blob: d8b6a3c422912905ad656b8914c36971ce9ac048 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/variance.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "aom_scale/aom_scale.h"
#include "aom_scale/yv12config.h"
#include "av1/common/entropymv.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h" // av1_setup_dst_planes()
#include "av1/common/txb_common.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/dwt.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/reconinter_enc.h"
#define OUTPUT_FPF 0
#define FIRST_PASS_Q 10.0
#define INTRA_MODE_PENALTY 1024
#define NEW_MV_MODE_PENALTY 32
#define DARK_THRESH 64
#define NCOUNT_INTRA_THRESH 8192
#define NCOUNT_INTRA_FACTOR 3
static AOM_INLINE void output_stats(FIRSTPASS_STATS *stats,
struct aom_codec_pkt_list *pktlist) {
struct aom_codec_cx_pkt pkt;
pkt.kind = AOM_CODEC_STATS_PKT;
pkt.data.twopass_stats.buf = stats;
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
if (pktlist != NULL) aom_codec_pkt_list_add(pktlist, &pkt);
// TEMP debug code
#if OUTPUT_FPF
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
fprintf(fpfile,
"%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
"%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
"%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n",
stats->frame, stats->weight, stats->intra_error, stats->coded_error,
stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
stats->count, stats->duration);
fclose(fpfile);
}
#endif
}
void av1_twopass_zero_stats(FIRSTPASS_STATS *section) {
section->frame = 0.0;
section->weight = 0.0;
section->intra_error = 0.0;
section->frame_avg_wavelet_energy = 0.0;
section->coded_error = 0.0;
section->sr_coded_error = 0.0;
section->pcnt_inter = 0.0;
section->pcnt_motion = 0.0;
section->pcnt_second_ref = 0.0;
section->pcnt_neutral = 0.0;
section->intra_skip_pct = 0.0;
section->inactive_zone_rows = 0.0;
section->inactive_zone_cols = 0.0;
section->MVr = 0.0;
section->mvr_abs = 0.0;
section->MVc = 0.0;
section->mvc_abs = 0.0;
section->MVrv = 0.0;
section->MVcv = 0.0;
section->mv_in_out_count = 0.0;
section->new_mv_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
}
static AOM_INLINE void accumulate_stats(FIRSTPASS_STATS *section,
const FIRSTPASS_STATS *frame) {
section->frame += frame->frame;
section->weight += frame->weight;
section->intra_error += frame->intra_error;
section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy;
section->coded_error += frame->coded_error;
section->sr_coded_error += frame->sr_coded_error;
section->pcnt_inter += frame->pcnt_inter;
section->pcnt_motion += frame->pcnt_motion;
section->pcnt_second_ref += frame->pcnt_second_ref;
section->pcnt_neutral += frame->pcnt_neutral;
section->intra_skip_pct += frame->intra_skip_pct;
section->inactive_zone_rows += frame->inactive_zone_rows;
section->inactive_zone_cols += frame->inactive_zone_cols;
section->MVr += frame->MVr;
section->mvr_abs += frame->mvr_abs;
section->MVc += frame->MVc;
section->mvc_abs += frame->mvc_abs;
section->MVrv += frame->MVrv;
section->MVcv += frame->MVcv;
section->mv_in_out_count += frame->mv_in_out_count;
section->new_mv_count += frame->new_mv_count;
section->count += frame->count;
section->duration += frame->duration;
}
void av1_init_first_pass(AV1_COMP *cpi) {
if (!cpi->lap_enabled) {
cpi->twopass.total_stats = aom_calloc(1, sizeof(FIRSTPASS_STATS));
av1_twopass_zero_stats(cpi->twopass.total_stats);
}
}
void av1_end_first_pass(AV1_COMP *cpi) {
if (cpi->twopass.total_stats)
output_stats(cpi->twopass.total_stats, cpi->output_pkt_list);
}
static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
switch (bsize) {
case BLOCK_8X8: return aom_mse8x8;
