blob: 9f38bccee8732e42b3df5b7d6fb8ffca812f83c7 [file] [log] [blame]
/*
* Copyright (c) 2022, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_dsp_rtcd.h"
#include "config/aom_config.h"
#include "aom/aom_integer.h"
#include "aom_dsp/arm/transpose_neon.h"
static INLINE int16x4_t clip3_s16(const int16x4_t val, const int16x4_t low,
const int16x4_t high) {
return vmin_s16(vmax_s16(val, low), high);
}
static INLINE uint16x8_t convert_to_unsigned_pixel_u16(int16x8_t val,
int bitdepth) {
const int16x8_t low = vdupq_n_s16(0);
const uint16x8_t high = vdupq_n_u16((1 << bitdepth) - 1);
return vminq_u16(vreinterpretq_u16_s16(vmaxq_s16(val, low)), high);
}
// (abs(p1 - p0) > thresh) || (abs(q1 - q0) > thresh)
static INLINE uint16x4_t hev(const uint16x8_t abd_p0p1_q0q1,
const uint16_t thresh) {
const uint16x8_t a = vcgtq_u16(abd_p0p1_q0q1, vdupq_n_u16(thresh));
return vorr_u16(vget_low_u16(a), vget_high_u16(a));
}
// abs(p0 - q0) * 2 + abs(p1 - q1) / 2 <= outer_thresh
static INLINE uint16x4_t outer_threshold(const uint16x4_t p1,
const uint16x4_t p0,
const uint16x4_t q0,
const uint16x4_t q1,
const uint16_t outer_thresh) {
const uint16x4_t abd_p0q0 = vabd_u16(p0, q0);
const uint16x4_t abd_p1q1 = vabd_u16(p1, q1);
const uint16x4_t p0q0_double = vshl_n_u16(abd_p0q0, 1);
const uint16x4_t p1q1_half = vshr_n_u16(abd_p1q1, 1);
const uint16x4_t sum = vadd_u16(p0q0_double, p1q1_half);
return vcle_u16(sum, vdup_n_u16(outer_thresh));
}
// abs(p1 - p0) <= inner_thresh && abs(q1 - q0) <= inner_thresh &&
// outer_threshold()
static INLINE uint16x4_t needs_filter4(const uint16x8_t abd_p0p1_q0q1,
const uint16_t inner_thresh,
const uint16x4_t outer_mask) {
const uint16x8_t a = vcleq_u16(abd_p0p1_q0q1, vdupq_n_u16(inner_thresh));
const uint16x4_t inner_mask = vand_u16(vget_low_u16(a), vget_high_u16(a));
return vand_u16(inner_mask, outer_mask);
}
// abs(p2 - p1) <= inner_thresh && abs(p1 - p0) <= inner_thresh &&
// abs(q1 - q0) <= inner_thresh && abs(q2 - q1) <= inner_thresh &&
// outer_threshold()
static INLINE uint16x4_t needs_filter6(const uint16x8_t abd_p0p1_q0q1,
const uint16x8_t abd_p1p2_q1q2,
const uint16_t inner_thresh,
const uint16x4_t outer_mask) {
const uint16x8_t a = vmaxq_u16(abd_p0p1_q0q1, abd_p1p2_q1q2);
const uint16x8_t b = vcleq_u16(a, vdupq_n_u16(inner_thresh));
const uint16x4_t inner_mask = vand_u16(vget_low_u16(b), vget_high_u16(b));
return vand_u16(inner_mask, outer_mask);
}
// abs(p3 - p2) <= inner_thresh && abs(p2 - p1) <= inner_thresh &&
// abs(p1 - p0) <= inner_thresh && abs(q1 - q0) <= inner_thresh &&
// abs(q2 - q1) <= inner_thresh && abs(q3 - q2) <= inner_thresh
// outer_threshold()
static INLINE uint16x4_t needs_filter8(const uint16x8_t abd_p0p1_q0q1,
const uint16x8_t abd_p1p2_q1q2,
const uint16x8_t abd_p2p3_q2q3,
const uint16_t inner_thresh,
const uint16x4_t outer_mask) {
const uint16x8_t a = vmaxq_u16(abd_p0p1_q0q1, abd_p1p2_q1q2);
const uint16x8_t b = vmaxq_u16(a, abd_p2p3_q2q3);
const uint16x8_t c = vcleq_u16(b, vdupq_n_u16(inner_thresh));
const uint16x4_t inner_mask = vand_u16(vget_low_u16(c), vget_high_u16(c));
return vand_u16(inner_mask, outer_mask);
}
// -----------------------------------------------------------------------------
// filterN_masks functions.
static INLINE void filter4_masks(const uint16x8_t p0q0, const uint16x8_t p1q1,
const uint16_t hev_thresh,
const uint16x4_t outer_mask,
const uint16_t inner_thresh,
uint16x4_t *const hev_mask,
uint16x4_t *const needs_filter4_mask) {
const uint16x8_t p0p1_q0q1 = vabdq_u16(p0q0, p1q1);
// This includes cases where needs_filter4() is not true and so filter2() will
// not be applied.
const uint16x4_t hev_tmp_mask = hev(p0p1_q0q1, hev_thresh);
*needs_filter4_mask = needs_filter4(p0p1_q0q1, inner_thresh, outer_mask);
// filter2() will only be applied if both needs_filter4() and hev() are true.
*hev_mask = vand_u16(hev_tmp_mask, *needs_filter4_mask);
}
// abs(p1 - p0) <= flat_thresh && abs(q1 - q0) <= flat_thresh &&
// abs(p2 - p0) <= flat_thresh && abs(q2 - q0) <= flat_thresh
// |flat_thresh| == 4 for 10 bit decode.
static INLINE uint16x4_t is_flat3(const uint16x8_t abd_p0p1_q0q1,
const uint16x8_t abd_p0p2_q0q2,
const int bitdepth) {
const int flat_thresh = 1 << (bitdepth - 8);
const uint16x8_t a = vmaxq_u16(abd_p0p1_q0q1, abd_p0p2_q0q2);
const uint16x8_t b = vcleq_u16(a, vdupq_n_u16(flat_thresh));
return vand_u16(vget_low_u16(b), vget_high_u16(b));
}
static INLINE void filter6_masks(
const uint16x8_t p2q2, const uint16x8_t p1q1, const uint16x8_t p0q0,
const uint16_t hev_thresh, const uint16x4_t outer_mask,
const uint16_t inner_thresh, const int bitdepth,
uint16x4_t *const needs_filter6_mask, uint16x4_t *const is_flat3_mask,
uint16x4_t *const hev_mask) {
const uint16x8_t abd_p0p1_q0q1 = vabdq_u16(p0q0, p1q1);
*hev_mask = hev(abd_p0p1_q0q1, hev_thresh);
*is_flat3_mask = is_flat3(abd_p0p1_q0q1, vabdq_u16(p0q0, p2q2), bitdepth);
*needs_filter6_mask = needs_filter6(abd_p0p1_q0q1, vabdq_u16(p1q1, p2q2),
inner_thresh, outer_mask);
}
// is_flat4 uses N=1, IsFlatOuter4 uses N=4.
