) {
source_data_[i] = fill_constant;
}
}
void FillRandom() {
for (int i = 0; i < width_ * height_; ++i) {
source_data_[i] = rnd_.Rand16() & ((1 << bit_depth_) - 1);
}
}
int width_, height_;
Pixel *source_data_;
int source_stride_;
int bit_depth_;
ACMRandom rnd_;
};
typedef unsigned int (*AverageFunction)(const uint8_t *s, int pitch);
// Arguments: width, height, bit_depth, buffer start offset, block size, avg
// function.
typedef std::tuple<int, int, int, int, int, AverageFunction> AvgFunc;
template <typename Pixel>
class AverageTest : public AverageTestBase<Pixel>,
public ::testing::WithParamInterface<AvgFunc> {
public:
AverageTest()
: AverageTestBase<Pixel>(GET_PARAM(0), GET_PARAM(1), GET_PARAM(2)) {}
protected:
using AverageTestBase<Pixel>::source_data_;
using AverageTestBase<Pixel>::source_stride_;
using AverageTestBase<Pixel>::ReferenceAverage8x8;
using AverageTestBase<Pixel>::ReferenceAverage4x4;
using AverageTestBase<Pixel>::FillConstant;
using AverageTestBase<Pixel>::FillRandom;
void CheckAverages() {
const int block_size = GET_PARAM(4);
unsigned int expected = 0;
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
const Pixel *const src = source_data_ + GET_PARAM(3);
if (block_size == 8) {
expected = ReferenceAverage8x8(src, source_stride_);
} else if (block_size == 4) {
expected = ReferenceAverage4x4(src, source_stride_);
}
aom_usec_timer timer;
unsigned int actual;
if (sizeof(Pixel) == 2) {
#if CONFIG_AV1_HIGHBITDEPTH
AverageFunction avg_c =
(block_size == 8) ? aom_highbd_avg_8x8_c : aom_highbd_avg_4x4_c;
// To avoid differences in optimization with the local Reference*()
// functions the C implementation is used as a baseline.
aom_usec_timer_start(&timer);
avg_c(CONVERT_TO_BYTEPTR(src), source_stride_);
aom_usec_timer_mark(&timer);
ref_elapsed_time_ += aom_usec_timer_elapsed(&timer);
AverageFunction avg_opt = GET_PARAM(5);
API_REGISTER_STATE_CHECK(
aom_usec_timer_start(&timer);
actual = avg_opt(CONVERT_TO_BYTEPTR(src), source_stride_);
aom_usec_timer_mark(&timer));
#endif // CONFIG_AV1_HIGHBITDEPTH
} else {
ASSERT_EQ(sizeof(Pixel), 1u);
AverageFunction avg_c = (block_size == 8) ? aom_avg_8x8_c : aom_avg_4x4_c;
aom_usec_timer_start(&timer);
avg_c(reinterpret_cast<const uint8_t *>(src), source_stride_);
aom_usec_timer_mark(&timer);
ref_elapsed_time_ += aom_usec_timer_elapsed(&timer);
AverageFunction avg_opt = GET_PARAM(5);
API_REGISTER_STATE_CHECK(
aom_usec_timer_start(&timer);
actual =
avg_opt(reinterpret_cast<const uint8_t *>(src), source_stride_);
aom_usec_timer_mark(&timer));
}
opt_elapsed_time_ += aom_usec_timer_elapsed(&timer);
EXPECT_EQ(expected, actual);
}
void TestConstantValue(Pixel value) {
FillConstant(value);
CheckAverages();
}
void TestRandom(int iterations = 1000) {
for (int i = 0; i < iterations; i++) {
FillRandom();
CheckAverages();
}
}
void PrintTimingStats() const {
printf(
"block_size = %d \t ref_time = %d \t simd_time = %d \t Gain = %4.2f\n",
GET_PARAM(4), static_cast<int>(ref_elapsed_time_),
static_cast<int>(opt_elapsed_time_),
(static_cast<float>(ref_elapsed_time_) /
static_cast<float>(opt_elapsed_time_)));
}
int64_t ref_elapsed_time_ = 0;
int64_t opt_elapsed_time_ = 0;
};
typedef void (*AverageFunction_8x8_quad)(const uint8_t *s, int pitch, int x_idx,
int y_idx, int *avg);
// Arguments: width, height, bit_depth, buffer start offset, block size, avg
// function.