case BLOCK_16X8: return aom_mse16x8;
case BLOCK_8X16: return aom_mse8x16;
default: return aom_mse16x16;
}
}
static unsigned int get_prediction_error(BLOCK_SIZE bsize,
const struct buf_2d *src,
const struct buf_2d *ref) {
unsigned int sse;
const aom_variance_fn_t fn = get_block_variance_fn(bsize);
fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
return sse;
}
#if CONFIG_AV1_HIGHBITDEPTH
static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
int bd) {
switch (bd) {
default:
switch (bsize) {
case BLOCK_8X8: return aom_highbd_8_mse8x8;
case BLOCK_16X8: return aom_highbd_8_mse16x8;
case BLOCK_8X16: return aom_highbd_8_mse8x16;
default: return aom_highbd_8_mse16x16;
}
break;
case 10:
switch (bsize) {
case BLOCK_8X8: return aom_highbd_10_mse8x8;
case BLOCK_16X8: return aom_highbd_10_mse16x8;
case BLOCK_8X16: return aom_highbd_10_mse8x16;
default: return aom_highbd_10_mse16x16;
}
break;
case 12:
switch (bsize) {
case BLOCK_8X8: return aom_highbd_12_mse8x8;
case BLOCK_16X8: return aom_highbd_12_mse16x8;
case BLOCK_8X16: return aom_highbd_12_mse8x16;
default: return aom_highbd_12_mse16x16;
}
break;
}
}
static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
const struct buf_2d *src,
const struct buf_2d *ref,
int bd) {
unsigned int sse;
const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
return sse;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// Refine the motion search range according to the frame dimension
// for first pass test.
static int get_search_range(const AV1_COMP *cpi) {
int sr = 0;
const int dim = AOMMIN(cpi->initial_width, cpi->initial_height);
while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
return sr;
}
static AOM_INLINE void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
const MV *ref_mv,
FULLPEL_MV *best_mv,
int *best_motion_err) {
MACROBLOCKD *const xd = &x->e_mbd;
FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv);
int tmp_err;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
const int sr = get_search_range(cpi);
int step_param = 3 + sr;
int cost_list[5];
tmp_err = av1_full_pixel_search(
cpi, x, bsize, &start_mv, step_param, NSTEP, 0, x->sadperbit16,
cond_cost_list(cpi, cost_list), ref_mv, INT_MAX, 0,
(MI_SIZE * xd->mi_col), (MI_SIZE * xd->mi_row), 0,
&cpi->ss_cfg[SS_CFG_FPF], 0);
if (tmp_err < INT_MAX) {
tmp_err = av1_get_mvpred_sse(x, &x->best_mv.as_fullmv, ref_mv, &v_fn_ptr) +
new_mv_mode_penalty;
}
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
*best_mv = x->best_mv.as_fullmv;
}
}
static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) {
if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] <
cm->mi_cols) {
return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
cm->mi_rows
? BLOCK_16X16
: BLOCK_16X8;
} else {
return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
cm->mi_rows
? BLOCK_8X16
: BLOCK_8X8;
}
}
static int find_fp_qindex(aom_bit_depth_t bit_depth) {
return av1_find_qindex(FIRST_PASS_Q, bit_depth, 0, QINDEX_RANGE - 1);
}
static double raw_motion_error_stdev(int *raw_motion_err_list,
int raw_motion_err_counts) {
int64_t sum_raw_err = 0;
double raw_err_avg = 0;
double raw_err_stdev = 0;
if (raw_motion_err_counts == 0) return 0;
int i;
for (i = 0; i < raw_motion_err_counts; i++) {
sum_raw_err += raw_motion_err_list[i];
}
raw_err_avg = (double)sum_raw_err / raw_motion_err_counts;
for (i = 0; i < raw_motion_err_counts; i++) {
raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) *
(raw_motion_err_list[i] - raw_err_avg);
}
// Calculate the standard deviation for the motion error of all the inter
// blocks of the 0,0 motion using the last source
// frame as the reference.
raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts);
return raw_err_stdev;
}
#define UL_INTRA_THRESH 50
#define INVALID_ROW -1
void av1_first_pass(AV1_COMP *cpi, const int64_t ts_duration) {
int mb_row, mb_col;
MACROBLOCK *const x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
CurrentFrame *const current_frame = &cm->current_frame;
const SequenceHeader *const seq_params = &cm->seq_params;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
TileInfo tile;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const PICK_MODE_CONTEXT *ctx =
&cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none;
int i;
int recon_yoffset, src_yoffset, recon_uvoffset;
int64_t intra_error = 0;
int64_t frame_avg_wavelet_energy = 0;
int64_t coded_error = 0;
int64_t sr_coded_error = 0;
int64_t tr_coded_error = 0;
int sum_mvr = 0, sum_mvc = 0;
int sum_mvr_abs = 0, sum_mvc_abs = 0;
int64_t sum_mvrs = 0, sum_mvcs = 0;
int mvcount = 0;
int intercount = 0;
int second_ref_count = 0;
int third_ref_count = 0;
const int intrapenalty = INTRA_MODE_PENALTY;
double neutral_count;
int intra_skip_count = 0;
int image_data_start_row = INVALID_ROW;
int new_mv_count = 0;
int sum_in_vectors = 0;
MV lastmv = kZeroMv;
TWO_PASS *twopass = &cpi->twopass;
int recon_y_stride, src_y_stride, recon_uv_stride, uv_mb_height;
const YV12_BUFFER_CONFIG *const lst_yv12 =
get_ref_frame_yv12_buf(cm, LAST_FRAME);
const YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
const YV12_BUFFER_CONFIG *alt_yv12 = NULL;
const int alt_offset = 16 - (current_frame->frame_number % 16);
if (alt_offset < 16) {
const struct lookahead_entry *const alt_buf =
av1_lookahead_peek(cpi->lookahead, alt_offset, cpi->compressor_stage);
if (alt_buf != NULL) {
alt_yv12 = &alt_buf->img;
}
}
YV12_BUFFER_CONFIG *const new_yv12 = &cm->cur_frame->buf;
double intra_factor;
double brightness_factor;
const int qindex = find_fp_qindex(seq_params->bit_depth);
const int mb_scale = mi_size_wide[BLOCK_16X16];
int *raw_motion_err_list;
int raw_motion_err_counts = 0;
CHECK_MEM_ERROR(
cm, raw_motion_err_list,
aom_calloc(cm->mb_rows * cm->mb_cols, sizeof(*raw_motion_err_list)));
// First pass code requires valid last and new frame buffers.
assert(new_yv12 != NULL);
assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
av1_setup_frame_size(cpi);
aom_clear_system_state();
xd->mi = cm->mi_grid_base;
xd->mi[0] = cm->mi;
x->e_mbd.mi[0]->sb_type = BLOCK_16X16;
intra_factor = 0.0;
brightness_factor = 0.0;
neutral_count = 0.0;
// Do not use periodic key frames.
cpi->rc.frames_to_key = INT_MAX;
av1_set_quantizer(cm, qindex);
av1_setup_block_planes(&x->e_mbd, seq_params->subsampling_x,
seq_params->subsampling_y, num_planes);
av1_setup_src_planes(x, cpi->source, 0, 0, num_planes,
x->e_mbd.mi[0]->sb_type);
av1_setup_dst_planes(xd->plane, seq_params->sb_size, new_yv12, 0, 0, 0,
num_planes);
if (!frame_is_intra_only(cm)) {
av1_setup_pre_planes(xd, 0, lst_yv12, 0, 0, NULL, num_planes);
}
xd->mi = cm->mi_grid_base;
xd->mi[0] = cm->mi;
// Don't store luma on the fist pass since chroma is not computed
xd->cfl.store_y = 0;
av1_frame_init_quantizer(cpi);
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
av1_init_mv_probs(cm);
av1_initialize_rd_consts(cpi);
// Tiling is ignored in the first pass.
av1_tile_init(&tile, cm, 0, 0);
src_y_stride = cpi->source->y_stride;
recon_y_stride = new_yv12->y_stride;
recon_uv_stride = new_yv12->uv_stride;
uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
MV best_ref_mv = kZeroMv;
// Reset above block coeffs.
