blob: f199b0f9b77b1507d81b4bba3db1139415faa3ad [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <smmintrin.h>
#include "config/av1_rtcd.h"
#include "aom/aom_integer.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/temporal_filter.h"
#include "av1/encoder/x86/temporal_filter_constants.h"
// Compute (a-b)**2 for 8 pixels with size 16-bit
static INLINE void highbd_store_dist_8(const uint16_t *a, const uint16_t *b,
uint32_t *dst) {
const __m128i zero = _mm_setzero_si128();
const __m128i a_reg = _mm_loadu_si128((const __m128i *)a);
const __m128i b_reg = _mm_loadu_si128((const __m128i *)b);
const __m128i a_first = _mm_cvtepu16_epi32(a_reg);
const __m128i a_second = _mm_unpackhi_epi16(a_reg, zero);
const __m128i b_first = _mm_cvtepu16_epi32(b_reg);
const __m128i b_second = _mm_unpackhi_epi16(b_reg, zero);
__m128i dist_first, dist_second;
dist_first = _mm_sub_epi32(a_first, b_first);
dist_second = _mm_sub_epi32(a_second, b_second);
dist_first = _mm_mullo_epi32(dist_first, dist_first);
dist_second = _mm_mullo_epi32(dist_second, dist_second);
_mm_storeu_si128((__m128i *)dst, dist_first);
_mm_storeu_si128((__m128i *)(dst + 4), dist_second);
}
// Sum up three neighboring distortions for the pixels
static INLINE void highbd_get_sum_4(const uint32_t *dist, __m128i *sum) {
__m128i dist_reg, dist_left, dist_right;
dist_reg = _mm_loadu_si128((const __m128i *)dist);
dist_left = _mm_loadu_si128((const __m128i *)(dist - 1));
dist_right = _mm_loadu_si128((const __m128i *)(dist + 1));
*sum = _mm_add_epi32(dist_reg, dist_left);
*sum = _mm_add_epi32(*sum, dist_right);
}
static INLINE void highbd_get_sum_8(const uint32_t *dist, __m128i *sum_first,
__m128i *sum_second) {
highbd_get_sum_4(dist, sum_first);
highbd_get_sum_4(dist + 4, sum_second);
}
// Average the value based on the number of values summed (9 for pixels away
// from the border, 4 for pixels in corners, and 6 for other edge values, plus
// however many values from y/uv plane are).
//
// Add in the rounding factor and shift, clamp to 16, invert and shift. Multiply
// by weight.
static INLINE void highbd_average_4(__m128i *output, const __m128i *sum,
const __m128i *mul_constants,
const int strength, const int rounding,
const int weight) {
// _mm_srl_epi16 uses the lower 64 bit value for the shift.
const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength);
const __m128i rounding_u32 = _mm_set1_epi32(rounding);
const __m128i weight_u32 = _mm_set1_epi32(weight);
const __m128i sixteen = _mm_set1_epi32(16);
const __m128i zero = _mm_setzero_si128();
// modifier * 3 / index;
const __m128i sum_lo = _mm_unpacklo_epi32(*sum, zero);
const __m128i sum_hi = _mm_unpackhi_epi32(*sum, zero);
const __m128i const_lo = _mm_unpacklo_epi32(*mul_constants, zero);
const __m128i const_hi = _mm_unpackhi_epi32(*mul_constants, zero);
const __m128i mul_lo = _mm_mul_epu32(sum_lo, const_lo);
const __m128i mul_lo_div = _mm_srli_epi64(mul_lo, 32);
const __m128i mul_hi = _mm_mul_epu32(sum_hi, const_hi);
const __m128i mul_hi_div = _mm_srli_epi64(mul_hi, 32);
// Now we have
// mul_lo: 00 a1 00 a0
// mul_hi: 00 a3 00 a2
// Unpack as 64 bit words to get even and odd elements
// unpack_lo: 00 a2 00 a0
// unpack_hi: 00 a3 00 a1
// Then we can shift and OR the results to get everything in 32-bits
const __m128i mul_even = _mm_unpacklo_epi64(mul_lo_div, mul_hi_div);
const __m128i mul_odd = _mm_unpackhi_epi64(mul_lo_div, mul_hi_div);
const __m128i mul_odd_shift = _mm_slli_si128(mul_odd, 4);
const __m128i mul = _mm_or_si128(mul_even, mul_odd_shift);
// Round
*output = _mm_add_epi32(mul, rounding_u32);
*output = _mm_srl_epi32(*output, strength_u128);
// Multiply with the weight
*output = _mm_min_epu32(*output, sixteen);
*output = _mm_sub_epi32(sixteen, *output);
*output = _mm_mullo_epi32(*output, weight_u32);
}
static INLINE void highbd_average_8(__m128i *output_0, __m128i *output_1,
const __m128i *sum_0_u32,
const __m128i *sum_1_u32,
const __m128i *mul_constants_0,
const __m128i *mul_constants_1,
const int strength, const int rounding,
const int weight) {
highbd_average_4(output_0, sum_0_u32, mul_constants_0, strength, rounding,
weight);
highbd_average_4(output_1, sum_1_u32, mul_constants_1, strength, rounding,
weight);
}
// Add 'sum_u32' to 'count'. Multiply by 'pred' and add to 'accumulator.'