typedef std::tuple<int, int, int, int, int, AverageFunction_8x8_quad>
AvgFunc_8x8_quad;
template <typename Pixel>
class AverageTest_8x8_quad
: public AverageTestBase<Pixel>,
public ::testing::WithParamInterface<AvgFunc_8x8_quad> {
public:
AverageTest_8x8_quad()
: AverageTestBase<Pixel>(GET_PARAM(0), GET_PARAM(1), GET_PARAM(2)) {}
protected:
using AverageTestBase<Pixel>::source_data_;
using AverageTestBase<Pixel>::source_stride_;
using AverageTestBase<Pixel>::ReferenceAverage8x8_quad;
using AverageTestBase<Pixel>::FillConstant;
using AverageTestBase<Pixel>::FillRandom;
void CheckAveragesAt(int iterations, int x16_idx, int y16_idx) {
ASSERT_EQ(sizeof(Pixel), 1u);
const int block_size = GET_PARAM(4);
(void)block_size;
int expected[4] = { 0 };
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
const Pixel *const src = source_data_ + GET_PARAM(3);
ReferenceAverage8x8_quad(src, source_stride_, x16_idx, y16_idx, expected);
aom_usec_timer timer;
int expected_c[4] = { 0 };
int actual[4] = { 0 };
AverageFunction_8x8_quad avg_c = aom_avg_8x8_quad_c;
aom_usec_timer_start(&timer);
for (int i = 0; i < iterations; i++) {
avg_c(reinterpret_cast<const uint8_t *>(src), source_stride_, x16_idx,
y16_idx, expected_c);
}
aom_usec_timer_mark(&timer);
ref_elapsed_time_ += aom_usec_timer_elapsed(&timer);
AverageFunction_8x8_quad avg_opt = GET_PARAM(5);
aom_usec_timer_start(&timer);
for (int i = 0; i < iterations; i++) {
avg_opt(reinterpret_cast<const uint8_t *>(src), source_stride_, x16_idx,
y16_idx, actual);
}
aom_usec_timer_mark(&timer);
opt_elapsed_time_ += aom_usec_timer_elapsed(&timer);
for (int k = 0; k < 4; k++) {
EXPECT_EQ(expected[k], actual[k]);
EXPECT_EQ(expected_c[k], actual[k]);
}
// Print scaling information only when Speed test is called.
if (iterations > 1) {
printf("ref_time = %d \t simd_time = %d \t Gain = %4.2f\n",
static_cast<int>(ref_elapsed_time_),
static_cast<int>(opt_elapsed_time_),
(static_cast<float>(ref_elapsed_time_) /
static_cast<float>(opt_elapsed_time_)));
}
}
void CheckAverages() {
for (int x16_idx = 0; x16_idx < this->kDataBlockWidth / 8; x16_idx += 2)
for (int y16_idx = 0; y16_idx < this->kDataBlockHeight / 8; y16_idx += 2)
CheckAveragesAt(1, x16_idx, y16_idx);
}
void TestConstantValue(Pixel value) {
FillConstant(value);
CheckAverages();
}
void TestRandom() {
FillRandom();
CheckAverages();
}
void TestSpeed() {
FillRandom();
CheckAveragesAt(1000000, 0, 0);
}
int64_t ref_elapsed_time_ = 0;
int64_t opt_elapsed_time_ = 0;
};
using AverageTest8bpp = AverageTest<uint8_t>;
TEST_P(AverageTest8bpp, MinValue) { TestConstantValue(0); }
TEST_P(AverageTest8bpp, MaxValue) { TestConstantValue(255); }
TEST_P(AverageTest8bpp, Random) { TestRandom(); }
TEST_P(AverageTest8bpp, DISABLED_Speed) {
TestRandom(1000000);
PrintTimingStats();
}
using AvgTest8bpp_avg_8x8_quad = AverageTest_8x8_quad<uint8_t>;
TEST_P(AvgTest8bpp_avg_8x8_quad, MinValue) { TestConstantValue(0); }
TEST_P(AvgTest8bpp_avg_8x8_quad, MaxValue) { TestConstantValue(255); }
TEST_P(AvgTest8bpp_avg_8x8_quad, Random) { TestRandom(); }
TEST_P(AvgTest8bpp_avg_8x8_quad, DISABLED_Speed) { TestSpeed(); }
#if CONFIG_AV1_HIGHBITDEPTH
using AverageTestHbd = AverageTest<uint16_t>;
TEST_P(AverageTestHbd, MinValue) { TestConstantValue(0); }
TEST_P(AverageTestHbd, MaxValue10bit) { TestConstantValue(1023); }
TEST_P(AverageTestHbd, MaxValue12bit) { TestConstantValue(4095); }
TEST_P(AverageTestHbd, Random) { TestRandom(); }
TEST_P(AverageTestHbd, DISABLED_Speed) {
TestRandom(1000000);
PrintTimingStats();
}
#endif // CONFIG_AV1_HIGHBITDEPTH
typedef void (*IntProRowFunc)(int16_t *hbuf, uint8_t const *ref,
const int ref_stride, const int width,
const int height, int norm_factor);
// Params: width, height, asm function, c function.