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
src_yoffset = (mb_row * src_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
int alt_yv12_yoffset =
(alt_yv12 != NULL) ? mb_row * alt_yv12->y_stride * 16 : -1;
// Set up limit values for motion vectors to prevent them extending
// outside the UMV borders.
x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
x->mv_limits.row_max =
((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
int this_intra_error;
const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
double log_intra;
int level_sample;
aom_clear_system_state();
const int grid_idx =
get_mi_grid_idx(cm, mb_row * mb_scale, mb_col * mb_scale);
const int mi_idx =
get_alloc_mi_idx(cm, mb_row * mb_scale, mb_col * mb_scale);
xd->mi = cm->mi_grid_base + grid_idx;
xd->mi[0] = cm->mi + mi_idx;
xd->tx_type_map = cm->tx_type_map + grid_idx;
xd->tx_type_map_stride = cm->mi_stride;
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
xd->mi[0]->sb_type = bsize;
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize],
mb_col * mb_scale, mi_size_wide[bsize], cm->mi_rows,
cm->mi_cols);
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes);
// Do intra 16x16 prediction.
xd->mi[0]->segment_id = 0;
xd->lossless[xd->mi[0]->segment_id] = (qindex == 0);
xd->mi[0]->mode = DC_PRED;
xd->mi[0]->tx_size =
use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
av1_encode_intra_block_plane(cpi, x, bsize, 0, 0);
this_intra_error = aom_get_mb_ss(x->plane[0].src_diff);
if (this_intra_error < UL_INTRA_THRESH) {
++intra_skip_count;
} else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
image_data_start_row = mb_row;
}
if (seq_params->use_highbitdepth) {
switch (seq_params->bit_depth) {
case AOM_BITS_8: break;
case AOM_BITS_10: this_intra_error >>= 4; break;
case AOM_BITS_12: this_intra_error >>= 8; break;
default:
assert(0 &&
"seq_params->bit_depth should be AOM_BITS_8, "
"AOM_BITS_10 or AOM_BITS_12");
return;
}
}
aom_clear_system_state();
log_intra = log(this_intra_error + 1.0);
if (log_intra < 10.0)
intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
else
intra_factor += 1.0;
if (seq_params->use_highbitdepth)
level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
else
level_sample = x->plane[0].src.buf[0];
if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
else
brightness_factor += 1.0;
// Intrapenalty below deals with situations where the intra and inter
// error scores are very low (e.g. a plain black frame).
// We do not have special cases in first pass for 0,0 and nearest etc so
// all inter modes carry an overhead cost estimate for the mv.
// When the error score is very low this causes us to pick all or lots of
// INTRA modes and throw lots of key frames.
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
this_intra_error += intrapenalty;
// Accumulate the intra error.
intra_error += (int64_t)this_intra_error;
const int hbd = is_cur_buf_hbd(xd);
const int stride = x->plane[0].src.stride;
uint8_t *buf = x->plane[0].src.buf;
for (int r8 = 0; r8 < 2; ++r8) {
for (int c8 = 0; c8 < 2; ++c8) {
frame_avg_wavelet_energy += av1_haar_ac_sad_8x8_uint8_input(
buf + c8 * 8 + r8 * 8 * stride, stride, hbd);
}
}
// Set up limit values for motion vectors to prevent them extending
// outside the UMV borders.
x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
x->mv_limits.col_max =
((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
if (!frame_is_intra_only(cm)) { // Do a motion search
int tmp_err, motion_error, raw_motion_error;
// Assume 0,0 motion with no mv overhead.