static INLINE void highbd_accumulate_and_store_8(const __m128i sum_first_u32,
const __m128i sum_second_u32,
const uint16_t *pred,
uint16_t *count,
uint32_t *accumulator) {
// Cast down to 16-bit ints
const __m128i sum_u16 = _mm_packus_epi32(sum_first_u32, sum_second_u32);
const __m128i zero = _mm_setzero_si128();
__m128i pred_u16 = _mm_loadu_si128((const __m128i *)pred);
__m128i count_u16 = _mm_loadu_si128((const __m128i *)count);
__m128i pred_0_u32, pred_1_u32;
__m128i accum_0_u32, accum_1_u32;
count_u16 = _mm_adds_epu16(count_u16, sum_u16);
_mm_storeu_si128((__m128i *)count, count_u16);
pred_u16 = _mm_mullo_epi16(sum_u16, pred_u16);
pred_0_u32 = _mm_cvtepu16_epi32(pred_u16);
pred_1_u32 = _mm_unpackhi_epi16(pred_u16, zero);
accum_0_u32 = _mm_loadu_si128((const __m128i *)accumulator);
accum_1_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 4));
accum_0_u32 = _mm_add_epi32(pred_0_u32, accum_0_u32);
accum_1_u32 = _mm_add_epi32(pred_1_u32, accum_1_u32);
_mm_storeu_si128((__m128i *)accumulator, accum_0_u32);
_mm_storeu_si128((__m128i *)(accumulator + 4), accum_1_u32);
}
static INLINE void highbd_read_dist_4(const uint32_t *dist, __m128i *dist_reg) {
*dist_reg = _mm_loadu_si128((const __m128i *)dist);
}
static INLINE void highbd_read_dist_8(const uint32_t *dist, __m128i *reg_first,
__m128i *reg_second) {
highbd_read_dist_4(dist, reg_first);
highbd_read_dist_4(dist + 4, reg_second);
}
static INLINE void highbd_read_chroma_dist_row_8(
int ss_x, const uint32_t *u_dist, const uint32_t *v_dist, __m128i *u_first,
__m128i *u_second, __m128i *v_first, __m128i *v_second) {
if (!ss_x) {
// If there is no chroma subsampling in the horizontal direction, then we
// need to load 8 entries from chroma.
highbd_read_dist_8(u_dist, u_first, u_second);
highbd_read_dist_8(v_dist, v_first, v_second);
} else { // ss_x == 1
// Otherwise, we only need to load 8 entries
__m128i u_reg, v_reg;
highbd_read_dist_4(u_dist, &u_reg);
*u_first = _mm_unpacklo_epi32(u_reg, u_reg);
*u_second = _mm_unpackhi_epi32(u_reg, u_reg);
highbd_read_dist_4(v_dist, &v_reg);
*v_first = _mm_unpacklo_epi32(v_reg, v_reg);
*v_second = _mm_unpackhi_epi32(v_reg, v_reg);
}
}
static void av1_highbd_apply_temporal_filter_luma_8(
const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, int use_whole_blk, uint32_t *y_accum,
uint16_t *y_count, const uint32_t *y_dist, const uint32_t *u_dist,
const uint32_t *v_dist, const uint32_t *const *neighbors_first,
const uint32_t *const *neighbors_second, int top_weight,
int bottom_weight) {
const int rounding = (1 << strength) >> 1;
int weight = top_weight;
__m128i mul_first, mul_second;
__m128i sum_row_1_first, sum_row_1_second;
__m128i sum_row_2_first, sum_row_2_second;
__m128i sum_row_3_first, sum_row_3_second;
__m128i u_first, u_second;
__m128i v_first, v_second;
__m128i sum_row_first;
__m128i sum_row_second;
// Loop variables
unsigned int h;
assert(strength >= 4 && strength <= 14 &&
"invalid adjusted temporal filter strength");
assert(block_width == 8);
(void)block_width;
// First row
mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[0]);
mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[0]);
// Add luma values
highbd_get_sum_8(y_dist, &sum_row_2_first, &sum_row_2_second);
highbd_get_sum_8(y_dist + DIST_STRIDE, &sum_row_3_first, &sum_row_3_second);
// We don't need to saturate here because the maximum value is UINT12_MAX ** 2
// * 9 ~= 2**24 * 9 < 2 ** 28 < INT32_MAX
sum_row_first = _mm_add_epi32(sum_row_2_first, sum_row_3_first);
sum_row_second = _mm_add_epi32(sum_row_2_second, sum_row_3_second);
// Add chroma values
highbd_read_chroma_dist_row_8(ss_x, u_dist, v_dist, &u_first, &u_second,
&v_first, &v_second);
// Max value here is 2 ** 24 * (9 + 2), so no saturation is needed
sum_row_first = _mm_add_epi32(sum_row_first, u_first);