typedef std::tuple<int, int, IntProRowFunc, IntProRowFunc> IntProRowParam;
class IntProRowTest : public AverageTestBase<uint8_t>,
public ::testing::WithParamInterface<IntProRowParam> {
public:
IntProRowTest()
: AverageTestBase(GET_PARAM(0), GET_PARAM(1)), hbuf_asm_(nullptr),
hbuf_c_(nullptr) {
asm_func_ = GET_PARAM(2);
c_func_ = GET_PARAM(3);
}
void set_norm_factor() {
if (height_ == 128)
norm_factor_ = 6;
else if (height_ == 64)
norm_factor_ = 5;
else if (height_ == 32)
norm_factor_ = 4;
else if (height_ == 16)
norm_factor_ = 3;
}
protected:
void SetUp() override {
source_data_ = static_cast<uint8_t *>(
aom_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0])));
ASSERT_NE(source_data_, nullptr);
hbuf_asm_ = static_cast<int16_t *>(
aom_memalign(kDataAlignment, sizeof(*hbuf_asm_) * width_));
ASSERT_NE(hbuf_asm_, nullptr);
hbuf_c_ = static_cast<int16_t *>(
aom_memalign(kDataAlignment, sizeof(*hbuf_c_) * width_));
ASSERT_NE(hbuf_c_, nullptr);
}
void TearDown() override {
aom_free(source_data_);
source_data_ = nullptr;
aom_free(hbuf_c_);
hbuf_c_ = nullptr;
aom_free(hbuf_asm_);
hbuf_asm_ = nullptr;
}
void RunComparison() {
set_norm_factor();
API_REGISTER_STATE_CHECK(
c_func_(hbuf_c_, source_data_, width_, width_, height_, norm_factor_));
API_REGISTER_STATE_CHECK(asm_func_(hbuf_asm_, source_data_, width_, width_,
height_, norm_factor_));
EXPECT_EQ(0, memcmp(hbuf_c_, hbuf_asm_, sizeof(*hbuf_c_) * width_))
<< "Output mismatch\n";
}
void RunSpeedTest() {
const int numIter = 5000000;
set_norm_factor();
printf("Blk_Size=%dx%d: number of iteration is %d \n", width_, height_,
numIter);
aom_usec_timer c_timer_;
aom_usec_timer_start(&c_timer_);
for (int i = 0; i < numIter; i++) {
c_func_(hbuf_c_, source_data_, width_, width_, height_, norm_factor_);
}
aom_usec_timer_mark(&c_timer_);
aom_usec_timer asm_timer_;
aom_usec_timer_start(&asm_timer_);
for (int i = 0; i < numIter; i++) {
asm_func_(hbuf_asm_, source_data_, width_, width_, height_, norm_factor_);
}
aom_usec_timer_mark(&asm_timer_);
const int c_sum_time = static_cast<int>(aom_usec_timer_elapsed(&c_timer_));
const int asm_sum_time =
static_cast<int>(aom_usec_timer_elapsed(&asm_timer_));
printf("c_time = %d \t simd_time = %d \t Gain = %4.2f \n", c_sum_time,
asm_sum_time,
(static_cast<float>(c_sum_time) / static_cast<float>(asm_sum_time)));
EXPECT_EQ(0, memcmp(hbuf_c_, hbuf_asm_, sizeof(*hbuf_c_) * width_))
<< "Output mismatch\n";
}
private:
IntProRowFunc asm_func_;
IntProRowFunc c_func_;
int16_t *hbuf_asm_;
int16_t *hbuf_c_;
int norm_factor_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(IntProRowTest);
typedef void (*IntProColFunc)(int16_t *vbuf, uint8_t const *ref,
const int ref_stride, const int width,
const int height, int norm_factor);
// Params: width, height, asm function, c function.
typedef std::tuple<int, int, IntProColFunc, IntProColFunc> IntProColParam;
class IntProColTest : public AverageTestBase<uint8_t>,
public ::testing::WithParamInterface<IntProColParam> {
public:
IntProColTest()
: AverageTestBase(GET_PARAM(0), GET_PARAM(1)), vbuf_asm_(nullptr),
vbuf_c_(nullptr) {
asm_func_ = GET_PARAM(2);
c_func_ = GET_PARAM(3);
}
protected:
void SetUp() override {
source_data_ = static_cast<uint8_t *>(
aom_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0])));
ASSERT_NE(source_data_, nullptr);
vbuf_asm_ = static_cast<int16_t *>(
aom_memalign(kDataAlignment, sizeof(*vbuf_asm_) * width_));
ASSERT_NE(vbuf_asm_, nullptr);
vbuf_c_ = static_cast<int16_t *>(
aom_memalign(kDataAlignment, sizeof(*vbuf_c_) * width_));
ASSERT_NE(vbuf_c_, nullptr);
}
void TearDown() override {
aom_free(source_data_);
source_data_ = nullptr;
aom_free(vbuf_c_);
vbuf_c_ = nullptr;
aom_free(vbuf_asm_);
vbuf_asm_ = nullptr;
}
void RunComparison() {
int norm_factor_ = 3 + (width_ >> 5);
API_REGISTER_STATE_CHECK(
c_func_(vbuf_c_, source_data_, width_, width_, height_, norm_factor_));