// abs(p[N] - p0) <= flat_thresh && abs(q[N] - q0) <= flat_thresh &&
// abs(p[N+1] - p0) <= flat_thresh && abs(q[N+1] - q0) <= flat_thresh &&
// abs(p[N+2] - p0) <= flat_thresh && abs(q[N+1] - q0) <= flat_thresh
// |flat_thresh| == 4 for 10 bit decode.
static INLINE uint16x4_t is_flat4(const uint16x8_t abd_pnp0_qnq0,
const uint16x8_t abd_pn1p0_qn1q0,
const uint16x8_t abd_pn2p0_qn2q0,
const int bitdepth) {
const int flat_thresh = 1 << (bitdepth - 8);
const uint16x8_t a = vmaxq_u16(abd_pnp0_qnq0, abd_pn1p0_qn1q0);
const uint16x8_t b = vmaxq_u16(a, abd_pn2p0_qn2q0);
const uint16x8_t c = vcleq_u16(b, vdupq_n_u16(flat_thresh));
return vand_u16(vget_low_u16(c), vget_high_u16(c));
}
static INLINE void filter8_masks(
const uint16x8_t p3q3, const uint16x8_t p2q2, const uint16x8_t p1q1,
const uint16x8_t p0q0, const uint16_t hev_thresh,
const uint16x4_t outer_mask, const uint16_t inner_thresh,
const int bitdepth, uint16x4_t *const needs_filter8_mask,
uint16x4_t *const is_flat4_mask, uint16x4_t *const hev_mask) {
const uint16x8_t abd_p0p1_q0q1 = vabdq_u16(p0q0, p1q1);
*hev_mask = hev(abd_p0p1_q0q1, hev_thresh);
const uint16x4_t v_is_flat4 = is_flat4(abd_p0p1_q0q1, vabdq_u16(p0q0, p2q2),
vabdq_u16(p0q0, p3q3), bitdepth);
*needs_filter8_mask =
needs_filter8(abd_p0p1_q0q1, vabdq_u16(p1q1, p2q2), vabdq_u16(p2q2, p3q3),
inner_thresh, outer_mask);
// |is_flat4_mask| is used to decide where to use the result of filter8.
// In rare cases, |is_flat4| can be true where |needs_filter8_mask| is false,
// overriding the question of whether to use filter8. Because filter4 doesn't
// apply to p2q2, |is_flat4_mask| chooses directly between filter8 and the
// source value. To be correct, the mask must account for this override.
*is_flat4_mask = vand_u16(v_is_flat4, *needs_filter8_mask);
}
// -----------------------------------------------------------------------------
// filterN functions.
// Calculate filter4() or filter2() based on |hev_mask|.
static INLINE void filter4(const uint16x8_t p0q0, const uint16x8_t p0q1,
const uint16x8_t p1q1, const uint16x4_t hev_mask,
int bitdepth, uint16x8_t *const p1q1_result,
uint16x8_t *const p0q0_result) {
const uint16x8_t q0p1 = vextq_u16(p0q0, p1q1, 4);
// a = 3 * (q0 - p0) + Clip3(p1 - q1, min_signed_val, max_signed_val);
// q0mp0 means "q0 minus p0".
const int16x8_t q0mp0_p1mq1 = vreinterpretq_s16_u16(vsubq_u16(q0p1, p0q1));
const int16x4_t q0mp0_3 = vmul_n_s16(vget_low_s16(q0mp0_p1mq1), 3);
// If this is for filter2() then include |p1mq1|. Otherwise zero it.
const int16x4_t min_signed_pixel = vdup_n_s16(-(1 << (bitdepth - 1)));
const int16x4_t max_signed_pixel = vdup_n_s16((1 << (bitdepth - 1)) - 1);
const int16x4_t p1mq1 = vget_high_s16(q0mp0_p1mq1);
const int16x4_t p1mq1_saturated =
clip3_s16(p1mq1, min_signed_pixel, max_signed_pixel);
const int16x4_t hev_option =
vand_s16(vreinterpret_s16_u16(hev_mask), p1mq1_saturated);
const int16x4_t a = vadd_s16(q0mp0_3, hev_option);
// Need to figure out what's going on here because there are some unnecessary
// tricks to accommodate 8x8 as smallest 8bpp vector
// We can not shift with rounding because the clamp comes *before* the
// shifting. a1 = Clip3(a + 4, min_signed_val, max_signed_val) >> 3; a2 =
// Clip3(a + 3, min_signed_val, max_signed_val) >> 3;
const int16x4_t plus_four =
clip3_s16(vadd_s16(a, vdup_n_s16(4)), min_signed_pixel, max_signed_pixel);
const int16x4_t plus_three =
clip3_s16(vadd_s16(a, vdup_n_s16(3)), min_signed_pixel, max_signed_pixel);
const int16x4_t a1 = vshr_n_s16(plus_four, 3);
const int16x4_t a2 = vshr_n_s16(plus_three, 3);
// a3 = (a1 + 1) >> 1;
const int16x4_t a3 = vrshr_n_s16(a1, 1);
const int16x8_t a3_ma3 = vcombine_s16(a3, vneg_s16(a3));
const int16x8_t p1q1_a3 = vaddq_s16(vreinterpretq_s16_u16(p1q1), a3_ma3);
// Need to shift the second term or we end up with a2_ma2.
const int16x8_t a2_ma1 = vcombine_s16(a2, vneg_s16(a1));
const int16x8_t p0q0_a = vaddq_s16(vreinterpretq_s16_u16(p0q0), a2_ma1);
*p1q1_result = convert_to_unsigned_pixel_u16(p1q1_a3, bitdepth);
*p0q0_result = convert_to_unsigned_pixel_u16(p0q0_a, bitdepth);
}
void aom_highbd_lpf_horizontal_4_neon(uint16_t *s, int pitch,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd) {
uint16_t *const dst_p1 = (uint16_t *)(s - 2 * pitch);
uint16_t *const dst_p0 = (uint16_t *)(s - pitch);
uint16_t *const dst_q0 = (uint16_t *)(s);
uint16_t *const dst_q1 = (uint16_t *)(s + pitch);
const uint16x4_t src[4] = { vld1_u16(dst_p1), vld1_u16(dst_p0),
vld1_u16(dst_q0), vld1_u16(dst_q1) };
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask =
outer_threshold(src[0], src[1], src[2], src[3], outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter4_mask;
const uint16x8_t p0q0 = vcombine_u16(src[1], src[2]);
const uint16x8_t p1q1 = vcombine_u16(src[0], src[3]);
filter4_masks(p0q0, p1q1, hev_thresh, outer_mask, inner_thresh, &hev_mask,
&needs_filter4_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter4_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t needs_filter4_mask_8 =
vcombine_u16(needs_filter4_mask, needs_filter4_mask);
uint16x8_t f_p1q1;
uint16x8_t f_p0q0;
const uint16x8_t p0q1 = vcombine_u16(src[1], src[3]);
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f_p1q1, &f_p0q0);
// Already integrated the hev mask when calculating the filtered values.
const uint16x8_t p0q0_output = vbslq_u16(needs_filter4_mask_8, f_p0q0, p0q0);
// p1/q1 are unmodified if only hev() is true. This works because it was and'd
// with |needs_filter4_mask| previously.
const uint16x8_t p1q1_mask = veorq_u16(hev_mask_8, needs_filter4_mask_8);
const uint16x8_t p1q1_output = vbslq_u16(p1q1_mask, f_p1q1, p1q1);
vst1_u16(dst_p1, vget_low_u16(p1q1_output));
vst1_u16(dst_p0, vget_low_u16(p0q0_output));
vst1_u16(dst_q0, vget_high_u16(p0q0_output));
vst1_u16(dst_q1, vget_high_u16(p1q1_output));
}
void aom_highbd_lpf_horizontal_4_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_horizontal_4_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_horizontal_4_neon(s + 4, pitch, blimit1, limit1, thresh1, bd);
}
void aom_highbd_lpf_vertical_4_neon(uint16_t *s, int pitch,
const uint8_t *blimit, const uint8_t *limit,
const uint8_t *thresh, int bd) {
// Offset by 2 uint16_t values to load from first p1 position.