sum_row_second = _mm_add_epi32(sum_row_second, u_second);
sum_row_first = _mm_add_epi32(sum_row_first, v_first);
sum_row_second = _mm_add_epi32(sum_row_second, v_second);
// Get modifier and store result
highbd_average_8(&sum_row_first, &sum_row_second, &sum_row_first,
&sum_row_second, &mul_first, &mul_second, strength, rounding,
weight);
highbd_accumulate_and_store_8(sum_row_first, sum_row_second, y_pre, y_count,
y_accum);
y_src += y_src_stride;
y_pre += y_pre_stride;
y_count += y_pre_stride;
y_accum += y_pre_stride;
y_dist += DIST_STRIDE;
u_src += uv_src_stride;
u_pre += uv_pre_stride;
u_dist += DIST_STRIDE;
v_src += uv_src_stride;
v_pre += uv_pre_stride;
v_dist += DIST_STRIDE;
// Then all the rows except the last one
mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[1]);
mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[1]);
for (h = 1; h < block_height - 1; ++h) {
// Move the weight to bottom half
if (!use_whole_blk && h == block_height / 2) {
weight = bottom_weight;
}
// Shift the rows up
sum_row_1_first = sum_row_2_first;
sum_row_1_second = sum_row_2_second;
sum_row_2_first = sum_row_3_first;
sum_row_2_second = sum_row_3_second;
// Add luma values to the modifier
sum_row_first = _mm_add_epi32(sum_row_1_first, sum_row_2_first);
sum_row_second = _mm_add_epi32(sum_row_1_second, sum_row_2_second);
highbd_get_sum_8(y_dist + DIST_STRIDE, &sum_row_3_first, &sum_row_3_second);
sum_row_first = _mm_add_epi32(sum_row_first, sum_row_3_first);
sum_row_second = _mm_add_epi32(sum_row_second, sum_row_3_second);
// Add chroma values to the modifier
if (ss_y == 0 || h % 2 == 0) {
// Only calculate the new chroma distortion if we are at a pixel that
// corresponds to a new chroma row
highbd_read_chroma_dist_row_8(ss_x, u_dist, v_dist, &u_first, &u_second,
&v_first, &v_second);
u_src += uv_src_stride;
u_pre += uv_pre_stride;
u_dist += DIST_STRIDE;
v_src += uv_src_stride;
v_pre += uv_pre_stride;
v_dist += DIST_STRIDE;
}
sum_row_first = _mm_add_epi32(sum_row_first, u_first);
sum_row_second = _mm_add_epi32(sum_row_second, u_second);
sum_row_first = _mm_add_epi32(sum_row_first, v_first);
sum_row_second = _mm_add_epi32(sum_row_second, v_second);
// Get modifier and store result
highbd_average_8(&sum_row_first, &sum_row_second, &sum_row_first,
&sum_row_second, &mul_first, &mul_second, strength,
rounding, weight);
highbd_accumulate_and_store_8(sum_row_first, sum_row_second, y_pre, y_count,
y_accum);
y_src += y_src_stride;
y_pre += y_pre_stride;
y_count += y_pre_stride;
y_accum += y_pre_stride;
y_dist += DIST_STRIDE;
}
// The last row
mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[0]);
mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[0]);
// Shift the rows up
sum_row_1_first = sum_row_2_first;
sum_row_1_second = sum_row_2_second;
sum_row_2_first = sum_row_3_first;
sum_row_2_second = sum_row_3_second;
// Add luma values to the modifier
sum_row_first = _mm_add_epi32(sum_row_1_first, sum_row_2_first);
sum_row_second = _mm_add_epi32(sum_row_1_second, sum_row_2_second);
// Add chroma values to the modifier
if (ss_y == 0) {
// Only calculate the new chroma distortion if we are at a pixel that
// corresponds to a new chroma row
highbd_read_chroma_dist_row_8(ss_x, u_dist, v_dist, &u_first, &u_second,
&v_first, &v_second);
}
sum_row_first = _mm_add_epi32(sum_row_first, u_first);
sum_row_second = _mm_add_epi32(sum_row_second, u_second);
sum_row_first = _mm_add_epi32(sum_row_first, v_first);
sum_row_second = _mm_add_epi32(sum_row_second, v_second);
// Get modifier and store result
highbd_average_8(&sum_row_first, &sum_row_second, &sum_row_first,
&sum_row_second, &mul_first, &mul_second, strength, rounding,
weight);
highbd_accumulate_and_store_8(sum_row_first, sum_row_second, y_pre, y_count,
y_accum);
}
// Perform temporal filter for the luma component.
