| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/common_data.h" |
| |
| #include "config/av1_rtcd.h" |
| |
| void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) { |
| assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); |
| assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); |
| |
| memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3)); |
| memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3)); |
| cfl->subsampling_x = seq_params->subsampling_x; |
| cfl->subsampling_y = seq_params->subsampling_y; |
| cfl->are_parameters_computed = 0; |
| cfl->store_y = 0; |
| // The DC_PRED cache is disabled by default and is only enabled in |
| // cfl_rd_pick_alpha |
| clear_cfl_dc_pred_cache_flags(cfl); |
| } |
| |
| void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input, |
| CFL_PRED_TYPE pred_plane, int width) { |
| assert(pred_plane < CFL_PRED_PLANES); |
| assert(width <= CFL_BUF_LINE); |
| |
| if (is_cur_buf_hbd(xd)) { |
| uint16_t *const input_16 = CONVERT_TO_SHORTPTR(input); |
| memcpy(xd->cfl.dc_pred_cache[pred_plane], input_16, width << 1); |
| return; |
| } |
| |
| memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width); |
| } |
| |
| static void cfl_load_dc_pred_lbd(const int16_t *dc_pred_cache, uint8_t *dst, |
| int dst_stride, int width, int height) { |
| for (int j = 0; j < height; j++) { |
| memcpy(dst, dc_pred_cache, width); |
| dst += dst_stride; |
| } |
| } |
| |
| static void cfl_load_dc_pred_hbd(const int16_t *dc_pred_cache, uint16_t *dst, |
| int dst_stride, int width, int height) { |
| const size_t num_bytes = width << 1; |
| for (int j = 0; j < height; j++) { |
| memcpy(dst, dc_pred_cache, num_bytes); |
| dst += dst_stride; |
| } |
| } |
| void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, |
| TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) { |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| assert(pred_plane < CFL_PRED_PLANES); |
| assert(width <= CFL_BUF_LINE); |
| assert(height <= CFL_BUF_LINE); |
| if (is_cur_buf_hbd(xd)) { |
| uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); |
| cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst_16, dst_stride, |
| width, height); |
| return; |
| } |
| cfl_load_dc_pred_lbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride, |
| width, height); |
| } |
| |
| // Due to frame boundary issues, it is possible that the total area covered by |
| // chroma exceeds that of luma. When this happens, we fill the missing pixels by |
| // repeating the last columns and/or rows. |
| static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) { |
| const int diff_width = width - cfl->buf_width; |
| const int diff_height = height - cfl->buf_height; |
| |
| if (diff_width > 0) { |
| const int min_height = height - diff_height; |
| uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width); |
| for (int j = 0; j < min_height; j++) { |
| const uint16_t last_pixel = recon_buf_q3[-1]; |
| assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); |
| for (int i = 0; i < diff_width; i++) { |
| recon_buf_q3[i] = last_pixel; |
| } |
| recon_buf_q3 += CFL_BUF_LINE; |
| } |
| cfl->buf_width = width; |
| } |
| if (diff_height > 0) { |
| uint16_t *recon_buf_q3 = |
| cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE); |
| for (int j = 0; j < diff_height; j++) { |
| const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE; |
| assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); |
| for (int i = 0; i < width; i++) { |
| recon_buf_q3[i] = last_row_q3[i]; |
| } |
| recon_buf_q3 += CFL_BUF_LINE; |
| } |
| cfl->buf_height = height; |
| } |
| } |
| |
| static void subtract_average_c(const uint16_t *src, int16_t *dst, int width, |
| int height, int round_offset, int num_pel_log2) { |
| int sum = round_offset; |
| const uint16_t *recon = src; |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| sum += recon[i]; |
| } |
| recon += CFL_BUF_LINE; |
| } |
| const int avg = sum >> num_pel_log2; |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| dst[i] = src[i] - avg; |
| } |
| src += CFL_BUF_LINE; |
| dst += CFL_BUF_LINE; |
| } |
| } |
| |
| CFL_SUB_AVG_FN(c) |
| |
| static INLINE int cfl_idx_to_alpha(uint8_t alpha_idx, int8_t joint_sign, |
| CFL_PRED_TYPE pred_type) { |
| const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign) |