uint16_t *dst = s - 2;
uint16_t *dst_p1 = dst;
uint16_t *dst_p0 = dst + pitch;
uint16_t *dst_q0 = dst + pitch * 2;
uint16_t *dst_q1 = dst + pitch * 3;
uint16x4_t src[4] = { vld1_u16(dst_p1), vld1_u16(dst_p0), vld1_u16(dst_q0),
vld1_u16(dst_q1) };
transpose_array_inplace_u16_4x4(src);
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask =
outer_threshold(src[0], src[1], src[2], src[3], outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter4_mask;
const uint16x8_t p0q0 = vcombine_u16(src[1], src[2]);
const uint16x8_t p1q1 = vcombine_u16(src[0], src[3]);
filter4_masks(p0q0, p1q1, hev_thresh, outer_mask, inner_thresh, &hev_mask,
&needs_filter4_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter4_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t needs_filter4_mask_8 =
vcombine_u16(needs_filter4_mask, needs_filter4_mask);
uint16x8_t f_p1q1;
uint16x8_t f_p0q0;
const uint16x8_t p0q1 = vcombine_u16(src[1], src[3]);
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f_p1q1, &f_p0q0);
// Already integrated the hev mask when calculating the filtered values.
const uint16x8_t p0q0_output = vbslq_u16(needs_filter4_mask_8, f_p0q0, p0q0);
// p1/q1 are unmodified if only hev() is true. This works because it was and'd
// with |needs_filter4_mask| previously.
const uint16x8_t p1q1_mask = veorq_u16(hev_mask_8, needs_filter4_mask_8);
const uint16x8_t p1q1_output = vbslq_u16(p1q1_mask, f_p1q1, p1q1);
uint16x4_t output[4] = {
vget_low_u16(p1q1_output),
vget_low_u16(p0q0_output),
vget_high_u16(p0q0_output),
vget_high_u16(p1q1_output),
};
transpose_array_inplace_u16_4x4(output);
vst1_u16(dst_p1, output[0]);
vst1_u16(dst_p0, output[1]);
vst1_u16(dst_q0, output[2]);
vst1_u16(dst_q1, output[3]);
}
void aom_highbd_lpf_vertical_4_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_vertical_4_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_vertical_4_neon(s + 4 * pitch, pitch, blimit1, limit1, thresh1,
bd);
}
static INLINE void filter6(const uint16x8_t p2q2, const uint16x8_t p1q1,
const uint16x8_t p0q0, uint16x8_t *const p1q1_output,
uint16x8_t *const p0q0_output) {
// Sum p1 and q1 output from opposite directions.
// The formula is regrouped to allow 3 doubling operations to be combined.
//
// p1 = (3 * p2) + (2 * p1) + (2 * p0) + q0
// ^^^^^^^^
// q1 = p0 + (2 * q0) + (2 * q1) + (3 * q2)
// ^^^^^^^^
// p1q1 = p2q2 + 2 * (p2q2 + p1q1 + p0q0) + q0p0
// ^^^^^^^^^^^
uint16x8_t sum = vaddq_u16(p2q2, p1q1);
// p1q1 = p2q2 + 2 * (p2q2 + p1q1 + p0q0) + q0p0
// ^^^^^^
sum = vaddq_u16(sum, p0q0);
// p1q1 = p2q2 + 2 * (p2q2 + p1q1 + p0q0) + q0p0
// ^^^^^
sum = vshlq_n_u16(sum, 1);
// p1q1 = p2q2 + 2 * (p2q2 + p1q1 + p0q0) + q0p0
// ^^^^^^ ^^^^^^
// Should dual issue with the left shift.
const uint16x8_t q0p0 = vextq_u16(p0q0, p0q0, 4);
const uint16x8_t outer_sum = vaddq_u16(p2q2, q0p0);
sum = vaddq_u16(sum, outer_sum);
*p1q1_output = vrshrq_n_u16(sum, 3);
// Convert to p0 and q0 output:
// p0 = p1 - (2 * p2) + q0 + q1
// q0 = q1 - (2 * q2) + p0 + p1
// p0q0 = p1q1 - (2 * p2q2) + q0p0 + q1p1
// ^^^^^^^^
const uint16x8_t p2q2_double = vshlq_n_u16(p2q2, 1);
// p0q0 = p1q1 - (2 * p2q2) + q0p0 + q1p1
// ^^^^^^^^
sum = vsubq_u16(sum, p2q2_double);
const uint16x8_t q1p1 = vextq_u16(p1q1, p1q1, 4);
sum = vaddq_u16(sum, vaddq_u16(q0p0, q1p1));
*p0q0_output = vrshrq_n_u16(sum, 3);
}
void aom_highbd_lpf_horizontal_6_neon(uint16_t *s, int pitch,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd) {
uint16_t *const dst_p2 = s - 3 * pitch;
uint16_t *const dst_p1 = s - 2 * pitch;
uint16_t *const dst_p0 = s - pitch;
uint16_t *const dst_q0 = s;
uint16_t *const dst_q1 = s + pitch;
uint16_t *const dst_q2 = s + 2 * pitch;
const uint16x4_t src[6] = { vld1_u16(dst_p2), vld1_u16(dst_p1),
vld1_u16(dst_p0), vld1_u16(dst_q0),
vld1_u16(dst_q1), vld1_u16(dst_q2) };
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask =
outer_threshold(src[1], src[2], src[3], src[4], outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter_mask;
uint16x4_t is_flat3_mask;
const uint16x8_t p0q0 = vcombine_u16(src[2], src[3]);
const uint16x8_t p1q1 = vcombine_u16(src[1], src[4]);
const uint16x8_t p2q2 = vcombine_u16(src[0], src[5]);
filter6_masks(p2q2, p1q1, p0q0, hev_thresh, outer_mask, inner_thresh, bd,
&needs_filter_mask, &is_flat3_mask, &hev_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t is_flat3_mask_8 = vcombine_u16(is_flat3_mask, is_flat3_mask);
const uint16x8_t needs_filter_mask_8 =
vcombine_u16(needs_filter_mask, needs_filter_mask);
uint16x8_t f4_p1q1;
uint16x8_t f4_p0q0;
// ZIP1 p0q0, p1q1 may perform better here.
const uint16x8_t p0q1 = vcombine_u16(src[2], src[4]);
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f4_p1q1, &f4_p0q0);
f4_p1q1 = vbslq_u16(hev_mask_8, p1q1, f4_p1q1);
uint16x8_t p0q0_output, p1q1_output;
// Because we did not return after testing |needs_filter_mask| we know it is
// nonzero. |is_flat3_mask| controls whether the needed filter is filter4 or
// filter6. Therefore if it is false when |needs_filter_mask| is true, filter6
// output is not used.
uint16x8_t f6_p1q1, f6_p0q0;
const uint64x1_t need_filter6 = vreinterpret_u64_u16(is_flat3_mask);
if (vget_lane_u64(need_filter6, 0) == 0) {
// filter6() does not apply, but filter4() applies to one or more values.
p0q0_output = p0q0;
p1q1_output = vbslq_u16(needs_filter_mask_8, f4_p1q1, p1q1);
p0q0_output = vbslq_u16(needs_filter_mask_8, f4_p0q0, p0q0);
} else {
filter6(p2q2, p1q1, p0q0, &f6_p1q1, &f6_p0q0);
p1q1_output = vbslq_u16(is_flat3_mask_8, f6_p1q1, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(is_flat3_mask_8, f6_p0q0, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
}
vst1_u16(dst_p1, vget_low_u16(p1q1_output));
vst1_u16(dst_p0, vget_low_u16(p0q0_output));
vst1_u16(dst_q0, vget_high_u16(p0q0_output));
vst1_u16(dst_q1, vget_high_u16(p1q1_output));
}
void aom_highbd_lpf_horizontal_6_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_horizontal_6_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_horizontal_6_neon(s + 4, pitch, blimit1, limit1, thresh1, bd);
}
void aom_highbd_lpf_vertical_6_neon(uint16_t *s, int pitch,
const uint8_t *blimit, const uint8_t *limit,
const uint8_t *thresh, int bd) {
// Left side of the filter window.