static void av1_highbd_apply_temporal_filter_luma(
const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
uint32_t *y_accum, uint16_t *y_count, const uint32_t *y_dist,
const uint32_t *u_dist, const uint32_t *v_dist) {
unsigned int blk_col = 0, uv_blk_col = 0;
const unsigned int blk_col_step = 8, uv_blk_col_step = 8 >> ss_x;
const unsigned int mid_width = block_width >> 1,
last_width = block_width - blk_col_step;
int top_weight = blk_fw[0],
bottom_weight = use_whole_blk ? blk_fw[0] : blk_fw[2];
const uint32_t *const *neighbors_first;
const uint32_t *const *neighbors_second;
// Left
neighbors_first = HIGHBD_LUMA_LEFT_COLUMN_NEIGHBORS;
neighbors_second = HIGHBD_LUMA_MIDDLE_COLUMN_NEIGHBORS;
av1_highbd_apply_temporal_filter_luma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
v_pre + uv_blk_col, uv_pre_stride, blk_col_step, block_height, ss_x, ss_y,
strength, use_whole_blk, y_accum + blk_col, y_count + blk_col,
y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
neighbors_first, neighbors_second, top_weight, bottom_weight);
blk_col += blk_col_step;
uv_blk_col += uv_blk_col_step;
// Middle First
neighbors_first = HIGHBD_LUMA_MIDDLE_COLUMN_NEIGHBORS;
for (; blk_col < mid_width;
blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
av1_highbd_apply_temporal_filter_luma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, blk_col_step,
block_height, ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
bottom_weight);
}
if (!use_whole_blk) {
top_weight = blk_fw[1];
bottom_weight = blk_fw[3];
}
// Middle Second
for (; blk_col < last_width;
blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
av1_highbd_apply_temporal_filter_luma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, blk_col_step,
block_height, ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
bottom_weight);
}
// Right
neighbors_second = HIGHBD_LUMA_RIGHT_COLUMN_NEIGHBORS;
av1_highbd_apply_temporal_filter_luma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
v_pre + uv_blk_col, uv_pre_stride, blk_col_step, block_height, ss_x, ss_y,
strength, use_whole_blk, y_accum + blk_col, y_count + blk_col,
y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
neighbors_first, neighbors_second, top_weight, bottom_weight);
}
// Add a row of luma distortion that corresponds to 8 chroma mods. If we are
// subsampling in x direction, then we have 16 lumas, else we have 8.
static INLINE void highbd_add_luma_dist_to_8_chroma_mod(
const uint32_t *y_dist, int ss_x, int ss_y, __m128i *u_mod_fst,
__m128i *u_mod_snd, __m128i *v_mod_fst, __m128i *v_mod_snd) {
__m128i y_reg_fst, y_reg_snd;
if (!ss_x) {
highbd_read_dist_8(y_dist, &y_reg_fst, &y_reg_snd);
if (ss_y == 1) {
__m128i y_tmp_fst, y_tmp_snd;
highbd_read_dist_8(y_dist + DIST_STRIDE, &y_tmp_fst, &y_tmp_snd);
y_reg_fst = _mm_add_epi32(y_reg_fst, y_tmp_fst);
y_reg_snd = _mm_add_epi32(y_reg_snd, y_tmp_snd);
}
} else {
// Temporary
__m128i y_fst, y_snd;
// First 8
highbd_read_dist_8(y_dist, &y_fst, &y_snd);
if (ss_y == 1) {
__m128i y_tmp_fst, y_tmp_snd;
highbd_read_dist_8(y_dist + DIST_STRIDE, &y_tmp_fst, &y_tmp_snd);
y_fst = _mm_add_epi32(y_fst, y_tmp_fst);
y_snd = _mm_add_epi32(y_snd, y_tmp_snd);
}
y_reg_fst = _mm_hadd_epi32(y_fst, y_snd);
// Second 8
highbd_read_dist_8(y_dist + 8, &y_fst, &y_snd);
if (ss_y == 1) {
__m128i y_tmp_fst, y_tmp_snd;
highbd_read_dist_8(y_dist + 8 + DIST_STRIDE, &y_tmp_fst, &y_tmp_snd);
y_fst = _mm_add_epi32(y_fst, y_tmp_fst);
y_snd = _mm_add_epi32(y_snd, y_tmp_snd);
}
y_reg_snd = _mm_hadd_epi32(y_fst, y_snd);
}
*u_mod_fst = _mm_add_epi32(*u_mod_fst, y_reg_fst);
*u_mod_snd = _mm_add_epi32(*u_mod_snd, y_reg_snd);
*v_mod_fst = _mm_add_epi32(*v_mod_fst, y_reg_fst);
*v_mod_snd = _mm_add_epi32(*v_mod_snd, y_reg_snd);
}
// Apply temporal filter to the chroma components. This performs temporal
// filtering on a chroma block of 8 X uv_height. If blk_fw is not NULL, use
// blk_fw as an array of size 4 for the weights for each of the 4 subblocks,
// else use top_weight for top half, and bottom weight for bottom half.