| : CFL_SIGN_V(joint_sign); |
| if (alpha_sign == CFL_SIGN_ZERO) return 0; |
| const int abs_alpha_q3 = |
| (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx); |
| return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1; |
| } |
| |
| static INLINE void cfl_predict_lbd_c(const int16_t *ac_buf_q3, uint8_t *dst, |
| int dst_stride, int alpha_q3, int width, |
| int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i]); |
| } |
| dst += dst_stride; |
| ac_buf_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| CFL_PREDICT_FN(c, lbd) |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride, |
| int alpha_q3, int bit_depth, int width, int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| dst[i] = clip_pixel_highbd( |
| get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth); |
| } |
| dst += dst_stride; |
| ac_buf_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| CFL_PREDICT_FN(c, hbd) |
| #endif |
| |
| static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { |
| CFL_CTX *const cfl = &xd->cfl; |
| // Do not call cfl_compute_parameters multiple time on the same values. |
| assert(cfl->are_parameters_computed == 0); |
| |
| cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]); |
| cfl_get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3); |
| cfl->are_parameters_computed = 1; |
| } |
| |
| void av1_cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, |
| TX_SIZE tx_size, int plane) { |
| CFL_CTX *const cfl = &xd->cfl; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(is_cfl_allowed(xd)); |
| |
| if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size); |
| |
| const int alpha_q3 = |
| cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); |
| assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <= |
| CFL_BUF_SQUARE); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (is_cur_buf_hbd(xd)) { |
| uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); |
| cfl_get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst_16, dst_stride, |
| alpha_q3, xd->bd); |
| return; |
| } |
| #endif |
| cfl_get_predict_lbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3); |
| } |
| |
| static void cfl_luma_subsampling_420_lbd_c(const uint8_t *input, |
| int input_stride, |
| uint16_t *output_q3, int width, |
| int height) { |
| for (int j = 0; j < height; j += 2) { |
| for (int i = 0; i < width; i += 2) { |
| const int bot = i + input_stride; |
| output_q3[i >> 1] = |
| (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; |
| } |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_422_lbd_c(const uint8_t *input, |
| int input_stride, |
| uint16_t *output_q3, int width, |
| int height) { |
| assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i += 2) { |
| output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; |
| } |
| input += input_stride; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_444_lbd_c(const uint8_t *input, |
| int input_stride, |
| uint16_t *output_q3, int width, |
| int height) { |
| assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| output_q3[i] = input[i] << 3; |
| } |
| input += input_stride; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, int width, |
| int height) { |
| for (int j = 0; j < height; j += 2) { |
| for (int i = 0; i < width; i += 2) { |
| const int bot = i + input_stride; |
| output_q3[i >> 1] = |
| (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; |
| } |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, int width, |
| int height) { |
| assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i += 2) { |
| output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; |
| } |
| input += input_stride; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, int width, |
| int height) { |
| assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| output_q3[i] = input[i] << 3; |
| } |
| input += input_stride; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| #endif |
| |
| CFL_GET_SUBSAMPLE_FUNCTION(c) |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size, |
| int sub_x, int sub_y) { |
| if (sub_x == 1) { |
| if (sub_y == 1) { |
| return cfl_get_luma_subsampling_420_hbd(tx_size); |
| } |
| return cfl_get_luma_subsampling_422_hbd(tx_size); |
| } |
| return cfl_get_luma_subsampling_444_hbd(tx_size); |
| } |
| #endif |
| |
| static INLINE cfl_subsample_lbd_fn cfl_subsampling_lbd(TX_SIZE tx_size, |
