blob: 87018b5fa2b334ce1aac426e7e0e10befb5bd229 [file] [log] [blame]
#include <smmintrin.h>
#include "./aom_config.h"
#include "./av1_rtcd.h"
#include "av1/common/restoration.h"
/* Calculate four consecutive entries of the intermediate A and B arrays
(corresponding to the first loop in the C version of
av1_selfguided_restoration)
*/
static void calc_block(__m128i sum, __m128i sum_sq, __m128i n,
__m128i one_over_n, __m128i s, int bit_depth, int idx,
int32_t *A, int32_t *B) {
__m128i a, b, p;
#if CONFIG_AOM_HIGHBITDEPTH
if (bit_depth > 8) {
__m128i rounding_a = _mm_set1_epi32((1 << (2 * (bit_depth - 8))) >> 1);
__m128i rounding_b = _mm_set1_epi32((1 << (bit_depth - 8)) >> 1);
__m128i shift_a = _mm_set_epi64x(0, 2 * (bit_depth - 8));
__m128i shift_b = _mm_set_epi64x(0, bit_depth - 8);
a = _mm_srl_epi32(_mm_add_epi32(sum_sq, rounding_a), shift_a);
b = _mm_srl_epi32(_mm_add_epi32(sum, rounding_b), shift_b);
a = _mm_mullo_epi32(a, n);
b = _mm_mullo_epi32(b, b);
p = _mm_sub_epi32(_mm_max_epi32(a, b), b);
} else {
#endif
(void)bit_depth;
a = _mm_mullo_epi32(sum_sq, n);
b = _mm_mullo_epi32(sum, sum);
p = _mm_sub_epi32(a, b);
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif
__m128i rounding_z = _mm_set1_epi32((1 << SGRPROJ_MTABLE_BITS) >> 1);
__m128i z = _mm_srli_epi32(_mm_add_epi32(_mm_mullo_epi32(p, s), rounding_z),
SGRPROJ_MTABLE_BITS);
z = _mm_min_epi32(z, _mm_set1_epi32(255));
// 'Gather' type instructions are not available pre-AVX2, so synthesize a
// gather using scalar loads.
__m128i a_res = _mm_set_epi32(x_by_xplus1[_mm_extract_epi32(z, 3)],
x_by_xplus1[_mm_extract_epi32(z, 2)],
x_by_xplus1[_mm_extract_epi32(z, 1)],
x_by_xplus1[_mm_extract_epi32(z, 0)]);
_mm_storeu_si128((__m128i *)&A[idx], a_res);
__m128i rounding_res = _mm_set1_epi32((1 << SGRPROJ_RECIP_BITS) >> 1);
__m128i a_complement = _mm_sub_epi32(_mm_set1_epi32(SGRPROJ_SGR), a_res);
__m128i b_int =
_mm_mullo_epi32(a_complement, _mm_mullo_epi32(sum, one_over_n));
__m128i b_res =
_mm_srli_epi32(_mm_add_epi32(b_int, rounding_res), SGRPROJ_RECIP_BITS);
_mm_storeu_si128((__m128i *)&B[idx], b_res);
}
static void selfguided_restoration_1_v(uint8_t *src, int width, int height,
int src_stride, int32_t *A, int32_t *B,
int buf_stride) {
int i, j;
// Vertical sum
// When the width is not a multiple of 4, we know that 'stride' is rounded up
// to a multiple of 4. So it is safe for this loop to calculate extra columns
// at the right-hand edge of the frame.
int width_extend = (width + 3) & ~3;
for (j = 0; j < width_extend; j += 4) {
__m128i a, b, x, y, x2, y2;
__m128i sum, sum_sq, tmp;
a = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[j]));
b = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[src_stride + j]));
sum = _mm_cvtepi16_epi32(_mm_add_epi16(a, b));
tmp = _mm_unpacklo_epi16(a, b);
sum_sq = _mm_madd_epi16(tmp, tmp);
_mm_store_si128((__m128i *)&B[j], sum);
_mm_store_si128((__m128i *)&A[j], sum_sq);
x = _mm_cvtepu8_epi32(_mm_loadl_epi64((__m128i *)&src[2 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
for (i = 1; i < height - 2; ++i) {
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
y = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i + 2) * src_stride + j]));
sum = _mm_add_epi32(sum, _mm_sub_epi32(y, x));
x2 = _mm_mullo_epi32(x, x);
y2 = _mm_mullo_epi32(y, y);
sum_sq = _mm_add_epi32(sum_sq, _mm_sub_epi32(y2, x2));
}
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 1) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 1) * buf_stride + j], sum_sq);
}
}
static void selfguided_restoration_1_h(int32_t *A, int32_t *B, int width,
int height, int buf_stride, int eps,
int bit_depth) {
int i, j;
// Horizontal sum
int width_extend = (width + 3) & ~3;
for (i = 0; i < height; ++i) {
int h = AOMMIN(2, height - i) + AOMMIN(1, i);
__m128i a1 = _mm_loadu_si128((__m128i *)&A[i * buf_stride]);
__m128i b1 = _mm_loadu_si128((__m128i *)&B[i * buf_stride]);
__m128i a2 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + 4]);
__m128i b2 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + 4]);
// Note: The _mm_slli_si128 call sets up a register containing
// {0, A[i * buf_stride], ..., A[i * buf_stride + 2]},
// so that the first element of 'sum' (which should only add two values
// together) ends up calculated correctly.
__m128i sum_ = _mm_add_epi32(_mm_slli_si128(b1, 4),
_mm_add_epi32(b1, _mm_alignr_epi8(b2, b1, 4)));
__m128i sum_sq_ = _mm_add_epi32(
_mm_slli_si128(a1, 4), _mm_add_epi32(a1, _mm_alignr_epi8(a2, a1, 4)));
__m128i n = _mm_set_epi32(3 * h, 3 * h, 3 * h, 2 * h);
__m128i one_over_n =
_mm_set_epi32(one_by_x[3 * h - 1], one_by_x[3 * h - 1],
one_by_x[3 * h - 1], one_by_x[2 * h - 1]);
__m128i s = _mm_set_epi32(
sgrproj_mtable[eps - 1][3 * h - 1], sgrproj_mtable[eps - 1][3 * h - 1],
sgrproj_mtable[eps - 1][3 * h - 1], sgrproj_mtable[eps - 1][2 * h - 1]);
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride, A,
B);
n = _mm_set1_epi32(3 * h);
one_over_n = _mm_set1_epi32(one_by_x[3 * h - 1]);
s = _mm_set1_epi32(sgrproj_mtable[eps - 1][3 * h - 1]);
// Re-align a1 and b1 so that they start at index i * buf_stride + 3
a2 = _mm_alignr_epi8(a2, a1, 12);
b2 = _mm_alignr_epi8(b2, b1, 12);
// Note: When the width is not a multiple of 4, this loop may end up
// writing to the last 4 columns of the frame, potentially with incorrect
// values (especially for r=2 and r=3).