uint16_t *const dst = s - 3;
uint16_t *const dst_0 = dst;
uint16_t *const dst_1 = dst + pitch;
uint16_t *const dst_2 = dst + 2 * pitch;
uint16_t *const dst_3 = dst + 3 * pitch;
// Overread by 2 values. These overreads become the high halves of src_raw[2]
// and src_raw[3] after transpose.
uint16x8_t src_raw[4] = { vld1q_u16(dst_0), vld1q_u16(dst_1),
vld1q_u16(dst_2), vld1q_u16(dst_3) };
transpose_array_inplace_u16_4x8(src_raw);
// p2, p1, p0, q0, q1, q2
const uint16x4_t src[6] = {
vget_low_u16(src_raw[0]), vget_low_u16(src_raw[1]),
vget_low_u16(src_raw[2]), vget_low_u16(src_raw[3]),
vget_high_u16(src_raw[0]), vget_high_u16(src_raw[1]),
};
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask =
outer_threshold(src[1], src[2], src[3], src[4], outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter_mask;
uint16x4_t is_flat3_mask;
const uint16x8_t p0q0 = vcombine_u16(src[2], src[3]);
const uint16x8_t p1q1 = vcombine_u16(src[1], src[4]);
const uint16x8_t p2q2 = vcombine_u16(src[0], src[5]);
filter6_masks(p2q2, p1q1, p0q0, hev_thresh, outer_mask, inner_thresh, bd,
&needs_filter_mask, &is_flat3_mask, &hev_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t is_flat3_mask_8 = vcombine_u16(is_flat3_mask, is_flat3_mask);
const uint16x8_t needs_filter_mask_8 =
vcombine_u16(needs_filter_mask, needs_filter_mask);
uint16x8_t f4_p1q1;
uint16x8_t f4_p0q0;
// ZIP1 p0q0, p1q1 may perform better here.
const uint16x8_t p0q1 = vcombine_u16(src[2], src[4]);
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f4_p1q1, &f4_p0q0);
f4_p1q1 = vbslq_u16(hev_mask_8, p1q1, f4_p1q1);
uint16x8_t p0q0_output, p1q1_output;
// Because we did not return after testing |needs_filter_mask| we know it is
// nonzero. |is_flat3_mask| controls whether the needed filter is filter4 or
// filter6. Therefore if it is false when |needs_filter_mask| is true, filter6
// output is not used.
uint16x8_t f6_p1q1, f6_p0q0;
const uint64x1_t need_filter6 = vreinterpret_u64_u16(is_flat3_mask);
if (vget_lane_u64(need_filter6, 0) == 0) {
// filter6() does not apply, but filter4() applies to one or more values.
p0q0_output = p0q0;
p1q1_output = vbslq_u16(needs_filter_mask_8, f4_p1q1, p1q1);
p0q0_output = vbslq_u16(needs_filter_mask_8, f4_p0q0, p0q0);
} else {
filter6(p2q2, p1q1, p0q0, &f6_p1q1, &f6_p0q0);
p1q1_output = vbslq_u16(is_flat3_mask_8, f6_p1q1, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(is_flat3_mask_8, f6_p0q0, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
}
uint16x4_t output[4] = {
vget_low_u16(p1q1_output),
vget_low_u16(p0q0_output),
vget_high_u16(p0q0_output),
vget_high_u16(p1q1_output),
};
transpose_array_inplace_u16_4x4(output);
// dst_n starts at p2, so adjust to p1.
vst1_u16(dst_0 + 1, output[0]);
vst1_u16(dst_1 + 1, output[1]);
vst1_u16(dst_2 + 1, output[2]);
vst1_u16(dst_3 + 1, output[3]);
}
void aom_highbd_lpf_vertical_6_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_vertical_6_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_vertical_6_neon(s + 4 * pitch, pitch, blimit1, limit1, thresh1,
bd);
}
static INLINE void filter8(const uint16x8_t p3q3, const uint16x8_t p2q2,
const uint16x8_t p1q1, const uint16x8_t p0q0,
uint16x8_t *const p2q2_output,
uint16x8_t *const p1q1_output,
uint16x8_t *const p0q0_output) {
// Sum p2 and q2 output from opposite directions.
// The formula is regrouped to allow 2 doubling operations to be combined.
// p2 = (3 * p3) + (2 * p2) + p1 + p0 + q0
// ^^^^^^^^
// q2 = p0 + q0 + q1 + (2 * q2) + (3 * q3)
// ^^^^^^^^
// p2q2 = p3q3 + 2 * (p3q3 + p2q2) + p1q1 + p0q0 + q0p0
// ^^^^^^^^^^^
const uint16x8_t p23q23 = vaddq_u16(p3q3, p2q2);
// p2q2 = p3q3 + 2 * (p3q3 + p2q2) + p1q1 + p0q0 + q0p0
// ^^^^^
uint16x8_t sum = vshlq_n_u16(p23q23, 1);
// Add two other terms to make dual issue with shift more likely.
// p2q2 = p3q3 + 2 * (p3q3 + p2q2) + p1q1 + p0q0 + q0p0
// ^^^^^^^^^^^
const uint16x8_t p01q01 = vaddq_u16(p0q0, p1q1);
// p2q2 = p3q3 + 2 * (p3q3 + p2q2) + p1q1 + p0q0 + q0p0
// ^^^^^^^^^^^^^
sum = vaddq_u16(sum, p01q01);
// p2q2 = p3q3 + 2 * (p3q3 + p2q2) + p1q1 + p0q0 + q0p0
// ^^^^^^
sum = vaddq_u16(sum, p3q3);
// p2q2 = p3q3 + 2 * (p3q3 + p2q2) + p1q1 + p0q0 + q0p0
// ^^^^^^
const uint16x8_t q0p0 = vextq_u16(p0q0, p0q0, 4);
sum = vaddq_u16(sum, q0p0);
*p2q2_output = vrshrq_n_u16(sum, 3);
// Convert to p1 and q1 output:
// p1 = p2 - p3 - p2 + p1 + q1
// q1 = q2 - q3 - q2 + q0 + p1
sum = vsubq_u16(sum, p23q23);
const uint16x8_t q1p1 = vextq_u16(p1q1, p1q1, 4);
sum = vaddq_u16(sum, vaddq_u16(p1q1, q1p1));
*p1q1_output = vrshrq_n_u16(sum, 3);
// Convert to p0 and q0 output:
// p0 = p1 - p3 - p1 + p0 + q2
// q0 = q1 - q3 - q1 + q0 + p2
sum = vsubq_u16(sum, vaddq_u16(p3q3, p1q1));
const uint16x8_t q2p2 = vextq_u16(p2q2, p2q2, 4);
sum = vaddq_u16(sum, vaddq_u16(p0q0, q2p2));
*p0q0_output = vrshrq_n_u16(sum, 3);
}
void aom_highbd_lpf_horizontal_8_neon(uint16_t *s, int pitch,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd) {
uint16_t *const dst_p3 = s - 4 * pitch;
uint16_t *const dst_p2 = s - 3 * pitch;
uint16_t *const dst_p1 = s - 2 * pitch;
uint16_t *const dst_p0 = s - pitch;
uint16_t *const dst_q0 = s;
uint16_t *const dst_q1 = s + pitch;
uint16_t *const dst_q2 = s + 2 * pitch;
uint16_t *const dst_q3 = s + 3 * pitch;
const uint16x4_t src[8] = { vld1_u16(dst_p3), vld1_u16(dst_p2),
vld1_u16(dst_p1), vld1_u16(dst_p0),
vld1_u16(dst_q0), vld1_u16(dst_q1),
vld1_u16(dst_q2), vld1_u16(dst_q3) };
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask =
outer_threshold(src[2], src[3], src[4], src[5], outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter_mask;
uint16x4_t is_flat4_mask;
const uint16x8_t p0q0 = vcombine_u16(src[3], src[4]);
const uint16x8_t p1q1 = vcombine_u16(src[2], src[5]);
const uint16x8_t p2q2 = vcombine_u16(src[1], src[6]);
const uint16x8_t p3q3 = vcombine_u16(src[0], src[7]);
filter8_masks(p3q3, p2q2, p1q1, p0q0, hev_thresh, outer_mask, inner_thresh,
bd, &needs_filter_mask, &is_flat4_mask, &hev_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t needs_filter_mask_8 =
vcombine_u16(needs_filter_mask, needs_filter_mask);
uint16x8_t f4_p1q1;
uint16x8_t f4_p0q0;
// ZIP1 p0q0, p1q1 may perform better here.