API_REGISTER_STATE_CHECK(asm_func_(vbuf_asm_, source_data_, width_, width_,
height_, norm_factor_));
EXPECT_EQ(0, memcmp(vbuf_c_, vbuf_asm_, sizeof(*vbuf_c_) * height_))
<< "Output mismatch\n";
}
void RunSpeedTest() {
const int numIter = 5000000;
printf("Blk_Size=%dx%d: number of iteration is %d \n", width_, height_,
numIter);
int norm_factor_ = 3 + (width_ >> 5);
aom_usec_timer c_timer_;
aom_usec_timer_start(&c_timer_);
for (int i = 0; i < numIter; i++) {
c_func_(vbuf_c_, source_data_, width_, width_, height_, norm_factor_);
}
aom_usec_timer_mark(&c_timer_);
aom_usec_timer asm_timer_;
aom_usec_timer_start(&asm_timer_);
for (int i = 0; i < numIter; i++) {
asm_func_(vbuf_asm_, source_data_, width_, width_, height_, norm_factor_);
}
aom_usec_timer_mark(&asm_timer_);
const int c_sum_time = static_cast<int>(aom_usec_timer_elapsed(&c_timer_));
const int asm_sum_time =
static_cast<int>(aom_usec_timer_elapsed(&asm_timer_));
printf("c_time = %d \t simd_time = %d \t Gain = %4.2f \n", c_sum_time,
asm_sum_time,
(static_cast<float>(c_sum_time) / static_cast<float>(asm_sum_time)));
EXPECT_EQ(0, memcmp(vbuf_c_, vbuf_asm_, sizeof(*vbuf_c_) * height_))
<< "Output mismatch\n";
}
private:
IntProColFunc asm_func_;
IntProColFunc c_func_;
int16_t *vbuf_asm_;
int16_t *vbuf_c_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(IntProColTest);
TEST_P(IntProRowTest, MinValue) {
FillConstant(0);
RunComparison();
}
TEST_P(IntProRowTest, MaxValue) {
FillConstant(255);
RunComparison();
}
TEST_P(IntProRowTest, Random) {
FillRandom();
RunComparison();
}
TEST_P(IntProRowTest, DISABLED_Speed) {
FillRandom();
RunSpeedTest();
}
TEST_P(IntProColTest, MinValue) {
FillConstant(0);
RunComparison();
}
TEST_P(IntProColTest, MaxValue) {
FillConstant(255);
RunComparison();
}
TEST_P(IntProColTest, Random) {
FillRandom();
RunComparison();
}
TEST_P(IntProColTest, DISABLED_Speed) {
FillRandom();
RunSpeedTest();
}
class VectorVarTestBase : public ::testing::Test {
public:
explicit VectorVarTestBase(int bwl) { m_bwl = bwl; }
VectorVarTestBase() = default;
~VectorVarTestBase() override = default;
protected:
static const int kDataAlignment = 16;
void SetUp() override {
width = 4 << m_bwl;
ref_vector = static_cast<int16_t *>(
aom_memalign(kDataAlignment, width * sizeof(ref_vector[0])));
ASSERT_NE(ref_vector, nullptr);
src_vector = static_cast<int16_t *>(
aom_memalign(kDataAlignment, width * sizeof(src_vector[0])));
ASSERT_NE(src_vector, nullptr);
rnd_.Reset(ACMRandom::DeterministicSeed());
}
void TearDown() override {
aom_free(ref_vector);
ref_vector = nullptr;
aom_free(src_vector);
src_vector = nullptr;
}
void FillConstant(int16_t fill_constant_ref, int16_t fill_constant_src) {
for (int i = 0; i < width; ++i) {
ref_vector[i] = fill_constant_ref;
src_vector[i] = fill_constant_src;
}
}
void FillRandom() {
for (int i = 0; i < width; ++i) {
ref_vector[i] =
rnd_.Rand16() % max_range; // acc. aom_vector_var_c brief.
src_vector[i] = rnd_.Rand16() % max_range;
}
}
int width;
int m_bwl;
int16_t *ref_vector;
int16_t *src_vector;
ACMRandom rnd_;
static const int max_range = 510;
static const int num_random_cmp = 50;
};
typedef int (*VectorVarFunc)(const int16_t *ref, const int16_t *src,
const int bwl);
typedef std::tuple<int, VectorVarFunc, VectorVarFunc> VecVarFunc;
class VectorVarTest : public VectorVarTestBase,
public ::testing::WithParamInterface<VecVarFunc> {
public:
VectorVarTest()
: VectorVarTestBase(GET_PARAM(0)), c_func(GET_PARAM(1)),
simd_func(GET_PARAM(2)) {}
protected:
int calcVarC() { return c_func(ref_vector, src_vector, m_bwl); }
int calcVarSIMD() { return simd_func(ref_vector, src_vector, m_bwl); }
VectorVarFunc c_func;
VectorVarFunc simd_func;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(VectorVarTest);
TEST_P(VectorVarTest, MaxVar) {
FillConstant(0, max_range);
int c_var = calcVarC();