// This is fine, since we fix up those values in the block after this
// loop, and in exchange we never have more than four values to
// write / fix up after this loop finishes.
for (j = 4; j < width_extend - 4; j += 4) {
a1 = a2;
b1 = b2;
a2 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 3]);
b2 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 3]);
/* Loop invariant: At this point,
a1 = original A[i * buf_stride + j - 1 : i * buf_stride + j + 3]
a2 = original A[i * buf_stride + j + 3 : i * buf_stride + j + 7]
and similar for b1,b2 and B
*/
sum_ = _mm_add_epi32(b1, _mm_add_epi32(_mm_alignr_epi8(b2, b1, 4),
_mm_alignr_epi8(b2, b1, 8)));
sum_sq_ = _mm_add_epi32(a1, _mm_add_epi32(_mm_alignr_epi8(a2, a1, 4),
_mm_alignr_epi8(a2, a1, 8)));
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride + j,
A, B);
}
__m128i a3 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 3]);
__m128i b3 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 3]);
j = width - 4;
switch (width % 4) {
case 0:
a1 = a2;
b1 = b2;
a2 = a3;
b2 = b3;
break;
case 1:
a1 = _mm_alignr_epi8(a2, a1, 4);
b1 = _mm_alignr_epi8(b2, b1, 4);
a2 = _mm_alignr_epi8(a3, a2, 4);
b2 = _mm_alignr_epi8(b3, b2, 4);
break;
case 2:
a1 = _mm_alignr_epi8(a2, a1, 8);
b1 = _mm_alignr_epi8(b2, b1, 8);
a2 = _mm_alignr_epi8(a3, a2, 8);
b2 = _mm_alignr_epi8(b3, b2, 8);
break;
case 3:
a1 = _mm_alignr_epi8(a2, a1, 12);
b1 = _mm_alignr_epi8(b2, b1, 12);
a2 = _mm_alignr_epi8(a3, a2, 12);
b2 = _mm_alignr_epi8(b3, b2, 12);
break;
}
// Zero out the data loaded from "off the edge" of the array
__m128i zero = _mm_setzero_si128();
a2 = _mm_blend_epi16(a2, zero, 0xfc);
b2 = _mm_blend_epi16(b2, zero, 0xfc);
sum_ = _mm_add_epi32(b1, _mm_add_epi32(_mm_alignr_epi8(b2, b1, 4),
_mm_alignr_epi8(b2, b1, 8)));
sum_sq_ = _mm_add_epi32(a1, _mm_add_epi32(_mm_alignr_epi8(a2, a1, 4),
_mm_alignr_epi8(a2, a1, 8)));
n = _mm_set_epi32(2 * h, 3 * h, 3 * h, 3 * h);
one_over_n = _mm_set_epi32(one_by_x[2 * h - 1], one_by_x[3 * h - 1],
one_by_x[3 * h - 1], one_by_x[3 * h - 1]);
s = _mm_set_epi32(
sgrproj_mtable[eps - 1][2 * h - 1], sgrproj_mtable[eps - 1][3 * h - 1],
sgrproj_mtable[eps - 1][3 * h - 1], sgrproj_mtable[eps - 1][3 * h - 1]);
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride + j,
A, B);
}
}
static void selfguided_restoration_2_v(uint8_t *src, int width, int height,
int src_stride, int32_t *A, int32_t *B,
int buf_stride) {
int i, j;
// Vertical sum
int width_extend = (width + 3) & ~3;
for (j = 0; j < width_extend; j += 4) {
__m128i a, b, c, c2, x, y, x2, y2;
__m128i sum, sum_sq, tmp;
a = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[j]));
b = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[src_stride + j]));
c = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[2 * src_stride + j]));
sum = _mm_cvtepi16_epi32(_mm_add_epi16(_mm_add_epi16(a, b), c));
// Important: Since c may be up to 2^8, the result on squaring may
// be up to 2^16. So we need to zero-extend, not sign-extend.
c2 = _mm_cvtepu16_epi32(_mm_mullo_epi16(c, c));
tmp = _mm_unpacklo_epi16(a, b);
sum_sq = _mm_add_epi32(_mm_madd_epi16(tmp, tmp), c2);
_mm_store_si128((__m128i *)&B[j], sum);
_mm_store_si128((__m128i *)&A[j], sum_sq);
x = _mm_cvtepu8_epi32(_mm_loadl_epi64((__m128i *)&src[3 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(_mm_loadl_epi64((__m128i *)&src[4 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
for (i = 2; i < height - 3; ++i) {
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)&src[(i - 2) * src_stride + j])));
y = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)&src[(i + 3) * src_stride + j])));
sum = _mm_add_epi32(sum, _mm_sub_epi32(y, x));
x2 = _mm_mullo_epi32(x, x);
y2 = _mm_mullo_epi32(y, y);
sum_sq = _mm_add_epi32(sum_sq, _mm_sub_epi32(y2, x2));
}
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 2) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 1) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 1) * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 2) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 2) * buf_stride + j], sum_sq);
}
}
static void selfguided_restoration_2_h(int32_t *A, int32_t *B, int width,
int height, int buf_stride, int eps,
int bit_depth) {
int i, j;
// Horizontal sum
int width_extend = (width + 3) & ~3;
for (i = 0; i < height; ++i) {
int h = AOMMIN(3, height - i) + AOMMIN(2, i);
__m128i a1 = _mm_loadu_si128((__m128i *)&A[i * buf_stride]);
__m128i b1 = _mm_loadu_si128((__m128i *)&B[i * buf_stride]);
__m128i a2 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + 4]);
__m128i b2 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + 4]);
__m128i sum_ = _mm_add_epi32(
_mm_add_epi32(
_mm_add_epi32(_mm_slli_si128(b1, 8), _mm_slli_si128(b1, 4)),
_mm_add_epi32(b1, _mm_alignr_epi8(b2, b1, 4))),
_mm_alignr_epi8(b2, b1, 8));
__m128i sum_sq_ = _mm_add_epi32(
_mm_add_epi32(
_mm_add_epi32(_mm_slli_si128(a1, 8), _mm_slli_si128(a1, 4)),
_mm_add_epi32(a1, _mm_alignr_epi8(a2, a1, 4))),
_mm_alignr_epi8(a2, a1, 8));
__m128i n = _mm_set_epi32(5 * h, 5 * h, 4 * h, 3 * h);
__m128i one_over_n =
_mm_set_epi32(one_by_x[5 * h - 1], one_by_x[5 * h - 1],
one_by_x[4 * h - 1], one_by_x[3 * h - 1]);
__m128i s = _mm_set_epi32(
sgrproj_mtable[eps - 1][5 * h - 1], sgrproj_mtable[eps - 1][5 * h - 1],
sgrproj_mtable[eps - 1][4 * h - 1], sgrproj_mtable[eps - 1][3 * h - 1]);
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride, A,
B);
// Re-align a1 and b1 so that they start at index i * buf_stride + 2
a2 = _mm_alignr_epi8(a2, a1, 8);
b2 = _mm_alignr_epi8(b2, b1, 8);
n = _mm_set1_epi32(5 * h);
one_over_n = _mm_set1_epi32(one_by_x[5 * h - 1]);
s = _mm_set1_epi32(sgrproj_mtable[eps - 1][5 * h - 1]);
for (j = 4; j < width_extend - 4; j += 4) {
a1 = a2;
a2 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 2]);
b1 = b2;
b2 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 2]);
/* Loop invariant: At this point,