FULLPEL_MV mv = kZeroFullMv, tmp_mv = kZeroFullMv;
struct buf_2d unscaled_last_source_buf_2d;
xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
} else {
motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
}
#else
motion_error =
get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
#endif
// Compute the motion error of the 0,0 motion using the last source
// frame as the reference. Skip the further motion search on
// reconstructed frame if this error is small.
unscaled_last_source_buf_2d.buf =
cpi->unscaled_last_source->y_buffer + src_yoffset;
unscaled_last_source_buf_2d.stride =
cpi->unscaled_last_source->y_stride;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
raw_motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
} else {
raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&unscaled_last_source_buf_2d);
}
#else
raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&unscaled_last_source_buf_2d);
#endif
// TODO(pengchong): Replace the hard-coded threshold
if (raw_motion_error > 25) {
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search.
first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
// If the current best reference mv is not centered on 0,0 then do a
// 0,0 based search as well.
if (!is_zero_mv(&best_ref_mv)) {
tmp_err = INT_MAX;
first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err);
if (tmp_err < motion_error) {
motion_error = tmp_err;
mv = tmp_mv;
}
}
// Motion search in 2nd reference frame.
int gf_motion_error;
if ((current_frame->frame_number > 1) && gld_yv12 != NULL) {
// Assume 0,0 motion with no mv overhead.
xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
gf_motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
} else {
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
}
#else
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
#endif
first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv,
&gf_motion_error);
if (gf_motion_error < motion_error &&
gf_motion_error < this_intra_error)
++second_ref_count;
// Reset to last frame as reference buffer.
xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset;
xd->plane[1].pre[0].buf = lst_yv12->u_buffer + recon_uvoffset;
xd->plane[2].pre[0].buf = lst_yv12->v_buffer + recon_uvoffset;
// In accumulating a score for the 2nd reference frame take the
// best of the motion predicted score and the intra coded error
// (just as will be done for) accumulation of "coded_error" for
// the last frame.
if (gf_motion_error < this_intra_error)
sr_coded_error += gf_motion_error;
else
sr_coded_error += this_intra_error;
} else {
gf_motion_error = motion_error;
sr_coded_error += motion_error;
}
// Motion search in 3rd reference frame.
if (alt_yv12 != NULL) {
xd->plane[0].pre[0].buf = alt_yv12->y_buffer + alt_yv12_yoffset;
xd->plane[0].pre[0].stride = alt_yv12->y_stride;
int alt_motion_error;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
alt_motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
} else {
alt_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
}
#else
alt_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
#endif
first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv,
&alt_motion_error);
if (alt_motion_error < motion_error &&
alt_motion_error < gf_motion_error &&
alt_motion_error < this_intra_error)
++third_ref_count;
// Reset to last frame as reference buffer.
xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset;
xd->plane[0].pre[0].stride = lst_yv12->y_stride;
// In accumulating a score for the 3rd reference frame take the
// best of the motion predicted score and the intra coded error
// (just as will be done for) accumulation of "coded_error" for
// the last frame.
tr_coded_error += AOMMIN(alt_motion_error, this_intra_error);
} else {
tr_coded_error += motion_error;
}
} else {
sr_coded_error += motion_error;
tr_coded_error += motion_error;
}
// Start by assuming that intra mode is best.
best_ref_mv.row = 0;
best_ref_mv.col = 0;
if (motion_error <= this_intra_error) {
aom_clear_system_state();
// Keep a count of cases where the inter and intra were very close
// and very low. This helps with scene cut detection for example in
// cropped clips with black bars at the sides or top and bottom.
if (((this_intra_error - intrapenalty) * 9 <= motion_error * 10) &&
(this_intra_error < (2 * intrapenalty))) {
neutral_count += 1.0;
// Also track cases where the intra is not much worse than the inter
// and use this in limiting the GF/arf group length.