const uint16x8_t p0q1 = vcombine_u16(src[3], src[5]);
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f4_p1q1, &f4_p0q0);
f4_p1q1 = vbslq_u16(hev_mask_8, p1q1, f4_p1q1);
uint16x8_t p0q0_output, p1q1_output, p2q2_output;
// Because we did not return after testing |needs_filter_mask| we know it is
// nonzero. |is_flat4_mask| controls whether the needed filter is filter4 or
// filter8. Therefore if it is false when |needs_filter_mask| is true, filter8
// output is not used.
uint16x8_t f8_p2q2, f8_p1q1, f8_p0q0;
const uint64x1_t need_filter8 = vreinterpret_u64_u16(is_flat4_mask);
if (vget_lane_u64(need_filter8, 0) == 0) {
// filter8() does not apply, but filter4() applies to one or more values.
p2q2_output = p2q2;
p1q1_output = vbslq_u16(needs_filter_mask_8, f4_p1q1, p1q1);
p0q0_output = vbslq_u16(needs_filter_mask_8, f4_p0q0, p0q0);
} else {
const uint16x8_t is_flat4_mask_8 =
vcombine_u16(is_flat4_mask, is_flat4_mask);
filter8(p3q3, p2q2, p1q1, p0q0, &f8_p2q2, &f8_p1q1, &f8_p0q0);
p2q2_output = vbslq_u16(is_flat4_mask_8, f8_p2q2, p2q2);
p1q1_output = vbslq_u16(is_flat4_mask_8, f8_p1q1, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(is_flat4_mask_8, f8_p0q0, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
}
vst1_u16(dst_p2, vget_low_u16(p2q2_output));
vst1_u16(dst_p1, vget_low_u16(p1q1_output));
vst1_u16(dst_p0, vget_low_u16(p0q0_output));
vst1_u16(dst_q0, vget_high_u16(p0q0_output));
vst1_u16(dst_q1, vget_high_u16(p1q1_output));
vst1_u16(dst_q2, vget_high_u16(p2q2_output));
}
void aom_highbd_lpf_horizontal_8_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_horizontal_8_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_horizontal_8_neon(s + 4, pitch, blimit1, limit1, thresh1, bd);
}
static INLINE uint16x8_t reverse_low_half(const uint16x8_t a) {
return vcombine_u16(vrev64_u16(vget_low_u16(a)), vget_high_u16(a));
}
void aom_highbd_lpf_vertical_8_neon(uint16_t *s, int pitch,
const uint8_t *blimit, const uint8_t *limit,
const uint8_t *thresh, int bd) {
uint16_t *const dst = s - 4;
uint16_t *const dst_0 = dst;
uint16_t *const dst_1 = dst + pitch;
uint16_t *const dst_2 = dst + 2 * pitch;
uint16_t *const dst_3 = dst + 3 * pitch;
// src_raw[n] contains p3, p2, p1, p0, q0, q1, q2, q3 for row n.
// To get desired pairs after transpose, one half should be reversed.
uint16x8_t src[4] = { vld1q_u16(dst_0), vld1q_u16(dst_1), vld1q_u16(dst_2),
vld1q_u16(dst_3) };
// src[0] = p0q0
// src[1] = p1q1
// src[2] = p2q2
// src[3] = p3q3
loop_filter_transpose_u16_4x8q(src);
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask = outer_threshold(
vget_low_u16(src[1]), vget_low_u16(src[0]), vget_high_u16(src[0]),
vget_high_u16(src[1]), outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter_mask;
uint16x4_t is_flat4_mask;
const uint16x8_t p0q0 = src[0];
const uint16x8_t p1q1 = src[1];
const uint16x8_t p2q2 = src[2];
const uint16x8_t p3q3 = src[3];
filter8_masks(p3q3, p2q2, p1q1, p0q0, hev_thresh, outer_mask, inner_thresh,
bd, &needs_filter_mask, &is_flat4_mask, &hev_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t needs_filter_mask_8 =
vcombine_u16(needs_filter_mask, needs_filter_mask);
uint16x8_t f4_p1q1;
uint16x8_t f4_p0q0;
const uint16x8_t p0q1 = vcombine_u16(vget_low_u16(p0q0), vget_high_u16(p1q1));
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f4_p1q1, &f4_p0q0);
f4_p1q1 = vbslq_u16(hev_mask_8, p1q1, f4_p1q1);
uint16x8_t p0q0_output, p1q1_output, p2q2_output;
// Because we did not return after testing |needs_filter_mask| we know it is
// nonzero. |is_flat4_mask| controls whether the needed filter is filter4 or
// filter8. Therefore if it is false when |needs_filter_mask| is true, filter8
// output is not used.
const uint64x1_t need_filter8 = vreinterpret_u64_u16(is_flat4_mask);
if (vget_lane_u64(need_filter8, 0) == 0) {
// filter8() does not apply, but filter4() applies to one or more values.
p2q2_output = p2q2;
p1q1_output = vbslq_u16(needs_filter_mask_8, f4_p1q1, p1q1);
p0q0_output = vbslq_u16(needs_filter_mask_8, f4_p0q0, p0q0);
} else {
const uint16x8_t is_flat4_mask_8 =
vcombine_u16(is_flat4_mask, is_flat4_mask);
uint16x8_t f8_p2q2, f8_p1q1, f8_p0q0;
filter8(p3q3, p2q2, p1q1, p0q0, &f8_p2q2, &f8_p1q1, &f8_p0q0);
p2q2_output = vbslq_u16(is_flat4_mask_8, f8_p2q2, p2q2);
p1q1_output = vbslq_u16(is_flat4_mask_8, f8_p1q1, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(is_flat4_mask_8, f8_p0q0, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
}
uint16x8_t output[4] = { p0q0_output, p1q1_output, p2q2_output, p3q3 };
// After transpose, |output| will contain rows of the form:
// p0 p1 p2 p3 q0 q1 q2 q3
transpose_array_inplace_u16_4x8(output);
// Reverse p values to produce original order:
// p3 p2 p1 p0 q0 q1 q2 q3
vst1q_u16(dst_0, reverse_low_half(output[0]));
vst1q_u16(dst_1, reverse_low_half(output[1]));
vst1q_u16(dst_2, reverse_low_half(output[2]));
vst1q_u16(dst_3, reverse_low_half(output[3]));
}
void aom_highbd_lpf_vertical_8_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_vertical_8_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_vertical_8_neon(s + 4 * pitch, pitch, blimit1, limit1, thresh1,
bd);
}
static INLINE void filter14(
const uint16x8_t p6q6, const uint16x8_t p5q5, const uint16x8_t p4q4,
const uint16x8_t p3q3, const uint16x8_t p2q2, const uint16x8_t p1q1,
const uint16x8_t p0q0, uint16x8_t *const p5q5_output,
uint16x8_t *const p4q4_output, uint16x8_t *const p3q3_output,
uint16x8_t *const p2q2_output, uint16x8_t *const p1q1_output,
uint16x8_t *const p0q0_output) {
// Sum p5 and q5 output from opposite directions.