a1 = original A[i * buf_stride + j - 2 : i * buf_stride + j + 2]
a2 = original A[i * buf_stride + j + 2 : i * buf_stride + j + 6]
and similar for b1,b2 and B
*/
sum_ = _mm_add_epi32(
_mm_add_epi32(b1, _mm_add_epi32(_mm_alignr_epi8(b2, b1, 4),
_mm_alignr_epi8(b2, b1, 8))),
_mm_add_epi32(_mm_alignr_epi8(b2, b1, 12), b2));
sum_sq_ = _mm_add_epi32(
_mm_add_epi32(a1, _mm_add_epi32(_mm_alignr_epi8(a2, a1, 4),
_mm_alignr_epi8(a2, a1, 8))),
_mm_add_epi32(_mm_alignr_epi8(a2, a1, 12), a2));
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride + j,
A, B);
}
// If the width is not a multiple of 4, we need to reset j to width - 4
// and adjust a1, a2, b1, b2 so that the loop invariant above is maintained
__m128i a3 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 2]);
__m128i b3 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 2]);
j = width - 4;
switch (width % 4) {
case 0:
a1 = a2;
b1 = b2;
a2 = a3;
b2 = b3;
break;
case 1:
a1 = _mm_alignr_epi8(a2, a1, 4);
b1 = _mm_alignr_epi8(b2, b1, 4);
a2 = _mm_alignr_epi8(a3, a2, 4);
b2 = _mm_alignr_epi8(b3, b2, 4);
break;
case 2:
a1 = _mm_alignr_epi8(a2, a1, 8);
b1 = _mm_alignr_epi8(b2, b1, 8);
a2 = _mm_alignr_epi8(a3, a2, 8);
b2 = _mm_alignr_epi8(b3, b2, 8);
break;
case 3:
a1 = _mm_alignr_epi8(a2, a1, 12);
b1 = _mm_alignr_epi8(b2, b1, 12);
a2 = _mm_alignr_epi8(a3, a2, 12);
b2 = _mm_alignr_epi8(b3, b2, 12);
break;
}
// Zero out the data loaded from "off the edge" of the array
__m128i zero = _mm_setzero_si128();
a2 = _mm_blend_epi16(a2, zero, 0xf0);
b2 = _mm_blend_epi16(b2, zero, 0xf0);
sum_ = _mm_add_epi32(
_mm_add_epi32(b1, _mm_add_epi32(_mm_alignr_epi8(b2, b1, 4),
_mm_alignr_epi8(b2, b1, 8))),
_mm_add_epi32(_mm_alignr_epi8(b2, b1, 12), b2));
sum_sq_ = _mm_add_epi32(
_mm_add_epi32(a1, _mm_add_epi32(_mm_alignr_epi8(a2, a1, 4),
_mm_alignr_epi8(a2, a1, 8))),
_mm_add_epi32(_mm_alignr_epi8(a2, a1, 12), a2));
n = _mm_set_epi32(3 * h, 4 * h, 5 * h, 5 * h);
one_over_n = _mm_set_epi32(one_by_x[3 * h - 1], one_by_x[4 * h - 1],
one_by_x[5 * h - 1], one_by_x[5 * h - 1]);
s = _mm_set_epi32(
sgrproj_mtable[eps - 1][3 * h - 1], sgrproj_mtable[eps - 1][4 * h - 1],
sgrproj_mtable[eps - 1][5 * h - 1], sgrproj_mtable[eps - 1][5 * h - 1]);
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride + j,
A, B);
}
}
static void selfguided_restoration_3_v(uint8_t *src, int width, int height,
int src_stride, int32_t *A, int32_t *B,
int buf_stride) {
int i, j;
// Vertical sum over 7-pixel regions, 4 columns at a time
int width_extend = (width + 3) & ~3;
for (j = 0; j < width_extend; j += 4) {
__m128i a, b, c, d, x, y, x2, y2;
__m128i sum, sum_sq, tmp, tmp2;
a = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[j]));
b = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[src_stride + j]));
c = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[2 * src_stride + j]));
d = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&src[3 * src_stride + j]));
sum = _mm_cvtepi16_epi32(
_mm_add_epi16(_mm_add_epi16(a, b), _mm_add_epi16(c, d)));
tmp = _mm_unpacklo_epi16(a, b);
tmp2 = _mm_unpacklo_epi16(c, d);
sum_sq =
_mm_add_epi32(_mm_madd_epi16(tmp, tmp), _mm_madd_epi16(tmp2, tmp2));
_mm_store_si128((__m128i *)&B[j], sum);
_mm_store_si128((__m128i *)&A[j], sum_sq);
x = _mm_cvtepu8_epi32(_mm_loadl_epi64((__m128i *)&src[4 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(_mm_loadl_epi64((__m128i *)&src[5 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[2 * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[2 * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(_mm_loadl_epi64((__m128i *)&src[6 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
for (i = 3; i < height - 4; ++i) {
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)&src[(i - 3) * src_stride + j])));
y = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)&src[(i + 4) * src_stride + j])));
sum = _mm_add_epi32(sum, _mm_sub_epi32(y, x));
x2 = _mm_mullo_epi32(x, x);
y2 = _mm_mullo_epi32(y, y);
sum_sq = _mm_add_epi32(sum_sq, _mm_sub_epi32(y2, x2));
}
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 3) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 1) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 1) * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 2) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 2) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 2) * buf_stride + j], sum_sq);
x = _mm_cvtepu8_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 3) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 3) * buf_stride + j], sum_sq);
}
}
static void selfguided_restoration_3_h(int32_t *A, int32_t *B, int width,
int height, int buf_stride, int eps,
int bit_depth) {
int i, j;
// Horizontal sum over 7-pixel regions of dst
int width_extend = (width + 3) & ~3;
for (i = 0; i < height; ++i) {
int h = AOMMIN(4, height - i) + AOMMIN(3, i);
__m128i a1 = _mm_loadu_si128((__m128i *)&A[i * buf_stride]);
__m128i b1 = _mm_loadu_si128((__m128i *)&B[i * buf_stride]);
__m128i a2 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + 4]);
__m128i b2 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + 4]);
__m128i sum_ = _mm_add_epi32(
_mm_add_epi32(
_mm_add_epi32(_mm_slli_si128(b1, 12), _mm_slli_si128(b1, 8)),
_mm_add_epi32(_mm_slli_si128(b1, 4), b1)),
_mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(b2, b1, 4),
_mm_alignr_epi8(b2, b1, 8)),
_mm_alignr_epi8(b2, b1, 12)));
__m128i sum_sq_ = _mm_add_epi32(
_mm_add_epi32(
_mm_add_epi32(_mm_slli_si128(a1, 12), _mm_slli_si128(a1, 8)),
_mm_add_epi32(_mm_slli_si128(a1, 4), a1)),
_mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(a2, a1, 4),
_mm_alignr_epi8(a2, a1, 8)),
_mm_alignr_epi8(a2, a1, 12)));
__m128i n = _mm_set_epi32(7 * h, 6 * h, 5 * h, 4 * h);
__m128i one_over_n =
_mm_set_epi32(one_by_x[7 * h - 1], one_by_x[6 * h - 1],
one_by_x[5 * h - 1], one_by_x[4 * h - 1]);
__m128i s = _mm_set_epi32(
sgrproj_mtable[eps - 1][7 * h - 1], sgrproj_mtable[eps - 1][6 * h - 1],
