blob: 4381af6a8b20faccb265ef0b8f77a911ba87fdf8 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "av1/encoder/tune_butteraugli.h"
#include "aom_dsp/butteraugli.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/var_based_part.h"
static const int resize_factor = 2;
static void set_mb_butteraugli_rdmult_scaling(AV1_COMP *cpi,
const YV12_BUFFER_CONFIG *source,
const YV12_BUFFER_CONFIG *recon,
const double K) {
AV1_COMMON *const cm = &cpi->common;
SequenceHeader *const seq_params = cm->seq_params;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const aom_color_range_t color_range =
seq_params->color_range != 0 ? AOM_CR_FULL_RANGE : AOM_CR_STUDIO_RANGE;
const int bit_depth = cpi->td.mb.e_mbd.bd;
const int width = source->y_crop_width;
const int height = source->y_crop_height;
const int ss_x = source->subsampling_x;
const int ss_y = source->subsampling_y;
float *diffmap;
CHECK_MEM_ERROR(cm, diffmap, aom_malloc(width * height * sizeof(*diffmap)));
if (!aom_calc_butteraugli(source, recon, bit_depth,
seq_params->matrix_coefficients, color_range,
diffmap)) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"Failed to calculate Butteraugli distances.");
}
const int num_mi_w = mi_size_wide[butteraugli_rdo_bsize] / resize_factor;
const int num_mi_h = mi_size_high[butteraugli_rdo_bsize] / resize_factor;
const int num_cols =
(mi_params->mi_cols / resize_factor + num_mi_w - 1) / num_mi_w;
const int num_rows =
(mi_params->mi_rows / resize_factor + num_mi_h - 1) / num_mi_h;
const int block_w = num_mi_w << 2;
const int block_h = num_mi_h << 2;
double log_sum = 0.0;
double blk_count = 0.0;
// Loop through each block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
const int y_start = row * block_h;
const int x_start = col * block_w;
float dbutteraugli = 0.0f;
float dmse = 0.0f;
float px_count = 0.0f;
// Loop through each pixel.
for (int y = y_start; y < y_start + block_h && y < height; y++) {
for (int x = x_start; x < x_start + block_w && x < width; x++) {
dbutteraugli += powf(diffmap[y * width + x], 12.0f);
float px_diff = source->y_buffer[y * source->y_stride + x] -
recon->y_buffer[y * recon->y_stride + x];
dmse += px_diff * px_diff;
px_count += 1.0f;
}
}
const int y_end = AOMMIN((y_start >> ss_y) + (block_h >> ss_y),
(height + ss_y) >> ss_y);
for (int y = y_start >> ss_y; y < y_end; y++) {
const int x_end = AOMMIN((x_start >> ss_x) + (block_w >> ss_x),
(width + ss_x) >> ss_x);
for (int x = x_start >> ss_x; x < x_end; x++) {
const int src_px_index = y * source->uv_stride + x;
const int recon_px_index = y * recon->uv_stride + x;
const float px_diff_u = (float)(source->u_buffer[src_px_index] -
recon->u_buffer[recon_px_index]);
const float px_diff_v = (float)(source->v_buffer[src_px_index] -
recon->v_buffer[recon_px_index]);
dmse += px_diff_u * px_diff_u + px_diff_v * px_diff_v;
px_count += 2.0f;
}
}
dbutteraugli = powf(dbutteraugli, 1.0f / 12.0f);
dmse = dmse / px_count;
const float eps = 0.01f;
double weight;
if (dbutteraugli < eps || dmse < eps) {
weight = -1.0;
} else {
blk_count += 1.0;
weight = dmse / dbutteraugli;
weight = AOMMIN(weight, 5.0);
weight += K;
log_sum += log(weight);
}
cpi->butteraugli_info.rdmult_scaling_factors[index] = weight;
}
}
// Geometric average of the weights.