| int sub_x, int sub_y) { |
| if (sub_x == 1) { |
| if (sub_y == 1) { |
| return cfl_get_luma_subsampling_420_lbd(tx_size); |
| } |
| return cfl_get_luma_subsampling_422_lbd(tx_size); |
| } |
| return cfl_get_luma_subsampling_444_lbd(tx_size); |
| } |
| |
| static void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, |
| int row, int col, TX_SIZE tx_size, int use_hbd) { |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const int tx_off_log2 = MI_SIZE_LOG2; |
| const int sub_x = cfl->subsampling_x; |
| const int sub_y = cfl->subsampling_y; |
| const int store_row = row << (tx_off_log2 - sub_y); |
| const int store_col = col << (tx_off_log2 - sub_x); |
| const int store_height = height >> sub_y; |
| const int store_width = width >> sub_x; |
| |
| // Invalidate current parameters |
| cfl->are_parameters_computed = 0; |
| |
| // Store the surface of the pixel buffer that was written to, this way we |
| // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the |
| // frame boundary) |
| if (col == 0 && row == 0) { |
| cfl->buf_width = store_width; |
| cfl->buf_height = store_height; |
| } else { |
| cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width); |
| cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height); |
| } |
| |
| // Check that we will remain inside the pixel buffer. |
| assert(store_row + store_height <= CFL_BUF_LINE); |
| assert(store_col + store_width <= CFL_BUF_LINE); |
| |
| // Store the input into the CfL pixel buffer |
| uint16_t *recon_buf_q3 = |
| cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_hbd) { |
| cfl_subsampling_hbd(tx_size, sub_x, sub_y)(CONVERT_TO_SHORTPTR(input), |
| input_stride, recon_buf_q3); |
| } else { |
| cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride, |
| recon_buf_q3); |
| } |
| #else |
| (void)use_hbd; |
| cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride, recon_buf_q3); |
| #endif |
| } |
| |
| // Adjust the row and column of blocks smaller than 8X8, as chroma-referenced |
| // and non-chroma-referenced blocks are stored together in the CfL buffer. |
| static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int mi_row, |
| int mi_col, int *row_out, |
| int *col_out) { |
| // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s. |
| if ((mi_row & 0x01) && cfl->subsampling_y) { |
| assert(*row_out == 0); |
| (*row_out)++; |
| } |
| |
| // Increment col index for right: 4x8, 4x16 or both right 4x4s. |
| if ((mi_col & 0x01) && cfl->subsampling_x) { |
| assert(*col_out == 0); |
| (*col_out)++; |
| } |
| } |
| |
| void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size, |
| BLOCK_SIZE bsize) { |
| CFL_CTX *const cfl = &xd->cfl; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; |
| |
| if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { |
| // Only dimensions of size 4 can have an odd offset. |
| assert(!((col & 1) && tx_size_wide[tx_size] != 4)); |
| assert(!((row & 1) && tx_size_high[tx_size] != 4)); |
| sub8x8_adjust_offset(cfl, xd->mi_row, xd->mi_col, &row, &col); |
| } |
| cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size, is_cur_buf_hbd(xd)); |
| } |
| |
| static INLINE int max_intra_block_width(const MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize, int plane, |
| TX_SIZE tx_size) { |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) |
| << MI_SIZE_LOG2; |
| return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); |
| } |
| |
| static INLINE int max_intra_block_height(const MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize, int plane, |
| TX_SIZE tx_size) { |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane) |
| << MI_SIZE_LOG2; |
| return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); |
| } |
| |
| void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| CFL_CTX *const cfl = &xd->cfl; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| int row = 0; |
| int col = 0; |
| |
| if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { |
| sub8x8_adjust_offset(cfl, xd->mi_row, xd->mi_col, &row, &col); |
| } |
| const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size); |
| const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size); |
| tx_size = get_tx_size(width, height); |
| cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, tx_size, |
| is_cur_buf_hbd(xd)); |
| } |