static void av1_highbd_apply_temporal_filter_chroma_8(
const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
int uv_pre_stride, unsigned int uv_block_width,
unsigned int uv_block_height, int ss_x, int ss_y, int strength,
uint32_t *u_accum, uint16_t *u_count, uint32_t *v_accum, uint16_t *v_count,
const uint32_t *y_dist, const uint32_t *u_dist, const uint32_t *v_dist,
const uint32_t *const *neighbors_fst, const uint32_t *const *neighbors_snd,
int top_weight, int bottom_weight, const int *blk_fw) {
const int rounding = (1 << strength) >> 1;
int weight = top_weight;
__m128i mul_fst, mul_snd;
__m128i u_sum_row_1_fst, u_sum_row_2_fst, u_sum_row_3_fst;
__m128i v_sum_row_1_fst, v_sum_row_2_fst, v_sum_row_3_fst;
__m128i u_sum_row_1_snd, u_sum_row_2_snd, u_sum_row_3_snd;
__m128i v_sum_row_1_snd, v_sum_row_2_snd, v_sum_row_3_snd;
__m128i u_sum_row_fst, v_sum_row_fst;
__m128i u_sum_row_snd, v_sum_row_snd;
// Loop variable
unsigned int h;
(void)uv_block_width;
// First row
mul_fst = _mm_loadu_si128((const __m128i *)neighbors_fst[0]);
mul_snd = _mm_loadu_si128((const __m128i *)neighbors_snd[0]);
// Add chroma values
highbd_get_sum_8(u_dist, &u_sum_row_2_fst, &u_sum_row_2_snd);
highbd_get_sum_8(u_dist + DIST_STRIDE, &u_sum_row_3_fst, &u_sum_row_3_snd);
u_sum_row_fst = _mm_add_epi32(u_sum_row_2_fst, u_sum_row_3_fst);
u_sum_row_snd = _mm_add_epi32(u_sum_row_2_snd, u_sum_row_3_snd);
highbd_get_sum_8(v_dist, &v_sum_row_2_fst, &v_sum_row_2_snd);
highbd_get_sum_8(v_dist + DIST_STRIDE, &v_sum_row_3_fst, &v_sum_row_3_snd);
v_sum_row_fst = _mm_add_epi32(v_sum_row_2_fst, v_sum_row_3_fst);
v_sum_row_snd = _mm_add_epi32(v_sum_row_2_snd, v_sum_row_3_snd);
// Add luma values
highbd_add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row_fst,
&u_sum_row_snd, &v_sum_row_fst,
&v_sum_row_snd);
// Get modifier and store result
if (blk_fw) {
highbd_average_4(&u_sum_row_fst, &u_sum_row_fst, &mul_fst, strength,
rounding, blk_fw[0]);
highbd_average_4(&u_sum_row_snd, &u_sum_row_snd, &mul_snd, strength,
rounding, blk_fw[1]);
highbd_average_4(&v_sum_row_fst, &v_sum_row_fst, &mul_fst, strength,
rounding, blk_fw[0]);
highbd_average_4(&v_sum_row_snd, &v_sum_row_snd, &mul_snd, strength,
rounding, blk_fw[1]);
} else {
highbd_average_8(&u_sum_row_fst, &u_sum_row_snd, &u_sum_row_fst,
&u_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
weight);
highbd_average_8(&v_sum_row_fst, &v_sum_row_snd, &v_sum_row_fst,
&v_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
weight);
}
highbd_accumulate_and_store_8(u_sum_row_fst, u_sum_row_snd, u_pre, u_count,
u_accum);
highbd_accumulate_and_store_8(v_sum_row_fst, v_sum_row_snd, v_pre, v_count,
v_accum);
u_src += uv_src_stride;
u_pre += uv_pre_stride;
u_dist += DIST_STRIDE;
v_src += uv_src_stride;
v_pre += uv_pre_stride;
v_dist += DIST_STRIDE;
u_count += uv_pre_stride;
u_accum += uv_pre_stride;
v_count += uv_pre_stride;
v_accum += uv_pre_stride;
y_src += y_src_stride * (1 + ss_y);
y_pre += y_pre_stride * (1 + ss_y);
y_dist += DIST_STRIDE * (1 + ss_y);
// Then all the rows except the last one
mul_fst = _mm_loadu_si128((const __m128i *)neighbors_fst[1]);
mul_snd = _mm_loadu_si128((const __m128i *)neighbors_snd[1]);
for (h = 1; h < uv_block_height - 1; ++h) {
// Move the weight pointer to the bottom half of the blocks
if (h == uv_block_height / 2) {
if (blk_fw) {
blk_fw += 2;
} else {
weight = bottom_weight;
}
}
// Shift the rows up
u_sum_row_1_fst = u_sum_row_2_fst;
u_sum_row_2_fst = u_sum_row_3_fst;
u_sum_row_1_snd = u_sum_row_2_snd;
u_sum_row_2_snd = u_sum_row_3_snd;
v_sum_row_1_fst = v_sum_row_2_fst;
v_sum_row_2_fst = v_sum_row_3_fst;
v_sum_row_1_snd = v_sum_row_2_snd;
v_sum_row_2_snd = v_sum_row_3_snd;
// Add chroma values
u_sum_row_fst = _mm_add_epi32(u_sum_row_1_fst, u_sum_row_2_fst);