// p5 = (7 * p6) + (2 * p5) + (2 * p4) + p3 + p2 + p1 + p0 + q0
// ^^^^^^^^
// q5 = p0 + q0 + q1 + q2 + q3 + (2 * q4) + (2 * q5) + (7 * q6)
// ^^^^^^^^
const uint16x8_t p6q6_x7 = vsubq_u16(vshlq_n_u16(p6q6, 3), p6q6);
// p5 = (7 * p6) + (2 * p5) + (2 * p4) + p3 + p2 + p1 + p0 + q0
// ^^^^^^^^^^^^^^^^^^^
// q5 = p0 + q0 + q1 + q2 + q3 + (2 * q4) + (2 * q5) + (7 * q6)
// ^^^^^^^^^^^^^^^^^^^
uint16x8_t sum = vshlq_n_u16(vaddq_u16(p5q5, p4q4), 1);
sum = vaddq_u16(sum, p6q6_x7);
// p5 = (7 * p6) + (2 * p5) + (2 * p4) + p3 + p2 + p1 + p0 + q0
// ^^^^^^^
// q5 = p0 + q0 + q1 + q2 + q3 + (2 * q4) + (2 * q5) + (7 * q6)
// ^^^^^^^
sum = vaddq_u16(vaddq_u16(p3q3, p2q2), sum);
// p5 = (7 * p6) + (2 * p5) + (2 * p4) + p3 + p2 + p1 + p0 + q0
// ^^^^^^^
// q5 = p0 + q0 + q1 + q2 + q3 + (2 * q4) + (2 * q5) + (7 * q6)
// ^^^^^^^
sum = vaddq_u16(vaddq_u16(p1q1, p0q0), sum);
// p5 = (7 * p6) + (2 * p5) + (2 * p4) + p3 + p2 + p1 + p0 + q0
// ^^
// q5 = p0 + q0 + q1 + q2 + q3 + (2 * q4) + (2 * q5) + (7 * q6)
// ^^
const uint16x8_t q0p0 = vextq_u16(p0q0, p0q0, 4);
sum = vaddq_u16(sum, q0p0);
*p5q5_output = vrshrq_n_u16(sum, 4);
// Convert to p4 and q4 output:
// p4 = p5 - (2 * p6) + p3 + q1
// q4 = q5 - (2 * q6) + q3 + p1
sum = vsubq_u16(sum, vshlq_n_u16(p6q6, 1));
const uint16x8_t q1p1 = vextq_u16(p1q1, p1q1, 4);
sum = vaddq_u16(vaddq_u16(p3q3, q1p1), sum);
*p4q4_output = vrshrq_n_u16(sum, 4);
// Convert to p3 and q3 output:
// p3 = p4 - p6 - p5 + p2 + q2
// q3 = q4 - q6 - q5 + q2 + p2
sum = vsubq_u16(sum, vaddq_u16(p6q6, p5q5));
const uint16x8_t q2p2 = vextq_u16(p2q2, p2q2, 4);
sum = vaddq_u16(vaddq_u16(p2q2, q2p2), sum);
*p3q3_output = vrshrq_n_u16(sum, 4);
// Convert to p2 and q2 output:
// p2 = p3 - p6 - p4 + p1 + q3
// q2 = q3 - q6 - q4 + q1 + p3
sum = vsubq_u16(sum, vaddq_u16(p6q6, p4q4));
const uint16x8_t q3p3 = vextq_u16(p3q3, p3q3, 4);
sum = vaddq_u16(vaddq_u16(p1q1, q3p3), sum);
*p2q2_output = vrshrq_n_u16(sum, 4);
// Convert to p1 and q1 output:
// p1 = p2 - p6 - p3 + p0 + q4
// q1 = q2 - q6 - q3 + q0 + p4
sum = vsubq_u16(sum, vaddq_u16(p6q6, p3q3));
const uint16x8_t q4p4 = vextq_u16(p4q4, p4q4, 4);
sum = vaddq_u16(vaddq_u16(p0q0, q4p4), sum);
*p1q1_output = vrshrq_n_u16(sum, 4);
// Convert to p0 and q0 output:
// p0 = p1 - p6 - p2 + q0 + q5
// q0 = q1 - q6 - q2 + p0 + p5
sum = vsubq_u16(sum, vaddq_u16(p6q6, p2q2));
const uint16x8_t q5p5 = vextq_u16(p5q5, p5q5, 4);
sum = vaddq_u16(vaddq_u16(q0p0, q5p5), sum);
*p0q0_output = vrshrq_n_u16(sum, 4);
}
void aom_highbd_lpf_horizontal_14_neon(uint16_t *s, int pitch,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd) {
uint16_t *const dst_p6 = s - 7 * pitch;
uint16_t *const dst_p5 = s - 6 * pitch;
uint16_t *const dst_p4 = s - 5 * pitch;
uint16_t *const dst_p3 = s - 4 * pitch;
uint16_t *const dst_p2 = s - 3 * pitch;
uint16_t *const dst_p1 = s - 2 * pitch;
uint16_t *const dst_p0 = s - pitch;
uint16_t *const dst_q0 = s;
uint16_t *const dst_q1 = s + pitch;
uint16_t *const dst_q2 = s + 2 * pitch;
uint16_t *const dst_q3 = s + 3 * pitch;
uint16_t *const dst_q4 = s + 4 * pitch;
uint16_t *const dst_q5 = s + 5 * pitch;
uint16_t *const dst_q6 = s + 6 * pitch;
const uint16x4_t src[14] = {
vld1_u16(dst_p6), vld1_u16(dst_p5), vld1_u16(dst_p4), vld1_u16(dst_p3),
vld1_u16(dst_p2), vld1_u16(dst_p1), vld1_u16(dst_p0), vld1_u16(dst_q0),
vld1_u16(dst_q1), vld1_u16(dst_q2), vld1_u16(dst_q3), vld1_u16(dst_q4),
vld1_u16(dst_q5), vld1_u16(dst_q6)
};
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask =
outer_threshold(src[5], src[6], src[7], src[8], outer_thresh);
uint16x4_t hev_mask;
uint16x4_t needs_filter_mask;
uint16x4_t is_flat4_mask;
const uint16x8_t p0q0 = vcombine_u16(src[6], src[7]);
const uint16x8_t p1q1 = vcombine_u16(src[5], src[8]);
const uint16x8_t p2q2 = vcombine_u16(src[4], src[9]);
const uint16x8_t p3q3 = vcombine_u16(src[3], src[10]);
filter8_masks(p3q3, p2q2, p1q1, p0q0, hev_thresh, outer_mask, inner_thresh,
bd, &needs_filter_mask, &is_flat4_mask, &hev_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
const uint16x8_t p4q4 = vcombine_u16(src[2], src[11]);
const uint16x8_t p5q5 = vcombine_u16(src[1], src[12]);
const uint16x8_t p6q6 = vcombine_u16(src[0], src[13]);
// Mask to choose between the outputs of filter8 and filter14.