int simd_var = calcVarSIMD();
ASSERT_EQ(c_var, simd_var);
}
TEST_P(VectorVarTest, MaxVarRev) {
FillConstant(max_range, 0);
int c_var = calcVarC();
int simd_var = calcVarSIMD();
ASSERT_EQ(c_var, simd_var);
}
TEST_P(VectorVarTest, ZeroDiff) {
FillConstant(0, 0);
int c_var = calcVarC();
int simd_var = calcVarSIMD();
ASSERT_EQ(c_var, simd_var);
}
TEST_P(VectorVarTest, ZeroDiff2) {
FillConstant(max_range, max_range);
int c_var = calcVarC();
int simd_var = calcVarSIMD();
ASSERT_EQ(c_var, simd_var);
}
TEST_P(VectorVarTest, Constant) {
FillConstant(30, 90);
int c_var = calcVarC();
int simd_var = calcVarSIMD();
ASSERT_EQ(c_var, simd_var);
}
TEST_P(VectorVarTest, Random) {
for (size_t i = 0; i < num_random_cmp; i++) {
FillRandom();
int c_var = calcVarC();
int simd_var = calcVarSIMD();
ASSERT_EQ(c_var, simd_var);
}
}
TEST_P(VectorVarTest, DISABLED_Speed) {
FillRandom();
const int numIter = 5000000;
printf("Width = %d number of iteration is %d \n", width, numIter);
int sum_c_var = 0;
int c_var = 0;
aom_usec_timer c_timer_;
aom_usec_timer_start(&c_timer_);
for (size_t i = 0; i < numIter; i++) {
c_var = calcVarC();
sum_c_var += c_var;
}
aom_usec_timer_mark(&c_timer_);
int simd_var = 0;
int sum_simd_var = 0;
aom_usec_timer simd_timer_;
aom_usec_timer_start(&simd_timer_);
for (size_t i = 0; i < numIter; i++) {
simd_var = calcVarSIMD();
sum_simd_var += simd_var;
}
aom_usec_timer_mark(&simd_timer_);
const int c_sum_time = static_cast<int>(aom_usec_timer_elapsed(&c_timer_));
const int simd_sum_time =
static_cast<int>(aom_usec_timer_elapsed(&simd_timer_));
printf("c_time = %d \t simd_time = %d \t Gain = %4.2f \n", c_sum_time,
simd_sum_time,
(static_cast<float>(c_sum_time) / static_cast<float>(simd_sum_time)));
EXPECT_EQ(c_var, simd_var) << "Output mismatch \n";
EXPECT_EQ(sum_c_var, sum_simd_var) << "Output mismatch \n";
}
using std::make_tuple;
INSTANTIATE_TEST_SUITE_P(
C, AverageTest8bpp,
::testing::Values(make_tuple(16, 16, 8, 1, 8, &aom_avg_8x8_c),
make_tuple(16, 16, 8, 1, 4, &aom_avg_4x4_c)));
INSTANTIATE_TEST_SUITE_P(
C, AvgTest8bpp_avg_8x8_quad,
::testing::Values(make_tuple(16, 16, 8, 0, 16, &aom_avg_8x8_quad_c),
make_tuple(32, 32, 8, 16, 16, &aom_avg_8x8_quad_c),
make_tuple(32, 32, 8, 8, 16, &aom_avg_8x8_quad_c)));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, AverageTest8bpp,
::testing::Values(make_tuple(16, 16, 8, 0, 8, &aom_avg_8x8_sse2),
make_tuple(16, 16, 8, 5, 8, &aom_avg_8x8_sse2),
make_tuple(32, 32, 8, 15, 8, &aom_avg_8x8_sse2),
make_tuple(16, 16, 8, 0, 4, &aom_avg_4x4_sse2),
make_tuple(16, 16, 8, 5, 4, &aom_avg_4x4_sse2),
make_tuple(32, 32, 8, 15, 4, &aom_avg_4x4_sse2)));
INSTANTIATE_TEST_SUITE_P(
SSE2, AvgTest8bpp_avg_8x8_quad,
::testing::Values(make_tuple(16, 16, 8, 0, 16, &aom_avg_8x8_quad_sse2),
make_tuple(32, 32, 8, 16, 16, &aom_avg_8x8_quad_sse2),
make_tuple(32, 32, 8, 8, 16, &aom_avg_8x8_quad_sse2)));
INSTANTIATE_TEST_SUITE_P(
SSE2, IntProRowTest,
::testing::Values(
make_tuple(16, 16, &aom_int_pro_row_sse2, &aom_int_pro_row_c),
make_tuple(32, 32, &aom_int_pro_row_sse2, &aom_int_pro_row_c),
make_tuple(64, 64, &aom_int_pro_row_sse2, &aom_int_pro_row_c),
make_tuple(128, 128, &aom_int_pro_row_sse2, &aom_int_pro_row_c)));
INSTANTIATE_TEST_SUITE_P(
SSE2, IntProColTest,
::testing::Values(
make_tuple(16, 16, &aom_int_pro_col_sse2, &aom_int_pro_col_c),
make_tuple(32, 32, &aom_int_pro_col_sse2, &aom_int_pro_col_c),
make_tuple(64, 64, &aom_int_pro_col_sse2, &aom_int_pro_col_c),
make_tuple(128, 128, &aom_int_pro_col_sse2, &aom_int_pro_col_c)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AvgTest8bpp_avg_8x8_quad,
::testing::Values(make_tuple(16, 16, 8, 0, 16, &aom_avg_8x8_quad_avx2),
make_tuple(32, 32, 8, 16, 16, &aom_avg_8x8_quad_avx2),
make_tuple(32, 32, 8, 8, 16, &aom_avg_8x8_quad_avx2)));
INSTANTIATE_TEST_SUITE_P(
AVX2, IntProRowTest,
::testing::Values(