sgrproj_mtable[eps - 1][5 * h - 1], sgrproj_mtable[eps - 1][4 * h - 1]);
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride, A,
B);
// Re-align a1 and b1 so that they start at index i * buf_stride + 1
a2 = _mm_alignr_epi8(a2, a1, 4);
b2 = _mm_alignr_epi8(b2, b1, 4);
n = _mm_set1_epi32(7 * h);
one_over_n = _mm_set1_epi32(one_by_x[7 * h - 1]);
s = _mm_set1_epi32(sgrproj_mtable[eps - 1][7 * h - 1]);
for (j = 4; j < width_extend - 4; j += 4) {
a1 = a2;
a2 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 1]);
b1 = b2;
b2 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 1]);
__m128i a3 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 5]);
__m128i b3 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 5]);
/* Loop invariant: At this point,
a1 = original A[i * buf_stride + j - 3 : i * buf_stride + j + 1]
a2 = original A[i * buf_stride + j + 1 : i * buf_stride + j + 5]
a3 = original A[i * buf_stride + j + 5 : i * buf_stride + j + 9]
and similar for b1,b2,b3 and B
*/
sum_ = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(b1, _mm_alignr_epi8(b2, b1, 4)),
_mm_add_epi32(_mm_alignr_epi8(b2, b1, 8),
_mm_alignr_epi8(b2, b1, 12))),
_mm_add_epi32(_mm_add_epi32(b2, _mm_alignr_epi8(b3, b2, 4)),
_mm_alignr_epi8(b3, b2, 8)));
sum_sq_ = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(a1, _mm_alignr_epi8(a2, a1, 4)),
_mm_add_epi32(_mm_alignr_epi8(a2, a1, 8),
_mm_alignr_epi8(a2, a1, 12))),
_mm_add_epi32(_mm_add_epi32(a2, _mm_alignr_epi8(a3, a2, 4)),
_mm_alignr_epi8(a3, a2, 8)));
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride + j,
A, B);
}
__m128i a3 = _mm_loadu_si128((__m128i *)&A[i * buf_stride + j + 1]);
__m128i b3 = _mm_loadu_si128((__m128i *)&B[i * buf_stride + j + 1]);
j = width - 4;
switch (width % 4) {
case 0:
a1 = a2;
b1 = b2;
a2 = a3;
b2 = b3;
break;
case 1:
a1 = _mm_alignr_epi8(a2, a1, 4);
b1 = _mm_alignr_epi8(b2, b1, 4);
a2 = _mm_alignr_epi8(a3, a2, 4);
b2 = _mm_alignr_epi8(b3, b2, 4);
break;
case 2:
a1 = _mm_alignr_epi8(a2, a1, 8);
b1 = _mm_alignr_epi8(b2, b1, 8);
a2 = _mm_alignr_epi8(a3, a2, 8);
b2 = _mm_alignr_epi8(b3, b2, 8);
break;
case 3:
a1 = _mm_alignr_epi8(a2, a1, 12);
b1 = _mm_alignr_epi8(b2, b1, 12);
a2 = _mm_alignr_epi8(a3, a2, 12);
b2 = _mm_alignr_epi8(b3, b2, 12);
break;
}
// Zero out the data loaded from "off the edge" of the array
__m128i zero = _mm_setzero_si128();
a2 = _mm_blend_epi16(a2, zero, 0xc0);
b2 = _mm_blend_epi16(b2, zero, 0xc0);
sum_ = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(b1, _mm_alignr_epi8(b2, b1, 4)),
_mm_add_epi32(_mm_alignr_epi8(b2, b1, 8),
_mm_alignr_epi8(b2, b1, 12))),
_mm_add_epi32(_mm_add_epi32(b2, _mm_alignr_epi8(zero, b2, 4)),
_mm_alignr_epi8(zero, b2, 8)));
sum_sq_ = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(a1, _mm_alignr_epi8(a2, a1, 4)),
_mm_add_epi32(_mm_alignr_epi8(a2, a1, 8),
_mm_alignr_epi8(a2, a1, 12))),
_mm_add_epi32(_mm_add_epi32(a2, _mm_alignr_epi8(zero, a2, 4)),
_mm_alignr_epi8(zero, a2, 8)));
n = _mm_set_epi32(4 * h, 5 * h, 6 * h, 7 * h);
one_over_n = _mm_set_epi32(one_by_x[4 * h - 1], one_by_x[5 * h - 1],
one_by_x[6 * h - 1], one_by_x[7 * h - 1]);
s = _mm_set_epi32(
sgrproj_mtable[eps - 1][4 * h - 1], sgrproj_mtable[eps - 1][5 * h - 1],
sgrproj_mtable[eps - 1][6 * h - 1], sgrproj_mtable[eps - 1][7 * h - 1]);
calc_block(sum_, sum_sq_, n, one_over_n, s, bit_depth, i * buf_stride + j,
A, B);
}
}
void av1_selfguided_restoration_sse4_1(uint8_t *dgd, int width, int height,
int stride, int32_t *dst, int dst_stride,
int r, int eps, int32_t *tmpbuf) {
int32_t *A = tmpbuf;
int32_t *B = A + SGRPROJ_OUTBUF_SIZE;
int i, j;
// Adjusting the stride of A and B here appears to avoid bad cache effects,
// leading to a significant speed improvement.
// We also align the stride to a multiple of 16 bytes for efficiency.
int buf_stride = ((width + 3) & ~3) + 16;
// Don't filter tiles with dimensions < 5 on any axis
if ((width < 5) || (height < 5)) return;
if (r == 1) {
selfguided_restoration_1_v(dgd, width, height, stride, A, B, buf_stride);
selfguided_restoration_1_h(A, B, width, height, buf_stride, eps, 8);
} else if (r == 2) {
selfguided_restoration_2_v(dgd, width, height, stride, A, B, buf_stride);
selfguided_restoration_2_h(A, B, width, height, buf_stride, eps, 8);
} else if (r == 3) {
selfguided_restoration_3_v(dgd, width, height, stride, A, B, buf_stride);
selfguided_restoration_3_h(A, B, width, height, buf_stride, eps, 8);
} else {
assert(0);
}
{
i = 0;
j = 0;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k + buf_stride] +
A[k + buf_stride + 1];
const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k + buf_stride] +
B[k + buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k + buf_stride] +
A[k + buf_stride - 1] + A[k + buf_stride + 1];
const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k + buf_stride] +
B[k + buf_stride - 1] + B[k + buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
j = width - 1;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k + buf_stride] +
A[k + buf_stride - 1];
const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k + buf_stride] +
B[k + buf_stride - 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
for (i = 1; i < height - 1; ++i) {
j = 0;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) +
A[k + 1] + A[k - buf_stride + 1] +
A[k + buf_stride + 1];
const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) +
B[k + 1] + B[k - buf_stride + 1] +
B[k + buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
// Vectorize the innermost loop
for (j = 1; j < width - 1; j += 4) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 5;
__m128i tmp0 = _mm_loadu_si128((__m128i *)&A[k - 1 - buf_stride]);
__m128i tmp1 = _mm_loadu_si128((__m128i *)&A[k + 3 - buf_stride]);
__m128i tmp2 = _mm_loadu_si128((__m128i *)&A[k - 1]);
__m128i tmp3 = _mm_loadu_si128((__m128i *)&A[k + 3]);
__m128i tmp4 = _mm_loadu_si128((__m128i *)&A[k - 1 + buf_stride]);
__m128i tmp5 = _mm_loadu_si128((__m128i *)&A[k + 3 + buf_stride]);
__m128i a0 = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(tmp3, tmp2, 4), tmp2),
_mm_add_epi32(_mm_alignr_epi8(tmp3, tmp2, 8),