// As with the derivation of |is_flat4_mask|, the question of whether to use
// filter14 is only raised where |is_flat4_mask| is true.
const uint16x4_t is_flat4_outer_mask = vand_u16(
is_flat4_mask, is_flat4(vabdq_u16(p0q0, p4q4), vabdq_u16(p0q0, p5q5),
vabdq_u16(p0q0, p6q6), bd));
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t needs_filter_mask_8 =
vcombine_u16(needs_filter_mask, needs_filter_mask);
uint16x8_t f4_p1q1;
uint16x8_t f4_p0q0;
// ZIP1 p0q0, p1q1 may perform better here.
const uint16x8_t p0q1 = vcombine_u16(src[6], src[8]);
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f4_p1q1, &f4_p0q0);
f4_p1q1 = vbslq_u16(hev_mask_8, p1q1, f4_p1q1);
uint16x8_t p0q0_output, p1q1_output, p2q2_output, p3q3_output, p4q4_output,
p5q5_output;
// Because we did not return after testing |needs_filter_mask| we know it is
// nonzero. |is_flat4_mask| controls whether the needed filter is filter4 or
// filter8. Therefore if it is false when |needs_filter_mask| is true, filter8
// output is not used.
uint16x8_t f8_p2q2, f8_p1q1, f8_p0q0;
const uint64x1_t need_filter8 = vreinterpret_u64_u16(is_flat4_mask);
if (vget_lane_u64(need_filter8, 0) == 0) {
// filter8() and filter14() do not apply, but filter4() applies to one or
// more values.
p5q5_output = p5q5;
p4q4_output = p4q4;
p3q3_output = p3q3;
p2q2_output = p2q2;
p1q1_output = vbslq_u16(needs_filter_mask_8, f4_p1q1, p1q1);
p0q0_output = vbslq_u16(needs_filter_mask_8, f4_p0q0, p0q0);
} else {
const uint16x8_t use_filter8_mask =
vcombine_u16(is_flat4_mask, is_flat4_mask);
filter8(p3q3, p2q2, p1q1, p0q0, &f8_p2q2, &f8_p1q1, &f8_p0q0);
const uint64x1_t need_filter14 = vreinterpret_u64_u16(is_flat4_outer_mask);
if (vget_lane_u64(need_filter14, 0) == 0) {
// filter14() does not apply, but filter8() and filter4() apply to one or
// more values.
p5q5_output = p5q5;
p4q4_output = p4q4;
p3q3_output = p3q3;
p2q2_output = vbslq_u16(use_filter8_mask, f8_p2q2, p2q2);
p1q1_output = vbslq_u16(use_filter8_mask, f8_p1q1, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(use_filter8_mask, f8_p0q0, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
} else {
// All filters may contribute values to final outputs.
const uint16x8_t use_filter14_mask =
vcombine_u16(is_flat4_outer_mask, is_flat4_outer_mask);
uint16x8_t f14_p5q5, f14_p4q4, f14_p3q3, f14_p2q2, f14_p1q1, f14_p0q0;
filter14(p6q6, p5q5, p4q4, p3q3, p2q2, p1q1, p0q0, &f14_p5q5, &f14_p4q4,
&f14_p3q3, &f14_p2q2, &f14_p1q1, &f14_p0q0);
p5q5_output = vbslq_u16(use_filter14_mask, f14_p5q5, p5q5);
p4q4_output = vbslq_u16(use_filter14_mask, f14_p4q4, p4q4);
p3q3_output = vbslq_u16(use_filter14_mask, f14_p3q3, p3q3);
p2q2_output = vbslq_u16(use_filter14_mask, f14_p2q2, f8_p2q2);
p2q2_output = vbslq_u16(use_filter8_mask, p2q2_output, p2q2);
p2q2_output = vbslq_u16(needs_filter_mask_8, p2q2_output, p2q2);
p1q1_output = vbslq_u16(use_filter14_mask, f14_p1q1, f8_p1q1);
p1q1_output = vbslq_u16(use_filter8_mask, p1q1_output, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(use_filter14_mask, f14_p0q0, f8_p0q0);
p0q0_output = vbslq_u16(use_filter8_mask, p0q0_output, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
}
}
vst1_u16(dst_p5, vget_low_u16(p5q5_output));
vst1_u16(dst_p4, vget_low_u16(p4q4_output));
vst1_u16(dst_p3, vget_low_u16(p3q3_output));
vst1_u16(dst_p2, vget_low_u16(p2q2_output));
vst1_u16(dst_p1, vget_low_u16(p1q1_output));
vst1_u16(dst_p0, vget_low_u16(p0q0_output));
vst1_u16(dst_q0, vget_high_u16(p0q0_output));
vst1_u16(dst_q1, vget_high_u16(p1q1_output));
vst1_u16(dst_q2, vget_high_u16(p2q2_output));
vst1_u16(dst_q3, vget_high_u16(p3q3_output));
vst1_u16(dst_q4, vget_high_u16(p4q4_output));
vst1_u16(dst_q5, vget_high_u16(p5q5_output));
}
void aom_highbd_lpf_horizontal_14_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_horizontal_14_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_horizontal_14_neon(s + 4, pitch, blimit1, limit1, thresh1, bd);
}
static INLINE uint16x8x2_t permute_acdb64(const uint16x8_t ab,
const uint16x8_t cd) {
uint16x8x2_t acdb;
#if AOM_ARCH_AARCH64
// a[b] <- [c]d
acdb.val[0] = vreinterpretq_u16_u64(
vtrn1q_u64(vreinterpretq_u64_u16(ab), vreinterpretq_u64_u16(cd)));
// [a]b <- c[d]
acdb.val[1] = vreinterpretq_u16_u64(
vtrn2q_u64(vreinterpretq_u64_u16(cd), vreinterpretq_u64_u16(ab)));
#else
// a[b] <- [c]d
acdb.val[0] = vreinterpretq_u16_u64(
vsetq_lane_u64(vgetq_lane_u64(vreinterpretq_u64_u16(cd), 0),
vreinterpretq_u64_u16(ab), 1));
// [a]b <- c[d]
acdb.val[1] = vreinterpretq_u16_u64(
vsetq_lane_u64(vgetq_lane_u64(vreinterpretq_u64_u16(cd), 1),
vreinterpretq_u64_u16(ab), 0));
#endif // AOM_ARCH_AARCH64
return acdb;
}
void aom_highbd_lpf_vertical_14_neon(uint16_t *s, int pitch,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd) {
uint16_t *const dst = s - 8;
uint16_t *const dst_0 = dst;
uint16_t *const dst_1 = dst + pitch;
uint16_t *const dst_2 = dst + 2 * pitch;
uint16_t *const dst_3 = dst + 3 * pitch;
// Low halves: p7 p6 p5 p4
// High halves: p3 p2 p1 p0
uint16x8_t src_p[4] = { vld1q_u16(dst_0), vld1q_u16(dst_1), vld1q_u16(dst_2),
vld1q_u16(dst_3) };
// p7 will be the low half of src_p[0]. Not used until the end.
transpose_array_inplace_u16_4x8(src_p);
// Low halves: q0 q1 q2 q3
// High halves: q4 q5 q6 q7
uint16x8_t src_q[4] = { vld1q_u16(dst_0 + 8), vld1q_u16(dst_1 + 8),
vld1q_u16(dst_2 + 8), vld1q_u16(dst_3 + 8) };
// q7 will be the high half of src_q[3]. Not used until the end.
transpose_array_inplace_u16_4x8(src_q);
// Adjust thresholds to bitdepth.
const int outer_thresh = *blimit << (bd - 8);
const int inner_thresh = *limit << (bd - 8);
const int hev_thresh = *thresh << (bd - 8);
const uint16x4_t outer_mask = outer_threshold(
vget_high_u16(src_p[2]), vget_high_u16(src_p[3]), vget_low_u16(src_q[0]),
vget_low_u16(src_q[1]), outer_thresh);
const uint16x8_t p0q0 = vextq_u16(src_p[3], src_q[0], 4);
const uint16x8_t p1q1 = vextq_u16(src_p[2], src_q[1], 4);
const uint16x8_t p2q2 = vextq_u16(src_p[1], src_q[2], 4);
const uint16x8_t p3q3 = vextq_u16(src_p[0], src_q[3], 4);
uint16x4_t hev_mask;
uint16x4_t needs_filter_mask;
uint16x4_t is_flat4_mask;
filter8_masks(p3q3, p2q2, p1q1, p0q0, hev_thresh, outer_mask, inner_thresh,
bd, &needs_filter_mask, &is_flat4_mask, &hev_mask);
#if AOM_ARCH_AARCH64
if (vaddv_u16(needs_filter_mask) == 0) {
// None of the values will be filtered.