make_tuple(16, 16, &aom_int_pro_row_avx2, &aom_int_pro_row_c),
make_tuple(32, 32, &aom_int_pro_row_avx2, &aom_int_pro_row_c),
make_tuple(64, 64, &aom_int_pro_row_avx2, &aom_int_pro_row_c),
make_tuple(128, 128, &aom_int_pro_row_avx2, &aom_int_pro_row_c)));
INSTANTIATE_TEST_SUITE_P(
AVX2, IntProColTest,
::testing::Values(
make_tuple(16, 16, &aom_int_pro_col_avx2, &aom_int_pro_col_c),
make_tuple(32, 32, &aom_int_pro_col_avx2, &aom_int_pro_col_c),
make_tuple(64, 64, &aom_int_pro_col_avx2, &aom_int_pro_col_c),
make_tuple(128, 128, &aom_int_pro_col_avx2, &aom_int_pro_col_c)));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AverageTest8bpp,
::testing::Values(make_tuple(16, 16, 8, 0, 8, &aom_avg_8x8_neon),
make_tuple(16, 16, 8, 5, 8, &aom_avg_8x8_neon),
make_tuple(32, 32, 8, 15, 8, &aom_avg_8x8_neon),
make_tuple(16, 16, 8, 0, 4, &aom_avg_4x4_neon),
make_tuple(16, 16, 8, 5, 4, &aom_avg_4x4_neon),
make_tuple(32, 32, 8, 15, 4, &aom_avg_4x4_neon)));
INSTANTIATE_TEST_SUITE_P(
NEON, IntProRowTest,
::testing::Values(
make_tuple(16, 16, &aom_int_pro_row_neon, &aom_int_pro_row_c),
make_tuple(32, 32, &aom_int_pro_row_neon, &aom_int_pro_row_c),
make_tuple(64, 64, &aom_int_pro_row_neon, &aom_int_pro_row_c),
make_tuple(128, 128, &aom_int_pro_row_neon, &aom_int_pro_row_c)));
INSTANTIATE_TEST_SUITE_P(
NEON, IntProColTest,
::testing::Values(
make_tuple(16, 16, &aom_int_pro_col_neon, &aom_int_pro_col_c),
make_tuple(32, 32, &aom_int_pro_col_neon, &aom_int_pro_col_c),
make_tuple(64, 64, &aom_int_pro_col_neon, &aom_int_pro_col_c),
make_tuple(128, 128, &aom_int_pro_col_neon, &aom_int_pro_col_c)));
INSTANTIATE_TEST_SUITE_P(
NEON, AvgTest8bpp_avg_8x8_quad,
::testing::Values(make_tuple(16, 16, 8, 0, 16, &aom_avg_8x8_quad_neon),
make_tuple(32, 32, 8, 16, 16, &aom_avg_8x8_quad_neon),
make_tuple(32, 32, 8, 8, 16, &aom_avg_8x8_quad_neon)));
#endif
#if CONFIG_AV1_HIGHBITDEPTH
INSTANTIATE_TEST_SUITE_P(
C, AverageTestHbd,
::testing::Values(make_tuple(16, 16, 10, 1, 8, &aom_highbd_avg_8x8_c),
make_tuple(16, 16, 10, 1, 4, &aom_highbd_avg_4x4_c),
make_tuple(16, 16, 12, 1, 8, &aom_highbd_avg_8x8_c),
make_tuple(16, 16, 12, 1, 4, &aom_highbd_avg_4x4_c)));
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AverageTestHbd,
::testing::Values(make_tuple(16, 16, 10, 0, 4, &aom_highbd_avg_4x4_neon),
make_tuple(16, 16, 10, 5, 4, &aom_highbd_avg_4x4_neon),
make_tuple(32, 32, 10, 15, 4, &aom_highbd_avg_4x4_neon),
make_tuple(16, 16, 12, 0, 4, &aom_highbd_avg_4x4_neon),
make_tuple(16, 16, 12, 5, 4, &aom_highbd_avg_4x4_neon),
make_tuple(32, 32, 12, 15, 4, &aom_highbd_avg_4x4_neon),
make_tuple(16, 16, 10, 0, 8, &aom_highbd_avg_8x8_neon),
make_tuple(16, 16, 10, 5, 8, &aom_highbd_avg_8x8_neon),
make_tuple(32, 32, 10, 15, 8, &aom_highbd_avg_8x8_neon),
make_tuple(16, 16, 12, 0, 8, &aom_highbd_avg_8x8_neon),
make_tuple(16, 16, 12, 5, 8, &aom_highbd_avg_8x8_neon),
make_tuple(32, 32, 12, 15, 8, &aom_highbd_avg_8x8_neon)));
#endif // HAVE_NEON
#endif // CONFIG_AV1_HIGHBITDEPTH
typedef int (*SatdFunc)(const tran_low_t *coeffs, int length);
typedef int (*SatdLpFunc)(const int16_t *coeffs, int length);
template <typename SatdFuncType>
struct SatdTestParam {
SatdTestParam(int s, SatdFuncType f1, SatdFuncType f2)
: satd_size(s), func_ref(f1), func_simd(f2) {}
friend std::ostream &operator<<(std::ostream &os,
const SatdTestParam<SatdFuncType> &param) {
return os << "satd_size: " << param.satd_size;
}
int satd_size;
SatdFuncType func_ref;
SatdFuncType func_simd;
};
template <typename CoeffType, typename SatdFuncType>
class SatdTestBase
: public ::testing::Test,
public ::testing::WithParamInterface<SatdTestParam<SatdFuncType>> {
protected:
explicit SatdTestBase(const SatdTestParam<SatdFuncType> &func_param) {
satd_size_ = func_param.satd_size;
satd_func_ref_ = func_param.func_ref;
satd_func_simd_ = func_param.func_simd;
}
void SetUp() override {