_mm_alignr_epi8(tmp5, tmp4, 4))),
_mm_alignr_epi8(tmp1, tmp0, 4));
__m128i a1 = _mm_add_epi32(_mm_add_epi32(tmp0, tmp4),
_mm_add_epi32(_mm_alignr_epi8(tmp1, tmp0, 8),
_mm_alignr_epi8(tmp5, tmp4, 8)));
__m128i a = _mm_sub_epi32(_mm_slli_epi32(_mm_add_epi32(a0, a1), 2), a1);
__m128i tmp6 = _mm_loadu_si128((__m128i *)&B[k - 1 - buf_stride]);
__m128i tmp7 = _mm_loadu_si128((__m128i *)&B[k + 3 - buf_stride]);
__m128i tmp8 = _mm_loadu_si128((__m128i *)&B[k - 1]);
__m128i tmp9 = _mm_loadu_si128((__m128i *)&B[k + 3]);
__m128i tmp10 = _mm_loadu_si128((__m128i *)&B[k - 1 + buf_stride]);
__m128i tmp11 = _mm_loadu_si128((__m128i *)&B[k + 3 + buf_stride]);
__m128i b0 = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(tmp9, tmp8, 4), tmp8),
_mm_add_epi32(_mm_alignr_epi8(tmp9, tmp8, 8),
_mm_alignr_epi8(tmp11, tmp10, 4))),
_mm_alignr_epi8(tmp7, tmp6, 4));
__m128i b1 =
_mm_add_epi32(_mm_add_epi32(tmp6, tmp10),
_mm_add_epi32(_mm_alignr_epi8(tmp7, tmp6, 8),
_mm_alignr_epi8(tmp11, tmp10, 8)));
__m128i b = _mm_sub_epi32(_mm_slli_epi32(_mm_add_epi32(b0, b1), 2), b1);
__m128i src = _mm_cvtepu8_epi32(_mm_loadu_si128((__m128i *)&dgd[l]));
__m128i rounding = _mm_set1_epi32(
(1 << (SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS)) >> 1);
__m128i v = _mm_add_epi32(_mm_mullo_epi32(a, src), b);
__m128i w = _mm_srai_epi32(_mm_add_epi32(v, rounding),
SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
_mm_storeu_si128((__m128i *)&dst[m], w);
}
// Deal with any extra pixels at the right-hand edge of the frame
// (typically have 2 such pixels, but may have anywhere between 0 and 3)
for (; j < width - 1; ++j) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 5;
const int32_t a =
(A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
4 +
(A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
3;
const int32_t b =
(B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
4 +
(B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
3;
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
j = width - 1;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) +
A[k - 1] + A[k - buf_stride - 1] +
A[k + buf_stride - 1];
const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) +
B[k - 1] + B[k - buf_stride - 1] +
B[k + buf_stride - 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
{
i = height - 1;
j = 0;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k - buf_stride] +
A[k - buf_stride + 1];
const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k - buf_stride] +
B[k - buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k - buf_stride] +
A[k - buf_stride - 1] + A[k - buf_stride + 1];
const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k - buf_stride] +
B[k - buf_stride - 1] + B[k - buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
j = width - 1;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k - buf_stride] +
A[k - buf_stride - 1];
const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k - buf_stride] +
B[k - buf_stride - 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
}
void av1_highpass_filter_sse4_1(uint8_t *dgd, int width, int height, int stride,
int32_t *dst, int dst_stride, int corner,
int edge) {
int i, j;
const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge);
{
i = 0;
j = 0;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) +
corner *
(dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] = center * dgd[k] +
edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) +
corner * (dgd[k + stride - 1] + dgd[k + stride + 1] +
dgd[k - 1] + dgd[k + 1]);
}
j = width - 1;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) +
corner *
(dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]);
}
}
{
i = height - 1;
j = 0;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) +
corner *
(dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] = center * dgd[k] +
edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) +
corner * (dgd[k - stride - 1] + dgd[k - stride + 1] +
dgd[k - 1] + dgd[k + 1]);
}
j = width - 1;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) +
corner *
(dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]);
}
}
__m128i center_ = _mm_set1_epi16(center);
__m128i edge_ = _mm_set1_epi16(edge);
__m128i corner_ = _mm_set1_epi16(corner);
for (i = 1; i < height - 1; ++i) {
j = 0;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] +
edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) +
corner * (dgd[k + stride + 1] + dgd[k - stride + 1] +
dgd[k - stride] + dgd[k + stride]);
}
// Process in units of 8 pixels at a time.
for (j = 1; j < width - 8; j += 8) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
__m128i a = _mm_loadu_si128((__m128i *)&dgd[k - stride - 1]);
__m128i b = _mm_loadu_si128((__m128i *)&dgd[k - 1]);
__m128i c = _mm_loadu_si128((__m128i *)&dgd[k + stride - 1]);
__m128i tl = _mm_cvtepu8_epi16(a);
__m128i tr = _mm_cvtepu8_epi16(_mm_srli_si128(a, 8));
__m128i cl = _mm_cvtepu8_epi16(b);
__m128i cr = _mm_cvtepu8_epi16(_mm_srli_si128(b, 8));
__m128i bl = _mm_cvtepu8_epi16(c);
__m128i br = _mm_cvtepu8_epi16(_mm_srli_si128(c, 8));
__m128i x = _mm_alignr_epi8(cr, cl, 2);
__m128i y = _mm_add_epi16(_mm_add_epi16(_mm_alignr_epi8(tr, tl, 2), cl),
_mm_add_epi16(_mm_alignr_epi8(br, bl, 2),
_mm_alignr_epi8(cr, cl, 4)));
__m128i z = _mm_add_epi16(_mm_add_epi16(tl, bl),
_mm_add_epi16(_mm_alignr_epi8(tr, tl, 4),
_mm_alignr_epi8(br, bl, 4)));
__m128i res = _mm_add_epi16(_mm_mullo_epi16(x, center_),
_mm_add_epi16(_mm_mullo_epi16(y, edge_),
_mm_mullo_epi16(z, corner_)));
_mm_storeu_si128((__m128i *)&dst[l], _mm_cvtepi16_epi32(res));
_mm_storeu_si128((__m128i *)&dst[l + 4],
_mm_cvtepi16_epi32(_mm_srli_si128(res, 8)));
}
// If there are enough pixels left in this row, do another batch of 4
// pixels.