} else if ((this_intra_error > NCOUNT_INTRA_THRESH) &&
(this_intra_error <
(NCOUNT_INTRA_FACTOR * motion_error))) {
neutral_count += (double)motion_error /
DOUBLE_DIVIDE_CHECK((double)this_intra_error);
}
MV best_mv = get_mv_from_fullmv(&mv);
this_intra_error = motion_error;
xd->mi[0]->mode = NEWMV;
xd->mi[0]->mv[0].as_mv = best_mv;
xd->mi[0]->tx_size = TX_4X4;
xd->mi[0]->ref_frame[0] = LAST_FRAME;
xd->mi[0]->ref_frame[1] = NONE_FRAME;
av1_enc_build_inter_predictor(cm, xd, mb_row * mb_scale,
mb_col * mb_scale, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
av1_encode_sby_pass1(cm, x, bsize);
sum_mvr += best_mv.row;
sum_mvr_abs += abs(best_mv.row);
sum_mvc += best_mv.col;
sum_mvc_abs += abs(best_mv.col);
sum_mvrs += best_mv.row * best_mv.row;
sum_mvcs += best_mv.col * best_mv.col;
++intercount;
best_ref_mv = best_mv;
if (!is_zero_mv(&best_mv)) {
++mvcount;
// Non-zero vector, was it different from the last non zero vector?
if (!is_equal_mv(&best_mv, &lastmv)) ++new_mv_count;
lastmv = best_mv;
// Does the row vector point inwards or outwards?
if (mb_row < cm->mb_rows / 2) {
if (mv.row > 0)
--sum_in_vectors;
else if (mv.row < 0)
++sum_in_vectors;
} else if (mb_row > cm->mb_rows / 2) {
if (mv.row > 0)
++sum_in_vectors;
else if (mv.row < 0)
--sum_in_vectors;
}
// Does the col vector point inwards or outwards?
if (mb_col < cm->mb_cols / 2) {
if (mv.col > 0)
--sum_in_vectors;
else if (mv.col < 0)
++sum_in_vectors;
} else if (mb_col > cm->mb_cols / 2) {
if (mv.col > 0)
++sum_in_vectors;
else if (mv.col < 0)
--sum_in_vectors;
}
}
}
raw_motion_err_list[raw_motion_err_counts++] = raw_motion_error;
} else {
sr_coded_error += (int64_t)this_intra_error;
tr_coded_error += (int64_t)this_intra_error;
}
coded_error += (int64_t)this_intra_error;
// Adjust to the next column of MBs.
x->plane[0].src.buf += 16;
x->plane[1].src.buf += uv_mb_height;
x->plane[2].src.buf += uv_mb_height;
recon_yoffset += 16;
src_yoffset += 16;
recon_uvoffset += uv_mb_height;
alt_yv12_yoffset += 16;
}
// Adjust to the next row of MBs.
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
x->plane[1].src.buf +=
uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
x->plane[2].src.buf +=
uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
aom_clear_system_state();
}
const double raw_err_stdev =
raw_motion_error_stdev(raw_motion_err_list, raw_motion_err_counts);
aom_free(raw_motion_err_list);
// Clamp the image start to rows/2. This number of rows is discarded top
// and bottom as dead data so rows / 2 means the frame is blank.
if ((image_data_start_row > cm->mb_rows / 2) ||
(image_data_start_row == INVALID_ROW)) {
image_data_start_row = cm->mb_rows / 2;
}
// Exclude any image dead zone
if (image_data_start_row > 0) {
intra_skip_count =
AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
}
FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
{
FIRSTPASS_STATS fps;
// The minimum error here insures some bit allocation to frames even
// in static regions. The allocation per MB declines for larger formats
// where the typical "real" energy per MB also falls.
// Initial estimate here uses sqrt(mbs) to define the min_err, where the
// number of mbs is proportional to the image area.