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<CoeffType *>(
aom_memalign(32, sizeof(*src_) * satd_size_));
ASSERT_NE(src_, nullptr);
}
void TearDown() override { aom_free(src_); }
void FillConstant(const CoeffType val) {
for (int i = 0; i < satd_size_; ++i) src_[i] = val;
}
void FillRandom() {
for (int i = 0; i < satd_size_; ++i) {
src_[i] = static_cast<int16_t>(rnd_.Rand16());
}
}
void Check(int expected) {
int total_ref;
API_REGISTER_STATE_CHECK(total_ref = satd_func_ref_(src_, satd_size_));
EXPECT_EQ(expected, total_ref);
int total_simd;
API_REGISTER_STATE_CHECK(total_simd = satd_func_simd_(src_, satd_size_));
EXPECT_EQ(expected, total_simd);
}
void RunComparison() {
int total_ref;
API_REGISTER_STATE_CHECK(total_ref = satd_func_ref_(src_, satd_size_));
int total_simd;
API_REGISTER_STATE_CHECK(total_simd = satd_func_simd_(src_, satd_size_));
EXPECT_EQ(total_ref, total_simd);
}
void RunSpeedTest() {
const int numIter = 500000;
printf("size = %d number of iteration is %d \n", satd_size_, numIter);
int total_ref;
aom_usec_timer c_timer_;
aom_usec_timer_start(&c_timer_);
for (int i = 0; i < numIter; i++) {
total_ref = satd_func_ref_(src_, satd_size_);
}
aom_usec_timer_mark(&c_timer_);
int total_simd;
aom_usec_timer simd_timer_;
aom_usec_timer_start(&simd_timer_);
for (int i = 0; i < numIter; i++) {
total_simd = satd_func_simd_(src_, satd_size_);
}
aom_usec_timer_mark(&simd_timer_);
const int c_sum_time = static_cast<int>(aom_usec_timer_elapsed(&c_timer_));
const int simd_sum_time =
static_cast<int>(aom_usec_timer_elapsed(&simd_timer_));
printf(
"c_time = %d \t simd_time = %d \t Gain = %4.2f \n", c_sum_time,
simd_sum_time,
(static_cast<float>(c_sum_time) / static_cast<float>(simd_sum_time)));
EXPECT_EQ(total_ref, total_simd) << "Output mismatch \n";
}
int satd_size_;
private:
CoeffType *src_;
SatdFuncType satd_func_ref_;
SatdFuncType satd_func_simd_;
ACMRandom rnd_;
};
class SatdTest : public SatdTestBase<tran_low_t, SatdFunc> {
public:
SatdTest() : SatdTestBase(GetParam()) {}
};
TEST_P(SatdTest, MinValue) {
const int kMin = -524287;
const int expected = -kMin * satd_size_;
FillConstant(kMin);
Check(expected);
}
TEST_P(SatdTest, MaxValue) {
const int kMax = 524287;
const int expected = kMax * satd_size_;
FillConstant(kMax);
Check(expected);
}
TEST_P(SatdTest, Random) {
int expected;
switch (satd_size_) {
case 16: expected = 205298; break;
case 64: expected = 1113950; break;
case 256: expected = 4268415; break;
case 1024: expected = 16954082; break;
default:
FAIL() << "Invalid satd size (" << satd_size_
<< ") valid: 16/64/256/1024";
}
FillRandom();
Check(expected);
}
TEST_P(SatdTest, Match) {
FillRandom();
RunComparison();
}
TEST_P(SatdTest, DISABLED_Speed) {
FillRandom();
RunSpeedTest();
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SatdTest);
INSTANTIATE_TEST_SUITE_P(
C, SatdTest,
::testing::Values(SatdTestParam<SatdFunc>(16, &aom_satd_c, &aom_satd_c),
SatdTestParam<SatdFunc>(64, &aom_satd_c, &aom_satd_c),
SatdTestParam<SatdFunc>(256, &aom_satd_c, &aom_satd_c),
SatdTestParam<SatdFunc>(1024, &aom_satd_c, &aom_satd_c)));
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, SatdTest,
::testing::Values(SatdTestParam<SatdFunc>(16, &aom_satd_c, &aom_satd_neon),
SatdTestParam<SatdFunc>(64, &aom_satd_c, &aom_satd_neon),
SatdTestParam<SatdFunc>(256, &aom_satd_c, &aom_satd_neon),
SatdTestParam<SatdFunc>(1024, &aom_satd_c,
&aom_satd_neon)));
INSTANTIATE_TEST_SUITE_P(
NEON, VectorVarTest,
::testing::Values(make_tuple(2, &aom_vector_var_c, &aom_vector_var_neon),
make_tuple(3, &aom_vector_var_c, &aom_vector_var_neon),
make_tuple(4, &aom_vector_var_c, &aom_vector_var_neon),
make_tuple(5, &aom_vector_var_c, &aom_vector_var_neon)));
#endif
#if HAVE_SVE
INSTANTIATE_TEST_SUITE_P(
SVE, VectorVarTest,
::testing::Values(make_tuple(2, &aom_vector_var_c, &aom_vector_var_sve),