for (; j < width - 4; j += 4) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
__m128i a = _mm_loadl_epi64((__m128i *)&dgd[k - stride - 1]);
__m128i b = _mm_loadl_epi64((__m128i *)&dgd[k - 1]);
__m128i c = _mm_loadl_epi64((__m128i *)&dgd[k + stride - 1]);
__m128i tl = _mm_cvtepu8_epi16(a);
__m128i cl = _mm_cvtepu8_epi16(b);
__m128i bl = _mm_cvtepu8_epi16(c);
__m128i x = _mm_srli_si128(cl, 2);
__m128i y = _mm_add_epi16(
_mm_add_epi16(_mm_srli_si128(tl, 2), cl),
_mm_add_epi16(_mm_srli_si128(bl, 2), _mm_srli_si128(cl, 4)));
__m128i z = _mm_add_epi16(
_mm_add_epi16(tl, bl),
_mm_add_epi16(_mm_srli_si128(tl, 4), _mm_srli_si128(bl, 4)));
__m128i res = _mm_add_epi16(_mm_mullo_epi16(x, center_),
_mm_add_epi16(_mm_mullo_epi16(y, edge_),
_mm_mullo_epi16(z, corner_)));
_mm_storeu_si128((__m128i *)&dst[l], _mm_cvtepi16_epi32(res));
}
// Handle any leftover pixels
for (; j < width - 1; ++j) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] +
edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) +
corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
dgd[k - stride + 1] + dgd[k + stride + 1]);
}
j = width - 1;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] +
edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) +
corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
dgd[k - stride] + dgd[k + stride]);
}
}
}
void apply_selfguided_restoration_sse4_1(uint8_t *dat, int width, int height,
int stride, int eps, int *xqd,
uint8_t *dst, int dst_stride,
int32_t *tmpbuf) {
int xq[2];
int32_t *flt1 = tmpbuf;
int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX;
int i, j;
assert(width * height <= RESTORATION_TILEPELS_MAX);
#if USE_HIGHPASS_IN_SGRPROJ
av1_highpass_filter_sse4_1(dat, width, height, stride, flt1, width,
sgr_params[eps].corner, sgr_params[eps].edge);
#else
av1_selfguided_restoration_sse4_1(dat, width, height, stride, flt1, width,
sgr_params[eps].r1, sgr_params[eps].e1,
tmpbuf2);
#endif // USE_HIGHPASS_IN_SGRPROJ
av1_selfguided_restoration_sse4_1(dat, width, height, stride, flt2, width,
sgr_params[eps].r2, sgr_params[eps].e2,
tmpbuf2);
decode_xq(xqd, xq);
__m128i xq0 = _mm_set1_epi32(xq[0]);
__m128i xq1 = _mm_set1_epi32(xq[1]);
for (i = 0; i < height; ++i) {
// Calculate output in batches of 8 pixels
for (j = 0; j < width; j += 8) {
const int k = i * width + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
__m128i src =
_mm_slli_epi16(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i *)&dat[l])),
SGRPROJ_RST_BITS);
const __m128i u_0 = _mm_cvtepu16_epi32(src);
const __m128i u_1 = _mm_cvtepu16_epi32(_mm_srli_si128(src, 8));
const __m128i f1_0 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt1[k]), u_0);
const __m128i f2_0 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt2[k]), u_0);
const __m128i f1_1 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt1[k + 4]), u_1);
const __m128i f2_1 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt2[k + 4]), u_1);
const __m128i v_0 = _mm_add_epi32(
_mm_add_epi32(_mm_mullo_epi32(xq0, f1_0), _mm_mullo_epi32(xq1, f2_0)),
_mm_slli_epi32(u_0, SGRPROJ_PRJ_BITS));
const __m128i v_1 = _mm_add_epi32(
_mm_add_epi32(_mm_mullo_epi32(xq0, f1_1), _mm_mullo_epi32(xq1, f2_1)),
_mm_slli_epi32(u_1, SGRPROJ_PRJ_BITS));
const __m128i rounding =
_mm_set1_epi32((1 << (SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS)) >> 1);
const __m128i w_0 = _mm_srai_epi32(_mm_add_epi32(v_0, rounding),
SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
const __m128i w_1 = _mm_srai_epi32(_mm_add_epi32(v_1, rounding),
SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
const __m128i tmp = _mm_packs_epi32(w_0, w_1);
const __m128i res = _mm_packus_epi16(tmp, tmp /* "don't care" value */);
_mm_storel_epi64((__m128i *)&dst[m], res);
}
// Process leftover pixels
for (; j < width; ++j) {
const int k = i * width + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS);
const int32_t f1 = (int32_t)flt1[k] - u;
const int32_t f2 = (int32_t)flt2[k] - u;
const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
const int16_t w =
(int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
dst[m] = (uint16_t)clip_pixel(w);
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
// Only the vertical sums need to be adjusted for highbitdepth
static void highbd_selfguided_restoration_1_v(uint16_t *src, int width,
int height, int src_stride,
int32_t *A, int32_t *B,
int buf_stride) {
int i, j;
int width_extend = (width + 3) & ~3;
for (j = 0; j < width_extend; j += 4) {
__m128i a, b, x, y, x2, y2;
__m128i sum, sum_sq, tmp;
a = _mm_loadl_epi64((__m128i *)&src[j]);
b = _mm_loadl_epi64((__m128i *)&src[src_stride + j]);
sum = _mm_cvtepi16_epi32(_mm_add_epi16(a, b));
tmp = _mm_unpacklo_epi16(a, b);
sum_sq = _mm_madd_epi16(tmp, tmp);
_mm_store_si128((__m128i *)&B[j], sum);
_mm_store_si128((__m128i *)&A[j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[2 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
for (i = 1; i < height - 2; ++i) {
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
y = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i + 2) * src_stride + j]));
sum = _mm_add_epi32(sum, _mm_sub_epi32(y, x));
x2 = _mm_mullo_epi32(x, x);
y2 = _mm_mullo_epi32(y, y);
sum_sq = _mm_add_epi32(sum_sq, _mm_sub_epi32(y2, x2));
}
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 1) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 1) * buf_stride + j], sum_sq);
}
}
static void highbd_selfguided_restoration_2_v(uint16_t *src, int width,
int height, int src_stride,
int32_t *A, int32_t *B,
int buf_stride) {
int i, j;
int width_extend = (width + 3) & ~3;
for (j = 0; j < width_extend; j += 4) {
__m128i a, b, c, c2, x, y, x2, y2;
__m128i sum, sum_sq, tmp;
a = _mm_loadl_epi64((__m128i *)&src[j]);
b = _mm_loadl_epi64((__m128i *)&src[src_stride + j]);
c = _mm_loadl_epi64((__m128i *)&src[2 * src_stride + j]);
sum = _mm_cvtepi16_epi32(_mm_add_epi16(_mm_add_epi16(a, b), c));
// Important: We need to widen *before* squaring here, since
// c^2 may be up to 2^24.