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
? cpi->initial_mbs
: cpi->common.MBs;
const double min_err = 200 * sqrt(num_mbs);
intra_factor = intra_factor / (double)num_mbs;
brightness_factor = brightness_factor / (double)num_mbs;
fps.weight = intra_factor * brightness_factor;
fps.frame = current_frame->frame_number;
fps.coded_error = (double)(coded_error >> 8) + min_err;
fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
fps.tr_coded_error = (double)(tr_coded_error >> 8) + min_err;
fps.intra_error = (double)(intra_error >> 8) + min_err;
fps.frame_avg_wavelet_energy = (double)frame_avg_wavelet_energy;
fps.count = 1.0;
fps.pcnt_inter = (double)intercount / num_mbs;
fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
fps.pcnt_third_ref = (double)third_ref_count / num_mbs;
fps.pcnt_neutral = (double)neutral_count / num_mbs;
fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
fps.inactive_zone_rows = (double)image_data_start_row;
fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix
fps.raw_error_stdev = raw_err_stdev;
if (mvcount > 0) {
fps.MVr = (double)sum_mvr / mvcount;
fps.mvr_abs = (double)sum_mvr_abs / mvcount;
fps.MVc = (double)sum_mvc / mvcount;
fps.mvc_abs = (double)sum_mvc_abs / mvcount;
fps.MVrv =
((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
fps.MVcv =
((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
fps.new_mv_count = new_mv_count;
fps.pcnt_motion = (double)mvcount / num_mbs;
} else {
fps.MVr = 0.0;
fps.mvr_abs = 0.0;
fps.MVc = 0.0;
fps.mvc_abs = 0.0;
fps.MVrv = 0.0;
fps.MVcv = 0.0;
fps.mv_in_out_count = 0.0;
fps.new_mv_count = 0.0;
fps.pcnt_motion = 0.0;
}
// TODO(paulwilkins): Handle the case when duration is set to 0, or
// something less than the full time between subsequent values of
// cpi->source_time_stamp.
fps.duration = (double)ts_duration;
// We will store the stats inside the persistent twopass struct (and NOT the
// local variable 'fps'), and then cpi->output_pkt_list will point to it.
*this_frame_stats = fps;
output_stats(this_frame_stats, cpi->output_pkt_list);
if (twopass->total_stats != NULL)
accumulate_stats(twopass->total_stats, &fps);
/*In the case of two pass, first pass uses it as a circular buffer,
* when LAP is enabled it is used as a linear buffer*/
twopass->stats_buf_ctx->stats_in_end++;
if ((cpi->oxcf.pass == 1) && (twopass->stats_buf_ctx->stats_in_end >=
twopass->stats_buf_ctx->stats_in_buf_end)) {
twopass->stats_buf_ctx->stats_in_end =
twopass->stats_buf_ctx->stats_in_start;
}
}
// Copy the previous Last Frame back into gf buffer if the prediction is good
// enough... but also don't allow it to lag too far.
if ((twopass->sr_update_lag > 3) ||
((current_frame->frame_number > 0) &&
(this_frame_stats->pcnt_inter > 0.20) &&
((this_frame_stats->intra_error /
DOUBLE_DIVIDE_CHECK(this_frame_stats->coded_error)) > 2.0))) {
if (gld_yv12 != NULL) {
assign_frame_buffer_p(
&cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
}
twopass->sr_update_lag = 1;
} else {
++twopass->sr_update_lag;
}
aom_extend_frame_borders(new_yv12, num_planes);
// The frame we just compressed now becomes the last frame.
assign_frame_buffer_p(
&cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)], cm->cur_frame);
// Special case for the first frame. Copy into the GF buffer as a second
// reference.
if (current_frame->frame_number == 0 &&
get_ref_frame_map_idx(cm, GOLDEN_FRAME) != INVALID_IDX) {
assign_frame_buffer_p(
&cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
}
// Use this to see what the first pass reconstruction looks like.
if (0) {
char filename[512];
FILE *recon_file;
snprintf(filename, sizeof(filename), "enc%04d.yuv",
(int)current_frame->frame_number);
if (current_frame->frame_number == 0)
recon_file = fopen(filename, "wb");
else
recon_file = fopen(filename, "ab");
(void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
fclose(recon_file);
}
++current_frame->frame_number;
}