u_sum_row_snd = _mm_add_epi32(u_sum_row_1_snd, u_sum_row_2_snd);
highbd_get_sum_8(u_dist + DIST_STRIDE, &u_sum_row_3_fst, &u_sum_row_3_snd);
u_sum_row_fst = _mm_add_epi32(u_sum_row_fst, u_sum_row_3_fst);
u_sum_row_snd = _mm_add_epi32(u_sum_row_snd, u_sum_row_3_snd);
v_sum_row_fst = _mm_add_epi32(v_sum_row_1_fst, v_sum_row_2_fst);
v_sum_row_snd = _mm_add_epi32(v_sum_row_1_snd, v_sum_row_2_snd);
highbd_get_sum_8(v_dist + DIST_STRIDE, &v_sum_row_3_fst, &v_sum_row_3_snd);
v_sum_row_fst = _mm_add_epi32(v_sum_row_fst, v_sum_row_3_fst);
v_sum_row_snd = _mm_add_epi32(v_sum_row_snd, v_sum_row_3_snd);
// Add luma values
highbd_add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row_fst,
&u_sum_row_snd, &v_sum_row_fst,
&v_sum_row_snd);
// Get modifier and store result
if (blk_fw) {
highbd_average_4(&u_sum_row_fst, &u_sum_row_fst, &mul_fst, strength,
rounding, blk_fw[0]);
highbd_average_4(&u_sum_row_snd, &u_sum_row_snd, &mul_snd, strength,
rounding, blk_fw[1]);
highbd_average_4(&v_sum_row_fst, &v_sum_row_fst, &mul_fst, strength,
rounding, blk_fw[0]);
highbd_average_4(&v_sum_row_snd, &v_sum_row_snd, &mul_snd, strength,
rounding, blk_fw[1]);
} else {
highbd_average_8(&u_sum_row_fst, &u_sum_row_snd, &u_sum_row_fst,
&u_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
weight);
highbd_average_8(&v_sum_row_fst, &v_sum_row_snd, &v_sum_row_fst,
&v_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
weight);
}
highbd_accumulate_and_store_8(u_sum_row_fst, u_sum_row_snd, u_pre, u_count,
u_accum);
highbd_accumulate_and_store_8(v_sum_row_fst, v_sum_row_snd, v_pre, v_count,
v_accum);
u_src += uv_src_stride;
u_pre += uv_pre_stride;
u_dist += DIST_STRIDE;
v_src += uv_src_stride;
v_pre += uv_pre_stride;
v_dist += DIST_STRIDE;
u_count += uv_pre_stride;
u_accum += uv_pre_stride;
v_count += uv_pre_stride;
v_accum += uv_pre_stride;
y_src += y_src_stride * (1 + ss_y);
y_pre += y_pre_stride * (1 + ss_y);
y_dist += DIST_STRIDE * (1 + ss_y);
}
// The last row
mul_fst = _mm_loadu_si128((const __m128i *)neighbors_fst[0]);
mul_snd = _mm_loadu_si128((const __m128i *)neighbors_snd[0]);
// Shift the rows up
u_sum_row_1_fst = u_sum_row_2_fst;
u_sum_row_2_fst = u_sum_row_3_fst;
u_sum_row_1_snd = u_sum_row_2_snd;
u_sum_row_2_snd = u_sum_row_3_snd;
v_sum_row_1_fst = v_sum_row_2_fst;
v_sum_row_2_fst = v_sum_row_3_fst;
v_sum_row_1_snd = v_sum_row_2_snd;
v_sum_row_2_snd = v_sum_row_3_snd;
// Add chroma values
u_sum_row_fst = _mm_add_epi32(u_sum_row_1_fst, u_sum_row_2_fst);
v_sum_row_fst = _mm_add_epi32(v_sum_row_1_fst, v_sum_row_2_fst);
u_sum_row_snd = _mm_add_epi32(u_sum_row_1_snd, u_sum_row_2_snd);
v_sum_row_snd = _mm_add_epi32(v_sum_row_1_snd, v_sum_row_2_snd);
// Add luma values
highbd_add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row_fst,
&u_sum_row_snd, &v_sum_row_fst,
&v_sum_row_snd);
// Get modifier and store result
if (blk_fw) {
highbd_average_4(&u_sum_row_fst, &u_sum_row_fst, &mul_fst, strength,
rounding, blk_fw[0]);
highbd_average_4(&u_sum_row_snd, &u_sum_row_snd, &mul_snd, strength,
rounding, blk_fw[1]);
highbd_average_4(&v_sum_row_fst, &v_sum_row_fst, &mul_fst, strength,
rounding, blk_fw[0]);
highbd_average_4(&v_sum_row_snd, &v_sum_row_snd, &mul_snd, strength,
rounding, blk_fw[1]);
} else {
highbd_average_8(&u_sum_row_fst, &u_sum_row_snd, &u_sum_row_fst,
&u_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
weight);
highbd_average_8(&v_sum_row_fst, &v_sum_row_snd, &v_sum_row_fst,
&v_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
weight);
}
highbd_accumulate_and_store_8(u_sum_row_fst, u_sum_row_snd, u_pre, u_count,
u_accum);
highbd_accumulate_and_store_8(v_sum_row_fst, v_sum_row_snd, v_pre, v_count,
v_accum);
}
// Perform temporal filter for the chroma components.