c = _mm_cvtepu16_epi32(c);
c2 = _mm_mullo_epi32(c, c);
tmp = _mm_unpacklo_epi16(a, b);
sum_sq = _mm_add_epi32(_mm_madd_epi16(tmp, tmp), c2);
_mm_store_si128((__m128i *)&B[j], sum);
_mm_store_si128((__m128i *)&A[j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[3 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[4 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
for (i = 2; i < height - 3; ++i) {
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 2) * src_stride + j]));
y = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i + 3) * src_stride + j]));
sum = _mm_add_epi32(sum, _mm_sub_epi32(y, x));
x2 = _mm_mullo_epi32(x, x);
y2 = _mm_mullo_epi32(y, y);
sum_sq = _mm_add_epi32(sum_sq, _mm_sub_epi32(y2, x2));
}
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 2) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 1) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 1) * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 2) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 2) * buf_stride + j], sum_sq);
}
}
static void highbd_selfguided_restoration_3_v(uint16_t *src, int width,
int height, int src_stride,
int32_t *A, int32_t *B,
int buf_stride) {
int i, j;
int width_extend = (width + 3) & ~3;
for (j = 0; j < width_extend; j += 4) {
__m128i a, b, c, d, x, y, x2, y2;
__m128i sum, sum_sq, tmp, tmp2;
a = _mm_loadl_epi64((__m128i *)&src[j]);
b = _mm_loadl_epi64((__m128i *)&src[src_stride + j]);
c = _mm_loadl_epi64((__m128i *)&src[2 * src_stride + j]);
d = _mm_loadl_epi64((__m128i *)&src[3 * src_stride + j]);
sum = _mm_cvtepi16_epi32(
_mm_add_epi16(_mm_add_epi16(a, b), _mm_add_epi16(c, d)));
tmp = _mm_unpacklo_epi16(a, b);
tmp2 = _mm_unpacklo_epi16(c, d);
sum_sq =
_mm_add_epi32(_mm_madd_epi16(tmp, tmp), _mm_madd_epi16(tmp2, tmp2));
_mm_store_si128((__m128i *)&B[j], sum);
_mm_store_si128((__m128i *)&A[j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[4 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[5 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[2 * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[2 * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[6 * src_stride + j]));
sum = _mm_add_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_add_epi32(sum_sq, x2);
for (i = 3; i < height - 4; ++i) {
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 3) * src_stride + j]));
y = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i + 4) * src_stride + j]));
sum = _mm_add_epi32(sum, _mm_sub_epi32(y, x));
x2 = _mm_mullo_epi32(x, x);
y2 = _mm_mullo_epi32(y, y);
sum_sq = _mm_add_epi32(sum_sq, _mm_sub_epi32(y2, x2));
}
_mm_store_si128((__m128i *)&B[i * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[i * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 3) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 1) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 1) * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 2) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 2) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 2) * buf_stride + j], sum_sq);
x = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)&src[(i - 1) * src_stride + j]));
sum = _mm_sub_epi32(sum, x);
x2 = _mm_mullo_epi32(x, x);
sum_sq = _mm_sub_epi32(sum_sq, x2);
_mm_store_si128((__m128i *)&B[(i + 3) * buf_stride + j], sum);
_mm_store_si128((__m128i *)&A[(i + 3) * buf_stride + j], sum_sq);
}
}
void av1_selfguided_restoration_highbd_sse4_1(uint16_t *dgd, int width,
int height, int stride,
int32_t *dst, int dst_stride,
int bit_depth, int r, int eps,
int32_t *tmpbuf) {
int32_t *A = tmpbuf;
int32_t *B = A + SGRPROJ_OUTBUF_SIZE;
int i, j;
// Adjusting the stride of A and B here appears to avoid bad cache effects,
// leading to a significant speed improvement.
// We also align the stride to a multiple of 16 bytes for efficiency.
int buf_stride = ((width + 3) & ~3) + 16;
// Don't filter tiles with dimensions < 5 on any axis
if ((width < 5) || (height < 5)) return;
if (r == 1) {
highbd_selfguided_restoration_1_v(dgd, width, height, stride, A, B,
buf_stride);
selfguided_restoration_1_h(A, B, width, height, buf_stride, eps, bit_depth);
} else if (r == 2) {
highbd_selfguided_restoration_2_v(dgd, width, height, stride, A, B,
buf_stride);
selfguided_restoration_2_h(A, B, width, height, buf_stride, eps, bit_depth);
} else if (r == 3) {
highbd_selfguided_restoration_3_v(dgd, width, height, stride, A, B,
buf_stride);
selfguided_restoration_3_h(A, B, width, height, buf_stride, eps, bit_depth);
} else {
assert(0);
}
{
i = 0;
j = 0;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k + buf_stride] +
A[k + buf_stride + 1];
const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k + buf_stride] +
B[k + buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k + buf_stride] +
A[k + buf_stride - 1] + A[k + buf_stride + 1];
const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k + buf_stride] +
B[k + buf_stride - 1] + B[k + buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
j = width - 1;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k + buf_stride] +
A[k + buf_stride - 1];
const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k + buf_stride] +
B[k + buf_stride - 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
for (i = 1; i < height - 1; ++i) {
j = 0;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) +
A[k + 1] + A[k - buf_stride + 1] +
A[k + buf_stride + 1];
const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) +
B[k + 1] + B[k - buf_stride + 1] +
B[k + buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
// Vectorize the innermost loop
for (j = 1; j < width - 1; j += 4) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 5;
__m128i tmp0 = _mm_loadu_si128((__m128i *)&A[k - 1 - buf_stride]);
__m128i tmp1 = _mm_loadu_si128((__m128i *)&A[k + 3 - buf_stride]);
__m128i tmp2 = _mm_loadu_si128((__m128i *)&A[k - 1]);
__m128i tmp3 = _mm_loadu_si128((__m128i *)&A[k + 3]);
__m128i tmp4 = _mm_loadu_si128((__m128i *)&A[k - 1 + buf_stride]);
__m128i tmp5 = _mm_loadu_si128((__m128i *)&A[k + 3 + buf_stride]);
__m128i a0 = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(tmp3, tmp2, 4), tmp2),
_mm_add_epi32(_mm_alignr_epi8(tmp3, tmp2, 8),
_mm_alignr_epi8(tmp5, tmp4, 4))),
_mm_alignr_epi8(tmp1, tmp0, 4));
__m128i a1 = _mm_add_epi32(_mm_add_epi32(tmp0, tmp4),
_mm_add_epi32(_mm_alignr_epi8(tmp1, tmp0, 8),
_mm_alignr_epi8(tmp5, tmp4, 8)));
__m128i a = _mm_sub_epi32(_mm_slli_epi32(_mm_add_epi32(a0, a1), 2), a1);
__m128i tmp6 = _mm_loadu_si128((__m128i *)&B[k - 1 - buf_stride]);
__m128i tmp7 = _mm_loadu_si128((__m128i *)&B[k + 3 - buf_stride]);
__m128i tmp8 = _mm_loadu_si128((__m128i *)&B[k - 1]);
__m128i tmp9 = _mm_loadu_si128((__m128i *)&B[k + 3]);
__m128i tmp10 = _mm_loadu_si128((__m128i *)&B[k - 1 + buf_stride]);
__m128i tmp11 = _mm_loadu_si128((__m128i *)&B[k + 3 + buf_stride]);
__m128i b0 = _mm_add_epi32(
_mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(tmp9, tmp8, 4), tmp8),
_mm_add_epi32(_mm_alignr_epi8(tmp9, tmp8, 8),
_mm_alignr_epi8(tmp11, tmp10, 4))),
_mm_alignr_epi8(tmp7, tmp6, 4));
__m128i b1 =
_mm_add_epi32(_mm_add_epi32(tmp6, tmp10),
_mm_add_epi32(_mm_alignr_epi8(tmp7, tmp6, 8),
_mm_alignr_epi8(tmp11, tmp10, 8)));
__m128i b = _mm_sub_epi32(_mm_slli_epi32(_mm_add_epi32(b0, b1), 2), b1);
__m128i src = _mm_cvtepu16_epi32(_mm_loadu_si128((__m128i *)&dgd[l]));
__m128i rounding = _mm_set1_epi32(
(1 << (SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS)) >> 1);
__m128i v = _mm_add_epi32(_mm_mullo_epi32(a, src), b);
__m128i w = _mm_srai_epi32(_mm_add_epi32(v, rounding),
SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
_mm_storeu_si128((__m128i *)&dst[m], w);
}
// Deal with any extra pixels at the right-hand edge of the frame
// (typically have 2 such pixels, but may have anywhere between 0 and 3)