return;
}
#endif // AOM_ARCH_AARCH64
const uint16x8_t p4q4 =
vcombine_u16(vget_low_u16(src_p[3]), vget_high_u16(src_q[0]));
const uint16x8_t p5q5 =
vcombine_u16(vget_low_u16(src_p[2]), vget_high_u16(src_q[1]));
const uint16x8_t p6q6 =
vcombine_u16(vget_low_u16(src_p[1]), vget_high_u16(src_q[2]));
const uint16x8_t p7q7 =
vcombine_u16(vget_low_u16(src_p[0]), vget_high_u16(src_q[3]));
// Mask to choose between the outputs of filter8 and filter14.
// As with the derivation of |is_flat4_mask|, the question of whether to use
// filter14 is only raised where |is_flat4_mask| is true.
const uint16x4_t is_flat4_outer_mask = vand_u16(
is_flat4_mask, is_flat4(vabdq_u16(p0q0, p4q4), vabdq_u16(p0q0, p5q5),
vabdq_u16(p0q0, p6q6), bd));
// Copy the masks to the high bits for packed comparisons later.
const uint16x8_t hev_mask_8 = vcombine_u16(hev_mask, hev_mask);
const uint16x8_t needs_filter_mask_8 =
vcombine_u16(needs_filter_mask, needs_filter_mask);
uint16x8_t f4_p1q1;
uint16x8_t f4_p0q0;
const uint16x8_t p0q1 = vcombine_u16(vget_low_u16(p0q0), vget_high_u16(p1q1));
filter4(p0q0, p0q1, p1q1, hev_mask, bd, &f4_p1q1, &f4_p0q0);
f4_p1q1 = vbslq_u16(hev_mask_8, p1q1, f4_p1q1);
uint16x8_t p0q0_output, p1q1_output, p2q2_output, p3q3_output, p4q4_output,
p5q5_output;
// Because we did not return after testing |needs_filter_mask| we know it is
// nonzero. |is_flat4_mask| controls whether the needed filter is filter4 or
// filter8. Therefore if it is false when |needs_filter_mask| is true, filter8
// output is not used.
uint16x8_t f8_p2q2, f8_p1q1, f8_p0q0;
const uint64x1_t need_filter8 = vreinterpret_u64_u16(is_flat4_mask);
if (vget_lane_u64(need_filter8, 0) == 0) {
// filter8() and filter14() do not apply, but filter4() applies to one or
// more values.
p5q5_output = p5q5;
p4q4_output = p4q4;
p3q3_output = p3q3;
p2q2_output = p2q2;
p1q1_output = vbslq_u16(needs_filter_mask_8, f4_p1q1, p1q1);
p0q0_output = vbslq_u16(needs_filter_mask_8, f4_p0q0, p0q0);
} else {
const uint16x8_t use_filter8_mask =
vcombine_u16(is_flat4_mask, is_flat4_mask);
filter8(p3q3, p2q2, p1q1, p0q0, &f8_p2q2, &f8_p1q1, &f8_p0q0);
const uint64x1_t need_filter14 = vreinterpret_u64_u16(is_flat4_outer_mask);
if (vget_lane_u64(need_filter14, 0) == 0) {
// filter14() does not apply, but filter8() and filter4() apply to one or
// more values.
p5q5_output = p5q5;
p4q4_output = p4q4;
p3q3_output = p3q3;
p2q2_output = vbslq_u16(use_filter8_mask, f8_p2q2, p2q2);
p1q1_output = vbslq_u16(use_filter8_mask, f8_p1q1, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(use_filter8_mask, f8_p0q0, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
} else {
// All filters may contribute values to final outputs.
const uint16x8_t use_filter14_mask =
vcombine_u16(is_flat4_outer_mask, is_flat4_outer_mask);
uint16x8_t f14_p5q5, f14_p4q4, f14_p3q3, f14_p2q2, f14_p1q1, f14_p0q0;
filter14(p6q6, p5q5, p4q4, p3q3, p2q2, p1q1, p0q0, &f14_p5q5, &f14_p4q4,
&f14_p3q3, &f14_p2q2, &f14_p1q1, &f14_p0q0);
p5q5_output = vbslq_u16(use_filter14_mask, f14_p5q5, p5q5);
p4q4_output = vbslq_u16(use_filter14_mask, f14_p4q4, p4q4);
p3q3_output = vbslq_u16(use_filter14_mask, f14_p3q3, p3q3);
p2q2_output = vbslq_u16(use_filter14_mask, f14_p2q2, f8_p2q2);
p2q2_output = vbslq_u16(use_filter8_mask, p2q2_output, p2q2);
p2q2_output = vbslq_u16(needs_filter_mask_8, p2q2_output, p2q2);
p1q1_output = vbslq_u16(use_filter14_mask, f14_p1q1, f8_p1q1);
p1q1_output = vbslq_u16(use_filter8_mask, p1q1_output, f4_p1q1);
p1q1_output = vbslq_u16(needs_filter_mask_8, p1q1_output, p1q1);
p0q0_output = vbslq_u16(use_filter14_mask, f14_p0q0, f8_p0q0);
p0q0_output = vbslq_u16(use_filter8_mask, p0q0_output, f4_p0q0);
p0q0_output = vbslq_u16(needs_filter_mask_8, p0q0_output, p0q0);
}
}
// To get the correctly ordered rows from the transpose, we need:
// p7p3 p6p2 p5p1 p4p0
// q0q4 q1q5 q2q6 q3q7
const uint16x8x2_t p7p3_q3q7 = permute_acdb64(p7q7, p3q3_output);
const uint16x8x2_t p6p2_q2q6 = permute_acdb64(p6q6, p2q2_output);
const uint16x8x2_t p5p1_q1q5 = permute_acdb64(p5q5_output, p1q1_output);
const uint16x8x2_t p4p0_q0q4 = permute_acdb64(p4q4_output, p0q0_output);
uint16x8_t output_p[4] = { p7p3_q3q7.val[0], p6p2_q2q6.val[0],
p5p1_q1q5.val[0], p4p0_q0q4.val[0] };
transpose_array_inplace_u16_4x8(output_p);
uint16x8_t output_q[4] = { p4p0_q0q4.val[1], p5p1_q1q5.val[1],
p6p2_q2q6.val[1], p7p3_q3q7.val[1] };
transpose_array_inplace_u16_4x8(output_q);
// Reverse p values to produce original order:
// p3 p2 p1 p0 q0 q1 q2 q3
vst1q_u16(dst_0, output_p[0]);
vst1q_u16(dst_0 + 8, output_q[0]);
vst1q_u16(dst_1, output_p[1]);
vst1q_u16(dst_1 + 8, output_q[1]);
vst1q_u16(dst_2, output_p[2]);
vst1q_u16(dst_2 + 8, output_q[2]);
vst1q_u16(dst_3, output_p[3]);
vst1q_u16(dst_3 + 8, output_q[3]);
}
void aom_highbd_lpf_vertical_14_dual_neon(
uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0,
const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd) {
aom_highbd_lpf_vertical_14_neon(s, pitch, blimit0, limit0, thresh0, bd);
aom_highbd_lpf_vertical_14_neon(s + 4 * pitch, pitch, blimit1, limit1,
thresh1, bd);
}