static void av1_highbd_apply_temporal_filter_chroma(
const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
uint32_t *u_accum, uint16_t *u_count, uint32_t *v_accum, uint16_t *v_count,
const uint32_t *y_dist, const uint32_t *u_dist, const uint32_t *v_dist) {
const unsigned int uv_width = block_width >> ss_x,
uv_height = block_height >> ss_y;
unsigned int blk_col = 0, uv_blk_col = 0;
const unsigned int uv_blk_col_step = 8, blk_col_step = 8 << ss_x;
const unsigned int uv_mid_width = uv_width >> 1,
uv_last_width = uv_width - uv_blk_col_step;
int top_weight = blk_fw[0],
bottom_weight = use_whole_blk ? blk_fw[0] : blk_fw[2];
const uint32_t *const *neighbors_fst;
const uint32_t *const *neighbors_snd;
if (uv_width == 8) {
// Special Case: We are subsampling in x direction on a 16x16 block. Since
// we are operating on a row of 8 chroma pixels, we can't use the usual
// left-middle-right pattern.
assert(ss_x);
if (ss_y) {
neighbors_fst = HIGHBD_CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS;
neighbors_snd = HIGHBD_CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS;
} else {
neighbors_fst = HIGHBD_CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS;
neighbors_snd = HIGHBD_CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS;
}
if (use_whole_blk) {
av1_highbd_apply_temporal_filter_chroma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
neighbors_fst, neighbors_snd, top_weight, bottom_weight, NULL);
} else {
av1_highbd_apply_temporal_filter_chroma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
neighbors_fst, neighbors_snd, 0, 0, blk_fw);
}
return;
}
// Left
if (ss_x && ss_y) {
neighbors_fst = HIGHBD_CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS;
neighbors_snd = HIGHBD_CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS;
} else if (ss_x || ss_y) {
neighbors_fst = HIGHBD_CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS;
neighbors_snd = HIGHBD_CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS;
} else {
neighbors_fst = HIGHBD_CHROMA_NO_SS_LEFT_COLUMN_NEIGHBORS;
neighbors_snd = HIGHBD_CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS;
}
av1_highbd_apply_temporal_filter_chroma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
v_pre + uv_blk_col, uv_pre_stride, uv_width, uv_height, ss_x, ss_y,
strength, u_accum + uv_blk_col, u_count + uv_blk_col,
v_accum + uv_blk_col, v_count + uv_blk_col, y_dist + blk_col,
u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors_fst, neighbors_snd,
top_weight, bottom_weight, NULL);
blk_col += blk_col_step;
uv_blk_col += uv_blk_col_step;
// Middle First
if (ss_x && ss_y) {
neighbors_fst = HIGHBD_CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS;
} else if (ss_x || ss_y) {
neighbors_fst = HIGHBD_CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS;
} else {
neighbors_fst = HIGHBD_CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS;
}
for (; uv_blk_col < uv_mid_width;
blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
av1_highbd_apply_temporal_filter_chroma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
neighbors_fst, neighbors_snd, top_weight, bottom_weight, NULL);
}
if (!use_whole_blk) {
top_weight = blk_fw[1];
bottom_weight = blk_fw[3];
}
// Middle Second
for (; uv_blk_col < uv_last_width;
blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
av1_highbd_apply_temporal_filter_chroma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
neighbors_fst, neighbors_snd, top_weight, bottom_weight, NULL);
}
// Right
if (ss_x && ss_y) {
neighbors_snd = HIGHBD_CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS;
} else if (ss_x || ss_y) {
neighbors_snd = HIGHBD_CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS;
} else {
neighbors_snd = HIGHBD_CHROMA_NO_SS_RIGHT_COLUMN_NEIGHBORS;
}
av1_highbd_apply_temporal_filter_chroma_8(
y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