log_sum = exp(log_sum / blk_count);
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
double *weight = &cpi->butteraugli_info.rdmult_scaling_factors[index];
if (*weight <= 0.0) {
*weight = 1.0;
} else {
*weight /= log_sum;
}
*weight = AOMMIN(*weight, 2.5);
*weight = AOMMAX(*weight, 0.4);
}
}
aom_free(diffmap);
}
void av1_set_butteraugli_rdmult(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int *rdmult) {
assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI);
if (!cpi->butteraugli_info.recon_set) {
return;
}
const AV1_COMMON *const cm = &cpi->common;
const int num_mi_w = mi_size_wide[butteraugli_rdo_bsize];
const int num_mi_h = mi_size_high[butteraugli_rdo_bsize];
const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
double num_of_mi = 0.0;
double geom_mean_of_scale = 0.0;
for (int row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (int col = mi_col / num_mi_h;
col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
geom_mean_of_scale +=
log(cpi->butteraugli_info.rdmult_scaling_factors[index]);
num_of_mi += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
*rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
*rdmult = AOMMAX(*rdmult, 0);
av1_set_error_per_bit(&x->errorperbit, *rdmult);
}
static void copy_plane(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h) {
for (int row = 0; row < h; row++) {
memcpy(dst, src, w);
src += src_stride;
dst += dst_stride;
}
}
static void copy_img(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst,
int width, int height) {
copy_plane(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, width,
height);
const int width_uv = (width + src->subsampling_x) >> src->subsampling_x;
const int height_uv = (height + src->subsampling_y) >> src->subsampling_y;
copy_plane(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride,
width_uv, height_uv);
copy_plane(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride,
width_uv, height_uv);
}
static void zero_plane(uint8_t *dst, int dst_stride, int h) {
for (int row = 0; row < h; row++) {
memset(dst, 0, dst_stride);
dst += dst_stride;
}
}
static void zero_img(YV12_BUFFER_CONFIG *dst) {
zero_plane(dst->y_buffer, dst->y_stride, dst->y_height);
zero_plane(dst->u_buffer, dst->uv_stride, dst->uv_height);
zero_plane(dst->v_buffer, dst->uv_stride, dst->uv_height);
}
void av1_setup_butteraugli_source(AV1_COMP *cpi) {
YV12_BUFFER_CONFIG *const dst = &cpi->butteraugli_info.source;
AV1_COMMON *const cm = &cpi->common;
const int width = cpi->source->y_crop_width;
const int height = cpi->source->y_crop_height;
const int bit_depth = cpi->td.mb.e_mbd.bd;
const int ss_x = cpi->source->subsampling_x;
const int ss_y = cpi->source->subsampling_y;
if (dst->buffer_alloc_sz == 0) {
aom_alloc_frame_buffer(
dst, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0);
}
av1_copy_and_extend_frame(cpi->source, dst);
YV12_BUFFER_CONFIG *const resized_dst = &cpi->butteraugli_info.resized_source;
if (resized_dst->buffer_alloc_sz == 0) {
aom_alloc_frame_buffer(
resized_dst, width / resize_factor, height / resize_factor, ss_x, ss_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
cm->features.byte_alignment, false, 0);
}
if (!av1_resize_and_extend_frame_nonnormative(
cpi->source, resized_dst, bit_depth, av1_num_planes(cm))) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Error allocating buffers during resize");
}
zero_img(cpi->source);
copy_img(resized_dst, cpi->source, width / resize_factor,
height / resize_factor);
}
void av1_setup_butteraugli_rdmult_and_restore_source(AV1_COMP *cpi, double K) {
av1_copy_and_extend_frame(&cpi->butteraugli_info.source, cpi->source);
AV1_COMMON *const cm = &cpi->common;
const int width = cpi->source->y_crop_width;
const int height = cpi->source->y_crop_height;
const int ss_x = cpi->source->subsampling_x;
const int ss_y = cpi->source->subsampling_y;
YV12_BUFFER_CONFIG resized_recon;
memset(&resized_recon, 0, sizeof(resized_recon));
aom_alloc_frame_buffer(
&resized_recon, width / resize_factor, height / resize_factor, ss_x, ss_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
cm->features.byte_alignment, false, 0);
copy_img(&cpi->common.cur_frame->buf, &resized_recon, width / resize_factor,
height / resize_factor);
set_mb_butteraugli_rdmult_scaling(cpi, &cpi->butteraugli_info.resized_source,
&resized_recon, K);
cpi->butteraugli_info.recon_set = true;
aom_free_frame_buffer(&resized_recon);
}
void av1_setup_butteraugli_rdmult(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const QuantizationCfg *const q_cfg = &oxcf->q_cfg;
const int q_index = 96;
// Setup necessary params for encoding, including frame source, etc.
if (cm->current_frame.frame_type == KEY_FRAME) copy_frame_prob_info(cpi);
av1_set_frame_size(cpi, cm->superres_upscaled_width,
cm->superres_upscaled_height);
cpi->source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter,
0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
if (cpi->unscaled_last_source != NULL) {
cpi->last_source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels,
cpi->alloc_pyramid);
}
av1_setup_butteraugli_source(cpi);
av1_setup_frame(cpi);
if (cm->seg.enabled) {
if (!cm->seg.update_data && cm->prev_frame) {
segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
cm->seg.enabled = cm->prev_frame->seg.enabled;
} else {
av1_calculate_segdata(&cm->seg);
}
} else {
memset(&cm->seg, 0, sizeof(cm->seg));
}
segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
cm->cur_frame->seg.enabled = cm->seg.enabled;
const PARTITION_SEARCH_TYPE partition_search_type =
cpi->sf.part_sf.partition_search_type;
const BLOCK_SIZE fixed_partition_size = cpi->sf.part_sf.fixed_partition_size;
// Enable a quicker pass by uncommenting the following lines:
// cpi->sf.part_sf.partition_search_type = FIXED_PARTITION;
// cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32;
av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q_index,
q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq);
av1_set_speed_features_qindex_dependent(cpi, oxcf->speed);
av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
cm->seq_params->bit_depth);
av1_set_variance_partition_thresholds(cpi, q_index, 0);
av1_encode_frame(cpi);
av1_setup_butteraugli_rdmult_and_restore_source(cpi, 0.3);
cpi->sf.part_sf.partition_search_type = partition_search_type;
cpi->sf.part_sf.fixed_partition_size = fixed_partition_size;
}