for (; j < width - 1; ++j) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 5;
const int32_t a =
(A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
4 +
(A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
3;
const int32_t b =
(B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
4 +
(B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
3;
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
j = width - 1;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) +
A[k - 1] + A[k - buf_stride - 1] +
A[k + buf_stride - 1];
const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) +
B[k - 1] + B[k - buf_stride - 1] +
B[k + buf_stride - 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
{
i = height - 1;
j = 0;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k - buf_stride] +
A[k - buf_stride + 1];
const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k - buf_stride] +
B[k - buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k - buf_stride] +
A[k - buf_stride - 1] + A[k - buf_stride + 1];
const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k - buf_stride] +
B[k - buf_stride - 1] + B[k - buf_stride + 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
j = width - 1;
{
const int k = i * buf_stride + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int nb = 3;
const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k - buf_stride] +
A[k - buf_stride - 1];
const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k - buf_stride] +
B[k - buf_stride - 1];
const int32_t v = a * dgd[l] + b;
dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
}
}
}
void av1_highpass_filter_highbd_sse4_1(uint16_t *dgd, int width, int height,
int stride, int32_t *dst, int dst_stride,
int corner, int edge) {
int i, j;
const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge);
{
i = 0;
j = 0;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) +
corner *
(dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] = center * dgd[k] +
edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) +
corner * (dgd[k + stride - 1] + dgd[k + stride + 1] +
dgd[k - 1] + dgd[k + 1]);
}
j = width - 1;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) +
corner *
(dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]);
}
}
__m128i center_ = _mm_set1_epi32(center);
__m128i edge_ = _mm_set1_epi32(edge);
__m128i corner_ = _mm_set1_epi32(corner);
for (i = 1; i < height - 1; ++i) {
j = 0;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] +
edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) +
corner * (dgd[k + stride + 1] + dgd[k - stride + 1] +
dgd[k - stride] + dgd[k + stride]);
}
// Process 4 pixels at a time
for (j = 1; j < width - 4; j += 4) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
__m128i a = _mm_loadu_si128((__m128i *)&dgd[k - stride - 1]);
__m128i b = _mm_loadu_si128((__m128i *)&dgd[k - 1]);
__m128i c = _mm_loadu_si128((__m128i *)&dgd[k + stride - 1]);
__m128i tl = _mm_cvtepu16_epi32(a);
__m128i tr = _mm_cvtepu16_epi32(_mm_srli_si128(a, 8));
__m128i cl = _mm_cvtepu16_epi32(b);
__m128i cr = _mm_cvtepu16_epi32(_mm_srli_si128(b, 8));
__m128i bl = _mm_cvtepu16_epi32(c);
__m128i br = _mm_cvtepu16_epi32(_mm_srli_si128(c, 8));
__m128i x = _mm_alignr_epi8(cr, cl, 4);
__m128i y = _mm_add_epi32(_mm_add_epi32(_mm_alignr_epi8(tr, tl, 4), cl),
_mm_add_epi32(_mm_alignr_epi8(br, bl, 4),
_mm_alignr_epi8(cr, cl, 8)));
__m128i z = _mm_add_epi32(_mm_add_epi32(tl, bl),
_mm_add_epi32(_mm_alignr_epi8(tr, tl, 8),
_mm_alignr_epi8(br, bl, 8)));
__m128i res = _mm_add_epi32(_mm_mullo_epi32(x, center_),
_mm_add_epi32(_mm_mullo_epi32(y, edge_),
_mm_mullo_epi32(z, corner_)));
_mm_storeu_si128((__m128i *)&dst[l], res);
}
// Handle any leftover pixels
for (; j < width - 1; ++j) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] +
edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) +
corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
dgd[k - stride + 1] + dgd[k + stride + 1]);
}
j = width - 1;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] +
edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) +
corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
dgd[k - stride] + dgd[k + stride]);
}
}
{
i = height - 1;
j = 0;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) +
corner *
(dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]);
}
for (j = 1; j < width - 1; ++j) {
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] = center * dgd[k] +
edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) +
corner * (dgd[k - stride - 1] + dgd[k - stride + 1] +
dgd[k - 1] + dgd[k + 1]);
}
j = width - 1;
{
const int k = i * stride + j;
const int l = i * dst_stride + j;
dst[l] =
center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) +
corner *
(dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]);
}
}
}
void apply_selfguided_restoration_highbd_sse4_1(
uint16_t *dat, int width, int height, int stride, int bit_depth, int eps,
int *xqd, uint16_t *dst, int dst_stride, int32_t *tmpbuf) {
int xq[2];
int32_t *flt1 = tmpbuf;
int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX;
int i, j;
assert(width * height <= RESTORATION_TILEPELS_MAX);
#if USE_HIGHPASS_IN_SGRPROJ
av1_highpass_filter_highbd_sse4_1(dat, width, height, stride, flt1, width,
sgr_params[eps].corner,
sgr_params[eps].edge);
#else
av1_selfguided_restoration_highbd_sse4_1(dat, width, height, stride, flt1,
width, bit_depth, sgr_params[eps].r1,
sgr_params[eps].e1, tmpbuf2);
#endif // USE_HIGHPASS_IN_SGRPROJ
av1_selfguided_restoration_highbd_sse4_1(dat, width, height, stride, flt2,
width, bit_depth, sgr_params[eps].r2,
sgr_params[eps].e2, tmpbuf2);
decode_xq(xqd, xq);
__m128i xq0 = _mm_set1_epi32(xq[0]);
__m128i xq1 = _mm_set1_epi32(xq[1]);
for (i = 0; i < height; ++i) {
// Calculate output in batches of 8 pixels
for (j = 0; j < width; j += 8) {
const int k = i * width + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
__m128i src =
_mm_slli_epi16(_mm_load_si128((__m128i *)&dat[l]), SGRPROJ_RST_BITS);
const __m128i u_0 = _mm_cvtepu16_epi32(src);
const __m128i u_1 = _mm_cvtepu16_epi32(_mm_srli_si128(src, 8));
const __m128i f1_0 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt1[k]), u_0);
const __m128i f2_0 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt2[k]), u_0);
const __m128i f1_1 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt1[k + 4]), u_1);
const __m128i f2_1 =
_mm_sub_epi32(_mm_loadu_si128((__m128i *)&flt2[k + 4]), u_1);
const __m128i v_0 = _mm_add_epi32(
_mm_add_epi32(_mm_mullo_epi32(xq0, f1_0), _mm_mullo_epi32(xq1, f2_0)),
_mm_slli_epi32(u_0, SGRPROJ_PRJ_BITS));
const __m128i v_1 = _mm_add_epi32(
_mm_add_epi32(_mm_mullo_epi32(xq0, f1_1), _mm_mullo_epi32(xq1, f2_1)),
_mm_slli_epi32(u_1, SGRPROJ_PRJ_BITS));
const __m128i rounding =
_mm_set1_epi32((1 << (SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS)) >> 1);
const __m128i w_0 = _mm_srai_epi32(_mm_add_epi32(v_0, rounding),
SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
const __m128i w_1 = _mm_srai_epi32(_mm_add_epi32(v_1, rounding),
SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
// Pack into 16 bits and clamp to [0, 2^bit_depth)
const __m128i tmp = _mm_packus_epi32(w_0, w_1);
const __m128i max = _mm_set1_epi16((1 << bit_depth) - 1);
const __m128i res = _mm_min_epi16(tmp, max);
_mm_store_si128((__m128i *)&dst[m], res);
}
// Process leftover pixels
for (; j < width; ++j) {
const int k = i * width + j;
const int l = i * stride + j;
const int m = i * dst_stride + j;
const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS);
const int32_t f1 = (int32_t)flt1[k] - u;
const int32_t f2 = (int32_t)flt2[k] - u;
const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
const int16_t w =
(int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
dst[m] = (uint16_t)clip_pixel_highbd(w, bit_depth);
}
}
}
#endif