v_pre + uv_blk_col, uv_pre_stride, uv_width, uv_height, ss_x, ss_y,
strength, u_accum + uv_blk_col, u_count + uv_blk_col,
v_accum + uv_blk_col, v_count + uv_blk_col, y_dist + blk_col,
u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors_fst, neighbors_snd,
top_weight, bottom_weight, NULL);
}
void av1_highbd_apply_temporal_filter_sse4_1(
const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
int uv_pre_stride, unsigned int block_width, unsigned int block_height,
int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
uint32_t *y_accum, uint16_t *y_count, uint32_t *u_accum, uint16_t *u_count,
uint32_t *v_accum, uint16_t *v_count) {
const unsigned int chroma_height = block_height >> ss_y,
chroma_width = block_width >> ss_x;
DECLARE_ALIGNED(16, uint32_t, y_dist[BH * DIST_STRIDE]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, u_dist[BH * DIST_STRIDE]) = { 0 };
DECLARE_ALIGNED(16, uint32_t, v_dist[BH * DIST_STRIDE]) = { 0 };
uint32_t *y_dist_ptr = y_dist + 1, *u_dist_ptr = u_dist + 1,
*v_dist_ptr = v_dist + 1;
const uint16_t *y_src_ptr = CONVERT_TO_SHORTPTR(y_src),
*u_src_ptr = CONVERT_TO_SHORTPTR(u_src),
*v_src_ptr = CONVERT_TO_SHORTPTR(v_src);
const uint16_t *y_pre_ptr = CONVERT_TO_SHORTPTR(y_pre),
*u_pre_ptr = CONVERT_TO_SHORTPTR(u_pre),
*v_pre_ptr = CONVERT_TO_SHORTPTR(v_pre);
// Loop variables
unsigned int row, blk_col;
assert(block_width <= BW && "block width too large");
assert(block_height <= BH && "block height too large");
assert(block_width % 16 == 0 && "block width must be multiple of 16");
assert(block_height % 2 == 0 && "block height must be even");
assert((ss_x == 0 || ss_x == 1) && (ss_y == 0 || ss_y == 1) &&
"invalid chroma subsampling");
assert(strength >= 4 && strength <= 14 &&
"invalid adjusted temporal filter strength");
assert(blk_fw[0] >= 0 && "filter weight must be positive");
assert(
(use_whole_blk || (blk_fw[1] >= 0 && blk_fw[2] >= 0 && blk_fw[3] >= 0)) &&
"subblock filter weight must be positive");
assert(blk_fw[0] <= 2 && "sublock filter weight must be less than 2");
assert(
(use_whole_blk || (blk_fw[1] <= 2 && blk_fw[2] <= 2 && blk_fw[3] <= 2)) &&
"subblock filter weight must be less than 2");
// Precompute the difference squared
for (row = 0; row < block_height; row++) {
for (blk_col = 0; blk_col < block_width; blk_col += 8) {
highbd_store_dist_8(y_src_ptr + blk_col, y_pre_ptr + blk_col,
y_dist_ptr + blk_col);
}
y_src_ptr += y_src_stride;
y_pre_ptr += y_pre_stride;
y_dist_ptr += DIST_STRIDE;
}
for (row = 0; row < chroma_height; row++) {
for (blk_col = 0; blk_col < chroma_width; blk_col += 8) {
highbd_store_dist_8(u_src_ptr + blk_col, u_pre_ptr + blk_col,
u_dist_ptr + blk_col);
highbd_store_dist_8(v_src_ptr + blk_col, v_pre_ptr + blk_col,
v_dist_ptr + blk_col);
}
u_src_ptr += uv_src_stride;
u_pre_ptr += uv_pre_stride;
u_dist_ptr += DIST_STRIDE;
v_src_ptr += uv_src_stride;
v_pre_ptr += uv_pre_stride;
v_dist_ptr += DIST_STRIDE;
}
y_src_ptr = CONVERT_TO_SHORTPTR(y_src),
u_src_ptr = CONVERT_TO_SHORTPTR(u_src),
v_src_ptr = CONVERT_TO_SHORTPTR(v_src);
y_pre_ptr = CONVERT_TO_SHORTPTR(y_pre),
u_pre_ptr = CONVERT_TO_SHORTPTR(u_pre),
v_pre_ptr = CONVERT_TO_SHORTPTR(v_pre);
y_dist_ptr = y_dist + 1;
u_dist_ptr = u_dist + 1;
v_dist_ptr = v_dist + 1;
av1_highbd_apply_temporal_filter_luma(
y_src_ptr, y_src_stride, y_pre_ptr, y_pre_stride, u_src_ptr, v_src_ptr,
uv_src_stride, u_pre_ptr, v_pre_ptr, uv_pre_stride, block_width,
block_height, ss_x, ss_y, strength, blk_fw, use_whole_blk, y_accum,
y_count, y_dist_ptr, u_dist_ptr, v_dist_ptr);
av1_highbd_apply_temporal_filter_chroma(
y_src_ptr, y_src_stride, y_pre_ptr, y_pre_stride, u_src_ptr, v_src_ptr,
uv_src_stride, u_pre_ptr, v_pre_ptr, uv_pre_stride, block_width,
block_height, ss_x, ss_y, strength, blk_fw, use_whole_blk, u_accum,
u_count, v_accum, v_count, y_dist_ptr, u_dist_ptr, v_dist_ptr);
}