make_tuple(3, &aom_vector_var_c, &aom_vector_var_sve),
make_tuple(4, &aom_vector_var_c, &aom_vector_var_sve),
make_tuple(5, &aom_vector_var_c, &aom_vector_var_sve)));
#endif // HAVE_SVE
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, VectorVarTest,
::testing::Values(make_tuple(2, &aom_vector_var_c, &aom_vector_var_sse4_1),
make_tuple(3, &aom_vector_var_c, &aom_vector_var_sse4_1),
make_tuple(4, &aom_vector_var_c, &aom_vector_var_sse4_1),
make_tuple(5, &aom_vector_var_c,
&aom_vector_var_sse4_1)));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, SatdTest,
::testing::Values(SatdTestParam<SatdFunc>(16, &aom_satd_c, &aom_satd_avx2),
SatdTestParam<SatdFunc>(64, &aom_satd_c, &aom_satd_avx2),
SatdTestParam<SatdFunc>(256, &aom_satd_c, &aom_satd_avx2),
SatdTestParam<SatdFunc>(1024, &aom_satd_c,
&aom_satd_avx2)));
INSTANTIATE_TEST_SUITE_P(
AVX2, VectorVarTest,
::testing::Values(make_tuple(2, &aom_vector_var_c, &aom_vector_var_avx2),
make_tuple(3, &aom_vector_var_c, &aom_vector_var_avx2),
make_tuple(4, &aom_vector_var_c, &aom_vector_var_avx2),
make_tuple(5, &aom_vector_var_c, &aom_vector_var_avx2)));
#endif // HAVE_AVX2
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, SatdTest,
::testing::Values(SatdTestParam<SatdFunc>(16, &aom_satd_c, &aom_satd_sse2),
SatdTestParam<SatdFunc>(64, &aom_satd_c, &aom_satd_sse2),
SatdTestParam<SatdFunc>(256, &aom_satd_c, &aom_satd_sse2),
SatdTestParam<SatdFunc>(1024, &aom_satd_c,
&aom_satd_sse2)));
#endif
class SatdLpTest : public SatdTestBase<int16_t, SatdLpFunc> {
public:
SatdLpTest() : SatdTestBase(GetParam()) {}
};
TEST_P(SatdLpTest, MinValue) {
const int kMin = -32640;
const int expected = -kMin * satd_size_;
FillConstant(kMin);
Check(expected);
}
TEST_P(SatdLpTest, MaxValue) {
const int kMax = 32640;
const int expected = kMax * satd_size_;
FillConstant(kMax);
Check(expected);
}
TEST_P(SatdLpTest, Random) {
int expected;
switch (satd_size_) {
case 16: expected = 205298; break;
case 64: expected = 1113950; break;
case 256: expected = 4268415; break;
case 1024: expected = 16954082; break;
default:
FAIL() << "Invalid satd size (" << satd_size_
<< ") valid: 16/64/256/1024";
}
FillRandom();
Check(expected);
}
TEST_P(SatdLpTest, Match) {
FillRandom();
RunComparison();
}
TEST_P(SatdLpTest, DISABLED_Speed) {
FillRandom();
RunSpeedTest();
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SatdLpTest);
// Add the following c test to avoid gtest uninitialized warning.
INSTANTIATE_TEST_SUITE_P(
C, SatdLpTest,
::testing::Values(
SatdTestParam<SatdLpFunc>(16, &aom_satd_lp_c, &aom_satd_lp_c),
SatdTestParam<SatdLpFunc>(64, &aom_satd_lp_c, &aom_satd_lp_c),
SatdTestParam<SatdLpFunc>(256, &aom_satd_lp_c, &aom_satd_lp_c),
SatdTestParam<SatdLpFunc>(1024, &aom_satd_lp_c, &aom_satd_lp_c)));
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, SatdLpTest,
::testing::Values(
SatdTestParam<SatdLpFunc>(16, &aom_satd_lp_c, &aom_satd_lp_neon),
SatdTestParam<SatdLpFunc>(64, &aom_satd_lp_c, &aom_satd_lp_neon),
SatdTestParam<SatdLpFunc>(256, &aom_satd_lp_c, &aom_satd_lp_neon),
SatdTestParam<SatdLpFunc>(1024, &aom_satd_lp_c, &aom_satd_lp_neon)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, SatdLpTest,
::testing::Values(
SatdTestParam<SatdLpFunc>(16, &aom_satd_lp_c, &aom_satd_lp_avx2),
SatdTestParam<SatdLpFunc>(64, &aom_satd_lp_c, &aom_satd_lp_avx2),
SatdTestParam<SatdLpFunc>(256, &aom_satd_lp_c, &aom_satd_lp_avx2),
SatdTestParam<SatdLpFunc>(1024, &aom_satd_lp_c, &aom_satd_lp_avx2)));
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, SatdLpTest,
::testing::Values(
SatdTestParam<SatdLpFunc>(16, &aom_satd_lp_c, &aom_satd_lp_sse2),
SatdTestParam<SatdLpFunc>(64, &aom_satd_lp_c, &aom_satd_lp_sse2),
SatdTestParam<SatdLpFunc>(256, &aom_satd_lp_c, &aom_satd_lp_sse2),
SatdTestParam<SatdLpFunc>(1024, &aom_satd_lp_c, &aom_satd_lp_sse2)));
#endif
} // namespace